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Summary

Associative memory formation and recall in the fruit fly Drosophila melanogaster is subserved by 

the mushroom body (MB). Upon arrival in the MB, sensory information undergoes a profound 

transformation, from broadly tuned and stereotyped odorant responses in the olfactory projection 

neuron (PN) layer, to narrowly tuned and nonstereotyped responses in the Kenyon cells (KCs). 

Theory and experiment suggest this transformation is implemented by random connectivity 

between KCs and PNs. However, this hypothesis has been challenging to test, given the difficulty 

of mapping synaptic connections between large numbers of brain-spanning neurons. Here we 

used a recent whole-brain electron microscopy volume of the adult fruit fly to map PN-to-KC 

connectivity at synaptic resolution. The PN-KC connectome revealed unexpected structure, with 

preponderantly food-responsive PN types converging at above-chance levels on downstream KCs. 

Axons of the overconvergent PN types tended to arborize near one another in the MB main 

calyx, making local KC dendrites more likely to receive input from those types. Overconvergent 
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PN types preferentially co-arborize and connect with dendrites of αβ and α’β’ KC subtypes. 

Computational simulation of the observed network showed degraded discrimination performance 

compared to a random network, except when all signal flowed through the overconvergent, 

primarily food-responsive PN types. Additional theory and experiment will be needed to fully 

characterize the impact of the observed nonrandom network structure on associative memory 

formation and recall.

Graphical Abstract

In Brief (eTOC Blurb)

By mapping synaptic connectivity in a whole-brain electron microscopy volume of the fruit fly 

Drosophila melanogaster, Zheng et al. show that sensory input to a canonical associative memory 

circuit is not sampled at random. Rather, food-responsive olfactory projection neurons converge 

preferentially onto specific Kenyon cell subtypes.

Introduction

The cellular basis for associative memory formation and recall remains a central mystery 

of neurobiology. Connectomics, in which synaptic connections are traced between large 

numbers of neurons to map circuit wiring diagrams,1 offers a new method by which to 

explore the topic. The adult fruit fly Drosophila melanogaster is arguably an ideal model 

system for a connectomics-based investigation of the neuronal networks underpinning 

learning and memory. Its brain is small enough to have been completely imaged at 
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synaptic resolution by electron microscopy (EM);2 it is behaviorally sophisticated;3–6 and 

the stereotyped morphology and physiology of its cell types allow ready integration of 

experimental results across individuals.7,8 Further, each cell type normally consists of one or 

a handful of neurons,9–11 which may be individually addressed using genetic tools, allowing 

circuits to be functionally imaged and perturbed in a highly specific fashion.12–15

The exception to this norm is the mushroom body (MB; Figure 1A), a bilaterally symmetric 

structure for associative memory formation and recall.16–18 The MB contains about 2,200 

intrinsic neurons, called Kenyon cells (KCs), on each side of the brain.19–21 Modification 

of synapses between KCs and their targets, the MB output neurons (MBONs) likely 

underlies olfactory learning and memory.16,18,22 Kenyon cells can be divided into three 

main subtypes, γ, α’/β’, α/β.23–25 The axons of each KC subtype project anteriorly 

to the eponymous MB lobe, where they provide input to 35 cell types comprising ~44 

MBONs.9,26 Sensory input to the MB is dominated by ~150 olfactory projection neurons 

(PNs), which relay information from the 51 olfactory glomeruli of the antennal lobe 

(AL).20,27–29 Olfactory PN type is defined by which AL glomerulus the PN dendrites 

innervate; PNs of the same type have stereotyped morphology and odorant response profiles 

across individuals.7,30 Olfactory PN axons project posteriorly and collateralize in the MB 

main calyx, where they provide input to KC dendrites, before arborizing extensively in 

lateral horn (LH), which mediates innate behavioral response to odorants.29,31 Kenyon cell 

dendrites terminate in specialized ‘claws’, each of which ensheathes a single PN axonal 

bouton (Figure 1B). Multiple KC claws commonly ensheath a given PN bouton, and each 

