
Send Orders for Reprints to reprints@benthamscience.net 
292 Current Neuropharmacology, 2022, 20, 292-308  

REVIEW ARTICLE 

 1570-159X/22 $65.00+.00 © 2022 Bentham Science Publishers  

Progression in Moyamoya Disease: Clinical Features, Neuroimaging  
Evaluation, and Treatment 

Xin Zhang1,2,3,4,5,#, Weiping Xiao1,2,3,4,5,#, Qing Zhang6,#, Ding Xia7, Peng Gao7, Jiabin Su1,2,3,4,5, 
Heng Yang1,2,3,4,5, Xinjie Gao1,2,3,4,5, Wei Ni1,2,3,4,5, Yu Lei1,2,3,4,5,* and Yuxiang Gu1,2,3,4,5,* 
1Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; 
2Neurosurgical Institute of Fudan University, Shanghai, China; 3Shanghai Clinical Medical Center of Neurosurgery, 
Shanghai, China; 4Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 
China; 5Department of Neurosurgery, Huashan Hospital North, Fudan University, Shanghai, China; 6Department of 
Nursing, Huashan Hospital North, Fudan University, Shanghai, China; 7Department of Radiology, Huashan Hospital 
North, Fudan University, Shanghai, China 

 Abstract: Moyamoya disease (MMD) is a chronic cerebrovascular disease characterized by pro-
gressive stenosis of the arteries of the circle of Willis, with the formation of collateral vascular net-
work at the base of the brain. Its clinical manifestations are complicated. Numerous studies have at-
tempted to clarify the clinical features of MMD, including its epidemiology, genetic characteristics, 
and pathophysiology. With the development of neuroimaging techniques, various neuroimaging 
modalities with different advantages have deepened the understanding of MMD in terms of structur-
al, functional, spatial, and temporal dimensions. At present, the main treatment for MMD focuses on 
neurological protection, cerebral blood flow reconstruction, and neurological rehabilitation, such as 
pharmacological treatment, surgical revascularization, and cognitive rehabilitation. In this review, 
we discuss recent progress in understanding the clinical features, in the neuroimaging evaluation 
and treatment of MMD. 
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1. INTRODUCTION 

Moyamoya disease (MMD) is a chronic cerebrovascular 
disease characterized by progressive stenosis of the terminal 
segment of the internal carotid artery and the circle of Willis, 
resulting in the formation of a collateral vascular network at 
the base of the brain [1]. The clinical manifestations of this 
disease are complicated. Since it was first reported in the 
1950s, numerous studies [2-5] from different parts of the 
world have attempted to clarify its epidemiological charac-
teristics in different regions. Furthermore, studies of its ge-
nomics and pathophysiology have also promoted understand-
ing of the unclear etiology of this disease [6, 7]. With the 
development and application of radiological techniques, var-
ious neuroimaging methods with different advantages have 
furthered the understanding of MMD in terms of its structur-
al, functional, spatial, and temporal aspects [8, 9].  

At present, the main treatment for MMD focuses on neu-
rological protection, cerebral blood flow reconstruction, and 
neurological rehabilitation, including pharmacological treat-
ment, surgical revascularization, and cognitive rehabilitation  
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[10-12]. In this review, we discuss recent advances in the 
understanding of its clinical features, its neuroimaging eval-
uation, and its treatment, to highlight prospective future di-
rections in these fields. 

2. EPIDEMIOLOGY 

2.1. Incidence and Prevalence 

MMD apparently has regional and ethnic characteristics. 
The incidence of MMD is higher in Asia than in Europe, 
America, Africa, and Latin America. Japan has a robust 
case-information registration mechanism and also has the 
highest incidence of MMD. According to 2 Japanese nation-
wide epidemiological surveys, the total number of patients 
diagnosed with MMD nearly doubled from 3,900 (95% con-
fidence Interval [CI] 3,500-4,400) in 1994, to 7700 (95% 
confidence interval, 6,300-9,300) in 2003. During this time 
period, the prevalence and incidence rates increased from 
3.16 and 0.35 per 100,000 population to 6.03 and 0.54 per 
100,000 population, respectively, partly due to the develop-
ment of neuroimaging techniques and improvement of the 
diagnostic criteria [13, 14]. Another epidemiology survey of 
unilateral MMD (typical angiographic evidence of MMD 
unilaterally, with equivocal contralateral findings) and quasi-
MMD (MMD present with inherited or acquired disorders) 
conducted in 2013 estimated that there were about 6671 
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MMD patients, 841 unilateral MMD patients, and 430 quasi-
MMD patients in Japan. The annual incidence rates of 
MMD, unilateral MMD, and quasi-MMD were estimated as 
1.13, 0.23, and 0.11/100,000, and the prevalence rates as 
5.22, 0.66, and 0.34/100,000, respectively [15]. 

Other southeast Asian regions, like China and South Ko-
rea, have also reported high incidences of MMD. A South 
Korean nationwide and population-based study estimated the 
number of patients with MMD to be 8,154 in 2011 and the 
incidence increased from 1.7 to 2.3 per 100,000 population 
from 2007 to 2011 [16]. A regional multi-center epidemio-
logical survey by 15 hospitals in Nanjing, China, suggested 
that prevalence and incidence rates of MMD were 3.92 and 
0.43/100,000 [17]. In Taiwan, China, an investigation by 7 
hospitals revealed that the average incidence rate was 
0.48/100,000 during a 12-year period [18]. In addition, a 
recent epidemiological single-center study in China identi-
fied 4,128 patients with MMD, with the highest prevalence 
observed in the Central Plains and surrounding regions, such 
as Henan province (1.050/100,000), Hebei province 
(0.818/100,000), Beijing (0.765/100,000), and Shandong 
province (0.660/100,000) [19]. 