KC samples input from an average of ~6–8 PNs.32–35 Multiple input PNs must be coactive 

in order to evoke an action potential in a given KC,36 and widefield feedback inhibition is 

preponderant throughout the MB,37 resulting in KC activity that is sparse and sharply tuned 

compared to that of the input PNs.38

The PN-to-KC layer of MB connectivity therefore implements a transformation of olfactory 

representation, from broad, stereotyped, and sustained olfactory responses, in a small 

population of PNs, to sparse, variable, and transient responses, distributed across a large 

population of KCs. This circuit architecture is an example of a ‘Marr motif’,39,40 after the 

theorist David Marr’s foundational work on cerebellar function.41,42 This motif is found in 

many brain regions and species, including cerebellum, hippocampus, and piriform cortex in 

vertebrates, and the vertical lobe of the octopus.39,43–45 In the fly, it is thought to permit 

efficient representation of arbitrary combinations of odorants – which may be thought of as 

points in a high-dimensional olfactory space – for downstream use as a conditioned stimulus 

during associative memory formation and recall.17,44,46 Theoretical analyses have argued 

that randomly mixed input channels, when combined with a nonlinearity such as a spike 

threshold, increases the dimensionality, and, therefore, the linear separability of activity 

patterns, making them easier to discriminate.47–50 Most models of the PN-to-KC network in 

the fly have therefore assumed that in the Marr motif, input neurons (PNs) are sampled at 

random by intrinsic neurons (KCs)39,40,51,52; but see 53–56.

Several efforts to test the hypothesis of random PN-to-KC connectivity have been made, 

using light microscopy, electrophysiology, and, most recently, EM. Single-cell retrograde 

labeling was used to identify the PN inputs to a single KC in each of 200 individual 
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flies.35 About half the claws for each KC were successfully labeled. No evidence of 

network structure was found, although some PN types clearly had more downstream targets 

than others. In another study, electrophysiological recordings of 23 KCs across 27 adult 

fruit flies revealed highly diverse olfactory responses, with only two KCs exhibiting an 

identical response profile across individuals.57 These studies had relatively small sample 

sizes and pooled data across individuals, and were sufficient to exclude highly structured 

and stereotyped PN-to-KC connectivity. However, weaker biases in network structure, or 

varied structure across individuals, could not be excluded. In contrast, in the fruit fly larva, 

the complete PN-to-KC connectome of a single individual was mapped using a whole-CNS 

EM volume.52 No evidence of network structure was found, although single claw KCs were 

found to occur more frequently than a gaussian distribution would predict. However, the 

larval MB contains only about 100 KCs per hemisphere, all of which are of a single class 

γ.25 The question of whether network structure might exist in the adult was left open.

Indeed, several studies have indicated that PN-to-KC network structure may be nonrandom. 

Olfactory PN axonal arbors and KC dendritic arbors are known to occupy stereotyped 

positions within the MB calyx as a function of cellular subtype,29,58,59 and EM-based 

reconstructions showed that the axonal arbors of many PN types occupy more constrained 

territories within an individual than predicted by LM-based reconstructions pooled across 

many individuals.2 Physiologically, calcium imaging has revealed that KC claws show more 

correlated responses than would be predicted by chance, and simultaneous optogenetic 

stimulation of three PN types (comprising ~13 PNs in total) also showed greater-than-

chance convergence.36 A recent analysis of MB connectivity in a partial (“hemibrain”) 

fly connectome10 showed that the PN-to-KC network exhibits spatial bias and specificity 

dependent on PN and KC subtypes,26 confirming several findings presented here and in 

preprint form.60 To address this question more thoroughly in the present work, we set out 

to reconstruct and analyze a large number of PN-to-KC connections, using the previously 

described Female Adult Fly Brain (“FAFB”) EM volume.2

Results

Reconstruction of the PN-to-KC network

To map the PN-to-KC network, KCs were randomly selected for reconstruction from a 

cross-section of the MB pedunculus, a tract where KC axons converge after their dendrites 

receive input in the MB main calyx (Figure 1A–D). The PN bouton innervating each 

KC claw was then retrogradely traced to the main PN axon trunk, and the PN type was 

identified, using previously published classifications of PNs in the FAFB dataset.2 The broad 

category of odorants to which each PN type responds was determined through a literature 

review, blind to the results of the analyses presented below (Figure 1E; Table S1). The intent 

was to enable analysis of the relationship between the behavioral role of each glomerulus 

and any observed PN-to-KC network structure. More than half of categorized PN types were 

responsive to food-related odorants.

Initial KC reconstructions were purely manual; later efforts leveraged an automated 

segmentation of the full FAFB dataset.61 In total, all olfactory PN inputs to 7,102 claws 

arising from 1,356 KCs were mapped and identified (~62% of all claws on the right side of 
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the brain). All PN boutons and KC claws were demarcated during reconstruction, allowing 

detailed null models of random connectivity to be specified, as described below. In the 

MB main calyx, all claws from each reconstructed KC were identified, and all dendrites 

in calyx, including claws, were traced to completion. In the MB lobes, KC axons were 

traced sufficiently to classify KC subtype as γ, α’/β’, or α/β. Each KC was found to have 

5.2 claws on average (Figure 1F), consistent with previous studies.32,35 The number of 

KCs postsynaptic to each PN type was also in excellent agreement with counts obtained 

from a recently released partial (“hemibrain”) connectome of adult fly brain connectivity 

(Figure 1G–H).10 The consistency of these metrics across datasets and methods indicates 

that the PN-to-KC network reconstructed in the present study is of high quality and therefore 

suitable for detailed analysis.

Non-uniformity of olfactory input to the mushroom body

To assess whether KCs sample PN input at random in the MB calyx, the number of axonal 

boutons from each PN type must first be quantified. This is a function of the number of 

PNs per AL glomerulus, and the number of axonal boutons per PN. At both of these levels, 

different PN types made strikingly different amounts of input to the mushroom body calyx 

(Figures 2 and S1). For example, glomeruli responsive to sex pheromone (DA1 and VA1v; 

Table S1) and the microbial odorant geosmin (DA2; Table S1) had many more PNs per 

glomerulus than other types (Figure 2A), but made relatively few boutons per PN (Figure 

2B). For DA1 and DA2, the large number of PNs was enough to offset the low number 

of boutons per PN; this was not the case for VA1v (Figure 2C). In other cases, such as 

the acid-sensing PN type (DC4; Table S1), both PN number and boutons per PN were low, 

resulting in small net input to the MB calyx. Food-responsive PN types provided slightly 

more total boutons to the calyx, although this effect was small and only reached statistical 

significance when uncategorized PN types were included (Figures 2C and S1E–F).

Non-random sampling of olfactory PN by KCs

The observed number of PN boutons arising from each glomerulus (Figure 2C) was used 

to construct a null model for PN-to-KC connectivity, in which each KC claw is assigned a 

PN bouton at random (Figure 3A). In this “random bouton” model, the probability a claw 

receives an input from a given PN type is proportional to the number of boutons arising from 

each PN type. The random bouton model was run 10,000 times to generate the PN-to-KC 

connectivity that would be expected if PN boutons were sampled at random by KC claws. A 

conditional input analysis was used to determine whether KCs were more or less likely than 

expected to get input from a particular PN type (Figure S2A, matrix columns), given input 

from another PN type (Figure S2A, matrix rows). These pairwise conditional probabilities 

were quantified as z-scores (i.e., the number of standard deviations of the observed value 

from the mean of the distribution generated by the random bouton model; Figure S2B), and 

the order of columns and rows in the resulting matrix was determined using unsupervised 

k-means clustering.

Conditional input analysis demonstrated that the observed PN-to-KC network structure was 

qualitatively and quantitatively different from that predicted by the random bouton model 

(Figures 3B and S2C). Sensory input relayed by olfactory PNs to the MB main calyx is not 
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sampled at random by KCs. To further describe the observed network structure, the most 

overconvergent cluster (i.e., the one with the highest mean z-score) was termed the “core 

community.” Less prominent “secondary” and “underconvergent” communities were also 

delineated based on each cluster’s mean z-score (Figures 3B and S2D). Strikingly, nearly all 

PN types within the core community were preferentially responsive to food-related odorants 

(Figure 3B). This result was robust to the clustering method or parameters used (Figures 

S2E–K and S3), and was the main focus of the following analysis. The observed network 

structure was dominated by overconvergence onto KCαβ and KCα’β’ subtypes, with little 

or no apparent structure deriving from input to KCγ neurons (Figure S4A–C).

Preferential ensheathment of food PN boutons by KC claws

How is the overconvergence of food-responsive PN types onto KCs implemented 

anatomically? The number of claws downstream of core community PNs was far greater 

than predicted by the random bouton model (Figure 3C), and also greater than the number 

of claws downstream of other PN types in the observed data (Figure 3D). Consistent with 

the preponderance of food-responsive PN types in the core community, food-responsive PN 

boutons were also ensheathed by more KC claws (Figures 3E–J and S2L). The bias toward 

more claws per core community bouton was greatest for KCαβ and KCα’β’ subtypes, 

rather than γ KCs (Figure S4D–I), consistent with the elevated z-scores evident for αβ and 

α’β’ subtypes (Figure S4A–C). Although some PN types were modestly oversampled by γ 
KCs (e.g. VL2a, D, VA5 in Figure S4H), γ KCs as a population received relatively weak 

overconvergent input from PNs (Figure S4C).