Relatively lower incidence and prevalence rates of MMD 
were reported in Europe. For example, a Danish population-
based study indicated an incidence rate of 0.07 per 100,000 
person-years from 2008 onwards [2]. The prevalence of 
MMD among Irish Caucasians was calculated as 
0.33/100,000, with a mean annual incidence of 0.04/100,000 
[20]. America presented varying incidence rates of MMD in 
its different regions. Incidences in the USA ranged from 
0.05/100,000 in Iowa, and 0.086/100,000 in Washington 
State and California, to 0.17/100,000 in Hawaii, per 100,000 
patient-years [21-24]. Approximately 7,473 patients had 
been diagnosed with MMD in the USA from 2005 to 2008 
[25]. Literature from different regions all over the world is 
compared in Fig. (1).  

2.2. Age Distribution 

Relative studies have suggested that the youngest patient 
diagnosed with MMD could be less than 4 years old [14, 16]. 
In Japan, previous studies have suggested that there are 2 
peaks of MMD in terms of age distribution: approximately 
10-19 years and 40-49 years [13]. However, these values 
were modified in the 2003 nationwide epidemiological sur-
vey, which revealed 3 peaks in men: 10-14 years, 35-39 
years, and 55-59 years, and 2 peaks in women: 20-24 years 
and 50-54 years [14]. While in Korea, the first peak occurred 
at age 10-19 years and the second peak occurred at age 50-59 
years [16]. Three epidemiological studies conducted in Chi-
na revealed the same age distribution peaks in pediatric pa-
tients, i.e., 5-9 years, but differed in the peak for adult pa-
tients, i.e. 40-44 years in both sexes, in Taiwan, China, and 
35-39 years, in Nanjing province and the Central Plains and 
surrounding regions [17-19].  

MMD patients of European Caucasian ethnic background 
demonstrated a tendency to present at a younger age: 35.8 ± 
14.8 (range 1.6-72 years) [26]. Among patients enrolled in a 
German retrospective study, the youngest patient was report-
ed to be 1 year old, while the median age of onset was 32.9 
years (median 32 years, range 1-74 years, standard deviation 

14.04 years) [27]. A long-term follow-up study in a Finnish 
population revealed that the mean age at the start of the fol-
low-up ranged from 3 to 77 years (with a median age of 35 
years) [28].  

In the USA, there was a single age peak, at 1-10 years, in 
Iowa, while there was another peak, at 55-59 years, in Cali-
fornia and Washington [23]. The age of onset also differed 
by ethnicity, as African Americans demonstrated an earlier 
onset, with a median age of onset of 18 years [24]. 

2.3. Sex Ratio 

A female predominance was reported by several regional 
investigations, as the female to male ratios ranged from 2.8:1 
in Iowa [25] to as high as 4.25:1 in Europe [29]. Moreover, 2 
large epidemiological studies conducted in Japan in 1997 
and 2003 presented the female to male ratio as 1.8:1 [13,14]. 
However, this was different from the figures in some Chi-
nese studies, where this ratio was reported to be 1.15:1 and 
1.3:1 in Nanjing and Taiwan, respectively [17,18]. In addi-
tion, Bao et al. [19] found a 1:1 sex ratio in a recent single-
center epidemiological study in China. This suggests that sex 
factors in the clinical characteristics of MMD patients in 
China are different from those in Japan, South Korea, and 
other Asian countries, which may be related to differences 
among races, regions, and environments. 

3. GENETICS 

In addition to region-specific incidences, family history 
was found in 12.1% of MMD patients [14]. Identical twins 
have a higher rate of MMD co-prevalence, and the offspring 
of MMD patients are about 34 times more likely to develop 
MMD than the general population [30]. Some cases have 
been reported to have co-existing MMD and genetic diseas-
es, such as Down syndrome, neurofibromatosis and Turner 
syndrome, were reported [31, 32]. Multiple systems and or-
gans are involved in these genetic disorders and cerebrovas-
cular diseases could be one of their complications. A retro-
spective analysis also revealed a significantly higher preva-
lence of other diseases, particularly type 1 diabetes mellitus, 
hyperlipidemia, and thyroid disease, among MMD patients 
[33]. Taken together, genetic factors appear to play an im-
portant role in the pathogenesis of MMD. 

An investigation of 16 Japanese families with MMD (to-
tal: 77 patients) in 1999 reported 3p24.2‒26 as an early ge-
netic locus associated with MMD [34]. This locus was also 
found in a study in a Greek twin-pair with MMD by Zafeiri-
ou et al. [35] in 2003. Several other genetic loci were 
demonstrated to be related to Japanese familial MMD, i.e., 
6q25, 8q23, 12p12, and 17q25 [36-38]. Notably, a rare 
17q25 allele was much more frequent in Asian populations 
(Japanese, Korean, and Chinese), but was not detected in 
Caucasian cases [39]. The association of human leukocyte 
antigen (HLA) with various diseases also sparked some ge-
netic investigations into MMD. For instance, significant as-
sociation of HLA-DQB1*0502 [40], HLA-B51, and HLA-
DR4 [41] was found with MMD in the Japanese population, 
and of HLA-DRB1(*)1302, HLA-DRB1(*)0609 [42], and 
HLA-B35 [43] with MMD in Korean patients. Moreover, the 
frequencies of HLA-DRB1*03, HLA-DRB1*13, HLA-
A*02, HLA-B*08, and HLA-DQB1*03 were increased in 
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Fig. (1). Publications concerning moyamoya disease from various countries and regions during the past 30 years.  
 
Caucasian MMD patients [44]. Other studies mainly focused 
on gene polymorphism of the tissue inhibitor of metallopro-
teinase (TIMP) [45], the vascular smooth muscle cell 
(SMC)-specific isoform of alpha-actin (ACTA2) [46], and 
ring-finger protein 213 (RNF213) [47, 48]. Mutations in 
RNF213, a zinc ring-finger protein that is related to intracra-
nial major artery stenosis/occlusion [49], may affect the ex-
pression of some micro-RNAs and proteins associated with 
signaling processes involved in angiogenesis and immune 
activities that underlie the pathology and progression of 
MMD [50]. The amino acid substitution p.R4859K, the first 
identified RNF213 polymorphism associated with MMD, 
was found in 95% of patients with familial MMD, 80% of 
those with sporadic MMD, and 1.8% of control individuals 
in a Japanese population, in a genome-wide linkage and ex-
ome analysis study [51]. Other studies revealed the predic-
tive role of this variant on the age of onset and Posterior 
Cerebral Artery (PCA) involvement in MMD cases [52]. In 
addition, several other variants in RNF213 were identified 
among Caucasian cases, namely p.N3962D, p.D4013N, 
p.R4062Q, and p.P4608S [53]. Additional mutations tended 
to be associated with ischemic- or hemorrhagic-type MMD 
in specific populations [54] and require further investigation. 

4. PATHOPHYSIOLOGY 

4.1. Immunity and Inflammation 

In 1993, an autopsy conducted by Masuda et al. on 6 
MMD patients revealed infiltration of macrophages and T 
cells in the thickened intima of the arteries in the circle of 
Willis composed predominantly of smooth muscle cells [55]. 
This provided insight into the participation of the immune 
system and inflammation in the pathophysiology of MMD 

[56]. Chronic inflammation may damage the vessel wall and 
cause microthrombi, leading to ischemic stroke. Moreover, 
the pro-inflammatory environment formed by the abnormal 
secretion of cytokines may also stimulate activation of endo-
thelial cells and macrophages [57, 58], the proliferation of 
smooth muscle cells [59, 60], and neovascularization [61]. 
One investigation has found the higher expression of an M2 
macrophage marker-sCD163 in the serum of MMD patients, 
indicating the possible role of macrophage in the progression 
of MMD. Transforming Growth Factor-β (TGF-β) is among 
these pro-inflammatory cytokines, capable of regulating var-
ious cell functions, such as proliferation, differentiation, and 
migration [62]. Peripheral TGF-β was found to be increased 
in MMD patients and showed a positive correlation with 
Suzuki's stage MMD [63]. Increased expression of TGF-β 
could induce substantial extracellular matrix production, 
accompanied by intimal and medial hyperplasia in normal 
porcine arteries [64]. Similarly, higher serum levels of IL-1β, 
TNF-α, and IL-12 were also found in MMD patients than in 
age- and sex-matched healthy individuals; these levels also 
correlated with those detected in the cerebrospinal fluid 
(CSF) of these subjects [65].  

Co-existence of MMD and some autoimmune diseases, 
such as type 1 diabetes mellitus [66], Graves’ disease [67], 
or thrombocytopenia [68] also urged investigation into the 
mechanism of immune regulation disorder and abnormal 
expression of immune proteins in the progression of MMD. 
Yanagawa et al. [69] reported an MMD case with positive 
findings for rheumatoid factor and myeloperoxidase-anti-
neutrophil cytoplasmic antibody. Protein array data analysis 
followed by bioinformatics analysis has helped to identify 
165 significantly overexpressed autoantibodies in sera from 
MMD patients, which were associated with post-translational 

���

���

���

���

���

���

���

���

���

��

�
����	����
 ����	����
 ����	����
 ����	����
 ����	����
 ����	����


�
�
� ����
 ����
 ��� ������



Progression in Moyamoya Disease Current Neuropharmacology, 2022, Vol. 20, No. 2    295 

modification, inflammatory responses, and DNA damage 
repair and maintenance [70]. Moreover, the deposition of 
IgG and IgM was found under the internal elastic lamina of 
the internal carotid artery and the anterior and middle cere-
bral arteries in 15 human autopsies of MMD cases [71]. The 
deposition of immune complexes may cause degeneration, 
tortuosity, and rupture of the inner elastic layer of the main 
cerebral vessels and their branches and can cause mass mi-
gration of the smooth muscle cells of the middle membrane 
to the subintima, leading to intima thickening and vascular 
lumen narrowing. 