Underconvergent olfactory PN types had fewer KC claws per bouton (Figure S4J); 

however, they did not differ in the number of boutons per PN, and their downstream KCs 

differed by less than a claw, on average, in total claw count (Figure S4K–L). Therefore, 

underconvergence is likely driven mostly by undersampling of those PN types by KCs, 

rather than by a reduced number of claws in downstream KCs. The number of boutons 

per PN type was not significantly greater for core community types than other PN types 

(Core community vs. others, mean ± s.d., 5.5 ± 4.0 vs. 4.0 ± 2.3; K-S test, p=0.5), but 

slightly elevated for all (core and secondary) community types (all community vs. others, 

mean ± s.d., 10.8 ± 2.5 vs. 8.5 ± 4.8; K-S test, p<0.006). Overconvergence could also be 

generated if core community PN types tend to synapse onto KCs with an unusually large 

number of claws. Kenyon cells receiving two or more inputs from core community PNs 

did have an average of one more claw than other KCs (Figure S4M); however, the core 

community was still evident following random removal of claws from these downstream 

KCs to equalize total claw numbers (Figure S4N). Therefore, the observed network structure 

was not substantially driven by an increased number of total claws in downstream KCs.

The above observations suggested that the observed non-random sampling of sensory input 

was implemented predominantly by greater ensheathment of PN boutons by KC claws for 

select PN types. To test this hypothesis, a second null model was devised, incorporating 

the observed distribution of KC claws ensheathing boutons of each PN type. This “random 

claw” model (Figure 4A) is similar to the random bouton model, except that the number of 

KC claws assigned to a given PN bouton is held equal to the number of claws ensheathing 
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that bouton in the observed PN-to-KC network. Therefore, in this null model, the number 

of claws receiving input from a given PN type (i.e. out-degree per PN type; Figure 3G) 

and the number of claws each KC has (i.e. in-degree per KC) are maintained. Comparison 

of observed PN-to-KC connectivity to this more realistic null model still revealed the core 

community of PN types (Figures 4B–C and S5A), indicating that those PN types converge 

onto KCs even more often than predicted by the observed oversampling of their boutons by 

KC claws. However, much of the network structure was captured by the random claw model: 

first, the distribution of z-scores had lower variance than the random bouton model (Figure 

4D); second, conditional input analysis of PN connections to each KC subtype revealed 

greatly diminished clustering (Figure S5B–D; cf. Figure S4A–C); and third, the secondary 

community (Figure 3B) is eliminated in the random claw model (Figure 4B). In summary, 

the observed bias in PN-KC network structure is generated by (1) localized overlap of 

food-responsive PN axonal arbors and downstream αβ and α’β’ KCs, and (2) preferential 

ensheathment of food-responsive PN boutons by αβ and α’β’ KC claws.

Comparison with other PN-to-KC datasets

Application of these analysis methods to PN-to-KC connectivity in the “hemibrain” 

dataset10 also revealed a similar core community of mostly food-responsive PN types 

(Figure S5E–F), suggesting that the presence of such a community may be common 

across individuals. As with the FAFB dataset, the random claw model more effectively 

described the observed network structure than the random bouton model (Figure S5G–I). 

In contrast, reanalysis of PN-to-KC connectivity reported an earlier study35 did not reveal 

a community of food-responsive PNs (Figure S5J–K), although the non-uniformity of KC 

sampling reported in their work was detected (Figure S5J; cf. Figure S1 in35). Notably, 

many fewer PN-to-KC connections were mapped in that study (about half the claws in each 

of 200 KCs; 1 KC mapped per fly). When connectivity data from the present study were 

randomly sub-sampled to match this lower number, minimal network structure was detected 

and the core community could not be discerned (Figure S5L). The sample size of the 

earlier study was therefore likely insufficient to detect the network structure described here. 