4.2. Endothelial Progenitor Cells 

With the potential of differentiating into mature vascular 
endothelial cells, Endothelial Progenitor Cells (EPCs) partic-
ipate in post-natal angiogenesis events, such as tumor angio-
genesis [72] and vasculogenesis [73], within ischemic tissues 
[74], as well as in the maintenance of vascular homeostasis 
[75], in addition to embryonic vascular development [76]. 
Higher levels of circulating EPCs were found in MMD pa-
tients than in patients with atherosclerotic cerebrovascular 
disease and in healthy controls [77]. Moreover, this was ob-
served in patients with angiographic moyamoya vessels, but 
not in patients with major cerebral artery occlusion (or se-
vere stenosis) who did not have moyamoya vessels [78]. A 
prospective clinical trial also found a significant correlation 
between EPC count and good post-operative collateral circu-
lation in 116 MMD patients [79]. However, seemingly con-
tradicting reports found decreased levels of blood EPCs in a 
group of adult Caucasian MMD patients who had not under-
gone surgery [80] and in a group of children with MMD 
[81].  

In addition to quantitative anomalies, the functional ab-
normality of EPCs may also play a role in the progression of 
MMD [81, 82]. This phenomenon exists due to a lack of 
standardized protocols for isolation, cultivation and identifi-
cation of these cells, as different investigations were con-
ducted using various techniques and with non-unified cell 
surface markers, concentrating on different subgroups of 
EPCs [82]. Early EPCs possess 3 specific surface markers: 
CD34, CD133, and vascular endothelial growth factor recep-
tor 2 (VEGFR-2) [83], while late EPCs only express 2 mark-
ers: CD34 and VEGFR-2 [84]. EPCs at various stages could 
play different roles in the pathophysiology of MMD. 

4.3. Nitric Oxide and Angiogenesis Related Cytokines  

Nitric Oxide (NO), by binding to its only known recep-
tor, guanylate cyclase (sGC) [85], plays an important bio-
chemical role as a neurotransmitter and second messenger 
that is involved in various physiological and pathophysiolog-
ical activities, including vascular smooth muscle remodeling 
[86] and vasoconstriction regulation [87], through an NO‒
sGC‒cyclic guanosine monophosphate (cGMP) pathway 
[88]. This was confirmed by the dilatory effect of L-arginine, 
a precursor of NO, on murine cerebral arterioles and the con-
strictive effect of N(G)-monomethyl-L-arginine (L-NMMA), 
an NO synthesis inhibitor [89]. Additionally, the level of NO 
in the CSF obtained from 23 MMD patients was significant-
ly higher than that of control specimens from 16 non-MMD 
patients [89]. Additionally, disrupted NO signaling due to 
sGC mutation could lead to MMD [90, 91]. It could be spec-

ulated that changes in NO levels can influence vascular 
smooth muscle and promote the formation of abnormal vas-
cular networks in the skull base, by expanding small vessels 
in the collateral circulation; however, the specific underlying 
mechanisms remain to be elucidated. In addition, caveolin-1 
(Cav-1), a repressive modulator of NO, was found reduced in 
MMD patients and further in vitro study showed that Cav-1 
downregulation suppressed angiogenesis in the endothelial 
cells and induced the smooth muscle cells apoptosis, indicat-
ing its negative role in arterial remodeling in MMD. 

MMD patients exhibit significantly altered plasma con-
centrations of cytokines, including growth factors like Vas-
cular Endothelial Growth Factor (VEGF), platelet-derived 
growth factor BB (PDGF-BB) [92] and angiogenesis related 
cytokines. The expression of VEGF [93] could be induced 
by hypoxia [94]. It is currently considered to be the most 
effective pro-angiogenesis growth factor. Significantly high-
er plasma concentration of VEGF was found in MMD pa-
tients. 

During the progression of MMD, local cerebral hypoxia 
could give rise to changes in the expression of VEGF, which 
may contribute to the formation of moyamoya vessels. In 
addition, receptors responsible for VEGF-soluble VEGF 
receptor-1 (sVEGFR-1) and sVEGFR-2 were found to be 
reduced in MMD patients and MMD patients who underwent 
indirect bypass surgery tended to have better collateral for-
mation with lower sVEGFR-1 and sVEGFR-2 levels. As a 
kind of angiogenesis related cytokines and targeting at colla-
gen IV, matrix metalloproteinase-9 (MMP-9) causes endo-
thelial basal lamina destabilization by degrading cell-cell and 
cell-matrix contacts and may participate in the disruption of 
the blood‒brain barrier [92]. Sporadic studies have reported 
elevated expression of some other cytokines like basic Fi-
broblast Growth Factor (bFGF), Hepatocyte Growth Factor 
(HGF), and Platelet-Derived Growth Factor (PDGF-BB) and 
Monocytes Chemoattractant Protein-1 (MCP-1) in MMD 
patients' serum or cerebrospinal fluid [95]. These cytokines 
mainly cause the proliferation of endothelial cells and migra-
tion of smooth muscle cells, leading to intima hyperplasia 
and pathological collateral vessel formation. However, 
whether these cytokines play initiating roles or are simply 
intermediate products during the progression of MMD re-
mains unknown and deserves further investigation. 

5. NEUROIMAGING EVALUATIONS 

5.1. Digital Subtraction Angiography 

MMD was first named as such in 1969 by Suzuki and 
Takaku because the appearance of this angiopathy on angi-
ography is reminiscent of a puff of smoke (the meaning of 
“moyamoya” in Japanese) [96]. Digital subtraction angi-
ography (DSA) is always the criterion standard for diagnosis 
of MMD [97]. DSA can not only evaluate the severity of 
stenosis in the terminal part of the internal carotid artery, but 
can also assess the degree of compensation from the external 
carotid artery and posterior circulation [98, 99]. Bonasia et 
al. [100] described the compensatory vascular systems in 
MMD and found 3 different types of anastomoses with dif-
ferent compensatory abilities, resulting from various perfu-
sion needs of the anterior circulation. Recent studies based 
on DSA have mainly focused on the prediction of clinical 



296    Current Neuropharmacology, 2022, Vol. 20, No. 2 Zhang et al. 

outcomes and prognosis in MMD [101-103]. Funaki et al. 
[104] demonstrated that choroidal anastomosis and posterior 
cerebral artery involvement are characteristic of intracranial 
hemorrhage in MMD, and might be risk factors for hemor-
rhagic MMD. Yamamoto and Hori et al. [105, 106] suggest-
ed that the longitudinal shift in collateral channels from the 
anterior to the posterior component might be closely related 
to the onset of hemorrhagic stroke in MMD, and may also be 
associated with ethnic differences. Zhang et al. [107] also 
found that direct anastomoses of the parasylvian cortical 
arteries with anterograde hemodynamic sources from the 
middle cerebral artery had a high risk of postoperative com-
plications in MMD. Notably, the literature has increasingly 
confirmed the value of DSA in the assessment of MMD 
[108], as it allows evaluation of hemodynamic characteristics 
and compensation [109], and possibly prediction of clinical 
outcomes [110]. However, a shortcoming of this method is 
that it cannot truly reflect the perfusion status of the brain 
parenchyma. Moreover, with increased understanding of 
DSA, the modified Suzuki grading system may facilitate risk 
stratification and prognosis prediction in patients with MMD 
[111]. 

5.2. Magnetic Resonance Imaging 

There is no doubt that with advances in Magnetic Reso-
nance Imaging (MRI) and development of different sequenc-
es, marked progress has been made in the understanding of 
MMD [112, 113]. Previous studies have suggested that dif-
ferent sequences of structural MRI (sMRI) can contribute to 
the objective evidence of MMD [114-116], showing gray 
matter atrophy and white matter deterioration with high spa-
tial resolution [117]. Kazumata et al. [118] reported that the 
combination of diffusion tensor imaging and sMRI is poten-
tially useful for tracking subtle anatomical changes, even 
though hemodynamic compensation may mask ischemic 
status in advanced stages of MMD. In addition, Susceptibil-
ity-Weighted Imaging (SWI) and time-of-flight magnetic 
resonance angiography (TOF-MRA) allows highly reproduc-
ible detection of the bleeding point in hemorrhagic MMD, 
which is a prognostic factor for rebleeding and assessing the 
degree of preventive effects [119, 120]. High-resolution ves-
sel wall imaging also has potential utility for diagnosis as 
well as for indicating disease activity with the presence of 
wall thickening and enhancement in MMD [121, 122]. 

Functional MRI (fMRI) provides the opportunity to un-
derstand the functional connectivity between brain regions at 
neural, regional, and network levels [123]. Blood Oxygen 
Level Dependence (BOLD) is an emerging technique for the 
assessment of cerebrovascular reactivity in MMD [124, 125]. 
It is a very promising tool for hemodynamic evaluation and 
holds potential for becoming a routine examination in the 
pre- and postoperative evaluation of MMD patients in the 
future [126, 127]. Working memory and performance speed 
scores are inversely correlated to the degree of disruption of 
the default mode network changes, and can be detected by 
using resting-state fMRI [128]. This suggests a possible rela-
tionship between higher cognitive function and orderliness of 
fundamental brain networks. Analysis of resting state net-
works may produce potential biomarkers for cognition in 
MMD [129]. Using fMRI, Lei et al. [130] clarified static and 

dynamic organizational principles behind network changes 
in MMD, which provided some new insights into the patho-
physiology and treatment direction. 

Furthermore, different types of perfusion sequence MRI 
can provide hemodynamic information and have recently 
become hot research topics for MMD [131, 132]. Lin et al. 
[133] developed standardized Time-to-Peak maps and a scor-
ing system via perfusion-weighted MRI to evaluate longitu-
dinal perfusion changes in MMD and confirmed the predic-
tive value of preoperative perfusion status. Arterial spin La-
beling (ASL) is another MR perfusion method that relies on 
endogenous water molecules for signal and is increasingly 
used for quantitative cerebral blood flow measures in MMD 
[97, 113, 134]. Lee et al. [135] determined that ASL could 
be used as a noninvasive monitoring tool to identify perfu-
sion changes, including cerebral blood flow, collateral blood 
flow, and anastomosis site patency after revascularization in 
MMD patients. Numerous modified methods [136, 137], 
such as velocity-selective ASL, offer a powerful approach to 
cerebral perfusion imaging with high accuracy, which holds 
marked research prospects for MMD. 

5.3. Advanced Neuroimaging 

Cerebral hemodynamic imaging, such as single-photon 
emission computed tomography, can evaluate the level of 
blood perfusion, and detects misery perfusion with high sen-
sitivity in MMD [138, 139]. Positron-Emission computed 
Tomography (PET) seems to be more sensitive in detecting 
cerebral perfusion reserves, such as the Oxygen Extraction 
Fraction (OEF) and cerebrovascular reserve capacity, to clar-
ify the mechanism of cognitive impairment for MMD [140-
142]. Hara et al. [143] found that chronic ischemia in pa-
tients with MMD may induce decreased neurite and axonal 
density and simplified network complexity, which may lead 
to neurocognitive dysfunction. Lee et al. [144] also con-
firmed that severe hemodynamic impairment, indicated by 
increased OEF ratios on PET is associated with decreased 
cortical thickness in MMD. More importantly, hemodynamic 
evaluation is essential for MMD, to clarify vascular territo-
ries at risk of stroke [145, 146]. A previous study [127] 
found that the incidence of ischemic events was low and that 
cognitive function was stable in MMD without cerebral mis-
ery perfusion, which strengthened the surgical indications 
and concepts for MMD [147]. 

Electroencephalogram (EEG) can reflect the overall elec-
trophysiological effects and the function of the brain network 
[148]. It is a noninvasive method with high temporal resolu-
tion that can reflect neuronal activities in patients with MMD 
[149]. A previous study has confirmed that EEG is useful for 
evaluating transient neurological events in MMD to distin-
guish seizures and epileptiform changes [150]. Additionally, 
postoperative transient neurological dysfunction resulting 
from transient cortical depression often occurs in MMD 
[151]. This can be detected by EEG, as low amplitude ar-
rhythmic slowing in the corresponding hemisphere [152]. 
Some studies [153, 154] have also found that focal ischemic 
events as well as epileptic waves monitored on EEG corre-
lated with clinical outcomes in MMD. Electrocorticography 
(ECoG) is another method for evaluating suppression of neu-
rophysiologic activity and comparing spectral power 
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Table 1.  Different grading systems for moyamoya disease based on different neuroimaging methods. 

Year Author Basis for Grading Objective Significance 

2011 Czabanka, et al. DSA, MRI & CVRC 

Degree of stenosis of intracranial artery & 

compensation 

Sign of ischemia  
CVRC 

Such system can stratify for clinical sympto-

matology 

2014 Hung, et al. 
Color-coded parametric quanti-

tative DSA 

DSC-PWI 

Delay time of maximal opacification be-
tween ICA and MCA 

Such system correlates with angioarchitecture 
and hemodynamic impairment status 

2015 Sahoo, et al. Angiographic outcome score 

Reformation of distal MCA and ACA 
Regression of basal moyamoya vessels 

Leptomeningeal collaterals and overall per-

fusion 

Such score can reflect angiographic changes after 
revascularization 

2017 Ladner, et al. 
Prior infarcts, reactivity & angi-

ography 

DSA 

Structural and hemodynamic MRI 

Such system correlates with symptomatology to 

evaluate hemodynamic severity 

2018 Yin, et al. CT perfusion Cerebral perfusion status 
Such system can evaluate cerebral perfusion 

status and predict the efficacy of revasculariza-

tion 

2019 Zhi-Wen, et al. 
Collateral circulation and Suzuki 

stage 
Anatomic extent of blood flow of intracrani-

al and pial perforator 

Such system correlates with clinical symptoms, 

hemodynamic status, and therapeutic prognosis 
 which may facilitate risk stratification and prog-

nosis predictions in MMD patients 

2019 Lin, et al. MRI perfusion 
Standardized TTP maps using cerebellar 

reference values 
Preoperative perfusion status is the only predictor 

of indirect revascularization outcome 

2020 Moinay, et al. 
Demographics, multimodal 

imaging  

Surgical revascularization types 

Hyperlipidemia & smoking 
Cerebral infarction on preoperative CT or 

MRI 

Reduced regional CVRC 

Such system reveals the importance of smoking 
and hyperlipidemia to predict clinical outcome 

2020 Mario, et al. DSA, MRI & Xenon-CT 
Structural intracranial vessels criteria 

Sign of ischemia/hemorrhage/atrophy 

CVRC 

Such system can stratify hemispheric sympto-

matology and predict stroke events 

(CVRC: Cerebrovascular Reserve Capacity; DSC-PWI: Dynamic Susceptibility Contrast Perfusion-Weighted Imaging; ICA: Internal Carotid Artery; MCA: Middle Cerebral Artery, 
ACA: Anterior Cerebral Artery; CT: Computer Tomography; MRI: Magnetic Resonance Imaging; TTP: Time To Peak)  

 
between different regions in the surgical area, which may 
provide insight into the potential neuromodulatory role of 
revascularization surgery [155, 156]. 

5.4. Future Directions 

Various types of neuroimaging modalities have different 
clinical significance in the diagnosis and evaluation of MMD 
[157]. DSA and sMRI may be more sensitive for distinguish-
ing characteristic structural changes and yield a higher spa-
tial resolution. ASL as well as EEG may have better tem-
poral resolution and could be more suitable for individual 
application. On the other hand, BOLD and PET are superior 
in functional evaluation of the brain and provides some new 
insights into MMD. Moreover, it cannot be refuted that neu-
ropsychological evaluation is also a valuable assessment, 
because cognitive impairment resulting from MMD can also 
be detected on functional neuroimaging, which is of great 
significance in identifying asymptomatic MMD and disease 
progression [158]. Multiple studies [130, 150] have found 
abnormalities on fMRI and EEG, which correlated strongly 
with cognitive changes and clinical manifestations. Investi-

gation of the connection between cognitive status and ad-
vanced neuroimaging have become a focus in MMD, with 
marked potential [159]. Yet, each neuroimaging modality 
has its own limitations, which might be complemented by 
using multimodal image fusion techniques. The Berlin grad-
ing system [160] involves DSA, sMRI, and functional cere-
brovascular assessment of hemodynamic impairment, and 
correlates with disease severity. More importantly, it allows 
stratification of the individual risks of surgical therapy. Alt-
hough there are many types of staging systems for MMD, 
based on clinical characteristics and imaging findings  
(Table 1), an appropriate grading system for MMD that can 
clarify the true progression of the disease is still lacking. 

6. TREATMENT 

6.1. Medical Treatment 

In terms of treating the common symptoms of MMD, the 
use of antiplatelet and many other agents focuses on symp-
tomatic control [10, 161]. The results of a nationwide survey 
in Japan [162] showed that the selection of antiplatelet drugs 
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varied widely across facilities and there is no consensus 
treatment. Notably, some researches [163] showed that ci-
lostazol improves cerebral perfusion as well as cognition 
better than other antiplatelet drugs for ischemic MMD pa-
tients. Meanwhile, a recent 10-year follow-up evaluation has 
demonstrated that the use of antiplatelet agents did not influ-
ence the rate of cerebral infarction in patients with MMD 
[163]. Treatment indications for asymptomatic MMD are 
currently being revisited in the AMORE trial [164]; more 
research evidence is needed to confirm the efficiency of con-
servative therapy with antiplatelet drugs [165]. Given the 
vascular cognitive impairment caused by MMD [114], ace-
tylcholinesterase inhibitors, such as donepezil and rivastig-
mine, have generally been approved for modest cognitive 
benefits [166]. Moreover, butylphthalide may alleviate peri-
operative neurological deficits in cases with unfavorable 
preoperative status [167]. Taken together, effectiveness of 
medical treatment for MMD remains unclear and further 
investigations are urgently needed [168]. 

6.2. Revascularization 

Surgical treatment is the most effective method to restore 
the blood supply and increase cerebral perfusion in order to 
prevent secondary stroke in ischemic MMD and to stabilize 
cerebrovascular hemodynamics to regress fragile moyamoya 
vessels to prevent bleeding in hemorrhagic MMD [11, 169], 
which then improves neurocognitive outcomes [170]. In sur-
gical practice, endovascular treatment and revascularization 
are often applied; the latter includes indirect, direct, and 
combined revascularization [171]. 

6.2.1. Endovascular Treatment 

Endovascular treatment (EVT) has become the current 
main-stream treatment for MMD-associated aneurysms 
[172]. Previous reports have shown that endovascular embo-
lization is safe and efficacious for treating intracranial aneu-
rysm with liquid embolic agents or coils in most locations in 
patients with MMD [173, 174]. Moreover, some studies 
[175, 176] have reported that while EVT can be applied in 
atherosclerotic moyamoya syndrome, it is a major challenge 
to perform EVT for MMD in stenosed arteries in which su-
per-selective catheterization is technically difficult [177]. 
Indeed, there are plenty of attempts to treat MMD by EVT in 
order to improve forward blood flow of target vessels. Due 
to the pathogenesis of MMD being vasculitis-liked angiopa-
thy with concentric stenosis of intracranial artery, both angi-
oplasty and stenting may promote inflammatory reaction in 
the artery, of which the long-term clinical outcomes remain 
controversial. 

6.2.2. Direct Revascularization 

Direct revascularization via anastomosis of the superfi-
cial temporal artery to the middle cerebral artery (STA-MCA 
bypass) has been the most common procedure for addressing 
the MCA territory [178], but also supports the anterior cere-
bral artery territory via leptomeningeal anastomoses [179, 
180]. Particularly, Kurihara et al. [181] reported that the pos-
terior auricular artery can also be used as the donor artery 
using a double direct bypass technique for cases with poor 
development of the STA. Multiple reports have confirmed 
that direct revascularization is more effective in preventing 
recurrent ischemic strokes for adult ischemic-type MMD 

[182, 183], while, direct bypass is challenging in children, 
where bypass patency rates have been reported to be lower 
[184, 185].  

6.2.3. Indirect Revascularization 

Indirect revascularization relies on neovascularization of 
the cortical surface using angiogenic mechanisms from pedi-
cle-based grafts, such as pial synangiosis, and temporal mus-
cle grafts, which are generally easier to perform [186, 187]. 
However, the hemodynamic protective effects may take 
months to develop and are not very predictable [188]. A pre-
vious study confirmed that indirect bypass surgery could 
provide satisfactory long-term improvement in overall clini-
cal outcomes and prevention of recurrent stroke in children 
with MMD [189]. Another previous study proved that en-
cephalo-duro-arterio-synangiosis was beneficial for patients 
with hemorrhagic MMD through long-term follow-up [190]. 
Mirone et al. [191] also emphasized the good success rate of 
using multiple burr holes in pediatric MMD, which could be 
an effective support to produce good collateral revasculariza-
tion and improve cerebral perfusion. Such burr-hole surgery 
could provide satisfying clinical symptom control with low 
perioperative risk. In addition to the abovementioned cover-
age of the brain surface, other strategies, such as Encephalo-
Duro-Myo-Synangiosis (EDMS) and omental transplantation 
have also been applied to stimulate transcranial angiogenesis 
[192]. There are a wide variety of indirect techniques, but 
which of these techniques is superior to the others remains 
unknown. 

6.2.4. Combined Revascularization 

Combined revascularization includes direct and indirect 
bypasses; the latter aims to achieve both immediate and later 
hemodynamic improvement and serves as a fallback strategy 
in case the direct bypass fails [193]. Multiple reports [194, 
195] have confirmed that combined revascularization would 
be the best choice for preventing not only further ischemic 
events, but also hemorrhagic stroke, by improving anterior 
choroidal artery-posterior communicating artery dilation and 
extension. Additionally, Kazumata et al. [196] reported that 
combined revascularization may improve cognitive function, 
including processing speed and attention in MMD patients 
with evidence of postsurgical structural brain changes. How-
ever, we encountered a patient with intraventricular hemor-
rhage (IVH) who was diagnosed with MMD accompanied 
with a pseudoaneurysm in our center (Figs. 2A, 2B; white 
arrow), in whom combined revascularization was performed 
(Fig. 2C). Long-term angiographic follow-up showed good 
patency of the donor artery, satisfactory compensation from 
EDMS, and disappearance of the pseudoaneurysm (Figs. 2D-
F). After 1 year, the patient suffered from headache and Com-
puted Tomography (CT) showed IVH, as before, but showed 
no significant findings on DSA (Figs. 2G-I). SWI revealed 
multiple right paraventricular microbleeds (Fig. 2J; dotted 
arrow). It remains unclear what should be done for such pa-
tients, and how rebleeds should be prevented [173]. In addi-
tion, postoperative hyperperfusion syndrome, such as aphasia, 
epileptic seizures, and even new cerebral hemorrhage or is-
chemia, are experienced frequently in the acute phase after 
such combined revascularization processes, and these can pro-
gress to irreversible sequelae [197]. Therefore, appropriate 
methods with sufficient evidence are urgently needed. 
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Fig. (2). This patient was found to have Intraventricular Hemorrhage (IVH) and was diagnosed with moyamoya disease accompanied with 
pseudoaneurysm (A, B, white arrow) at our center. Combined revascularization (superficial temporal artery to the middle cerebral artery by-
pass and encephalo-duro-myo-synangiosis) was performed (C). The 6-months follow-up with digital subtraction angiography (DSA) showed 
good compensation from the external carotid artery and disappearance of the pseudoaneurysm (D, E, F). After 1 year, the patient suffered 
from headache. IVH was found on computed tomography, but there was no significant finding on DSA (G, H, I). Susceptibility-weighted 
imaging was performed and revealed multiple right paraventricular microbleeds (J; dotted arrow). (A higher resolution/colour version of this 
figure is available in the electronic copy of the article). 

 

 

Fig. (3). Evaluating methods, including Digital Subtraction Angiography (DSA), structural Magnetic Resonance Imaging (sMRI), Arterial 
Spin Labeling (ASL), positron emission tomography (PET), indocyanine green angiography (ICG-FLOW800) and electrocorticography 
(ECoG) can reflect different characteristics, such as angioarchitecture, cerebral perfusion, and metabolic status in different hemispheres from 
the perspective of structure to function. Such modified revascularization based on multimodal neuroimaging guidance aims to provide objec-
tive evidence for surgical decision-making and can decrease peri-operative complications of moyamoya disease. (A higher resolution/colour 
version of this figure is available in the electronic copy of the article). 
 
6.3. Neurological Rehabilitation 

Neurological rehabilitation also plays an important role 
in vascular cognitive impairment caused by MMD. Perng et 
al. [198], in their meta-analysis, found that systematic cogni-

tive training is an effective intervention for MMD. Formica 
et al. [199] also found that specific motor and neuropsycho-
logical rehabilitative treatments provided advantages in the 
care of MMD patients with disorders of consciousness. In 
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particular, psychological intervention for pediatric MMD 
patients is important to improve post-operative quality of life 
and physical, emotional, social, and school functional out-
comes [200]. Choi et al. [201] also confirmed the effective-
ness of remote ischemic pre- and post-conditioning in reduc-
ing neurological complications and the duration of hospitali-
zation in MMD patients undergoing STA-MCA anastomosis. 
Taken together, neuroprotection and neurorecovery en-
hancement have marked potential as MMD treatments. A 
standard neurological rehabilitation protocol needs to be 
established [202]. 

6.4. Future Directions 

Although surgical revascularization is the most success-
ful treatment for improving cerebral perfusion and reducing 
the risk of stroke events in MMD patients, the rate of com-
plications, such as hyperperfusion syndrome, cerebral infarc-
tion, and epilepsy, remains very high due to hemodynamic 
abnormalities. Nevertheless, the distribution of global and 
regional perfusion, metabolism, as well as neuronal activity, 
are also important influencing factors in surgical decision-
making regarding bypass surgeries [203]. Additionally, the 
choice of recipient vessel is currently based on the experi-
ence of the surgeon, without objective evidence. A modified 
method of operation is needed to reduce the incidence of 
complications [104]. With multi-dimensional neuroimaging 
evaluations of MMD, assessment that includes angioarchi-
tecture, cerebral perfusion and metabolism, regional hemo-
dynamic parameters, and neuronal activities by means of 
DSA, ASL, PET-CT, indocyanine green angiography (ICG-
FLOW 800), and intraoperative electrocorticography [204]. 
With such evaluations, the ischemic as well as dysfunctional 
cortical area can be accurately confirmed so as to choose the 
appropriate recipient artery, and the clinical outcomes of 
bypass surgery may improve and the complication rate de-
crease (Fig. 3).  

CONCLUSION 

Taken together, not only are the clinical features of 
MMD complicated, but the diagnostic criteria and treatment 
strategy for MMD need to be developed further. More na-
tionwide studies are urgently needed to clarify the mecha-
nism and risk factors of MMD and explore more efficient 
preventative measures. There are numerous neuroimaging 
methods that can be used to evaluate the progression of 
MMD, in terms of different aspects, which can also be useful 
in facilitating an appropriate bypass.  
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