Finally, an analysis of the 17 PN types preserved between the larva and the adult revealed 

no overconvergence to γ KCs, the only KC class present in the larva (Figure S5M–N), 

consistent with the lack of network structure observed in the larva.52

Spatial structure of the PN-to-KC network

Both the random bouton and the random claw models assume that the probability of a 

PN-to-KC connection is independent of its location in the MB main calyx. However, both 

PN and KC neuronal arbors are known to occupy stereotyped and circumscribed positions 

within the calyx as a function of cell type.2,29,58,59 This suggested that cell type-specific 

neurogeometry might contribute to the observed nonrandom network structure. Therefore a 

“local random” model was constructed, in which each KC claw is randomly assigned to one 

of the five nearest boutons to it within the MB main calyx (Figure 5A). This model preserves 

the number of claws arising from each KC, the number of boutons arising from each PN, 

and the localized geometry of connectivity arising from PN axon and KC dendrite arbor 

extents. Only the number of claws assigned to each PN bouton is allowed to vary.
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The local random model better fit the observed network than the other null models, which 

lacked spatial constraints. In contrast to the random bouton model, it recapitulated the 

greater number of claws ensheathing core community PN boutons (Figure 5B). It also 

better recapitulated the overconvergence of core community PNs onto KCs, in particular 

the number of KCs receiving 4–7 claws of input from core community PNs (Figure 5C). 

Further, when individual networks generated by the local random model were treated as 

‘observed’ networks, and then compared to the random bouton model, the overconvergent 

PN core community was largely recapitulated (Figure 5D). Conversely, when the observed 

PN-to-KC network was compared to the local random model, the overconvergent PN core 

community disappeared (Figure 5E–F), indicating that this model largely captures the 

observed network structure.

The success of the local random model suggested that much of the observed non-random 

network structure arises from the specific neurogeometry of PNs and KCs.29,59,62 Direct 

visual examination of core community PN axonal arbors and postsynaptic KC dendrites 

bore out this interpretation. Core community PN axons were tightly clustered in peripheral 

regions of the MB main calyx (Figure 6A–B). Quantification of pairwise inter-bouton 

distances revealed that core community PN boutons were significantly closer to one 

another than non-core-community PNs (Figure 6C). Kenyon cells with the most core 

community input also showed dendritic arbors localized to four clusters corresponding to 

core community PN axonal territories (Figure 6D–F). These four clusters of KC dendrites 

are consistent with four MB neuroblasts.25,63 The dendritic arbors of αβ and α’β’ (but 

not γ) KC subtypes were largely constrained to the axonal territories of core community 

PN types (Figure 6G–I), consistent with the observation that these subtypes receive more 

convergent input (Figure S4A–I). Complete reconstruction of an arbitrarily selected bundle 

of KCs fasciculating tightly in the MB pedunculus also showed regional bias toward 

the dorsolateral quadrant of the MB main calyx (Figure S6A–C), where collaterals of 

core community PNs tended to ramify. Finally, clustering of core community PNs was 

qualitatively evident upon inspection of their reconstructed axons (Figure 6J–L). Consistent 

with this, unsupervised clustering based on NBLAST scores7 of PNs in both hemispheres 

of FAFB (left hemisphere data from 20) and in the hemibrain26 showed co-arborization 

of core community PNs within the MB calyx (Figure S6D–F); the other clusters did not 

exhibit systematic per-cluster overconvergence (Figure S6G). Thus, the core community of 

overconvergent PN types seems to be generated by the overlap of the axonal and dendritic 

arbors of specific PN and KC subtypes within the MB calyx.

Effect of network structure on a simulated discrimination task

To assess the potential effects of nonrandom PN-to-KC network structure on MB function, 

a simplified, feed-forward computational model of the PN-to-KC network was used in 

a simulated discrimination task.40,52 Previous studies using this model have shown that 

discrimination performance is worse for non-random networks than for random networks 

in which each PN type (i.e. glomerulus) provides input with equal probability to each 

KC claw.26,40 This connectivity scheme, which we term the “random glomerulus” model, 

is clearly unrealistic, given the nonuniform input of PN types to the MB (Figure 2); 

Zheng et al. Page 8

Curr Biol. Author manuscript; available in PMC 2023 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unsurprisingly, comparison of the observed PN-to-KC network to this null model strongly 

recapitulates the core community (Figure S7A–B).

The deviation of the observed, structured network from a theoretically optimal, random 

network raises the question of how discrimination performance in the computational model 

is affected by the observed network structure. To address this, PN-to-KC networks were 

generated using each of the null connectivity models described above – random glomerulus, 

random bouton, random claw, and local random – which increasingly recapitulate both the 

observed network structure (Figures 7A and S7C–F) and the observed fraction of convergent 

core community inputs onto downstream KCs (Figure S7G). These null model-generated 

PN-to-KC networks, as well as the observed network itself, were then tested in the simulated 

discrimination task. The fraction of PN input channeled through core and secondary 

community PN types was also varied systematically. When error rates were compared 

across network structures and activity patterns, the random glomerulus model performed 

best, in agreement with previous studies (Figure 7B–G). For the other connectivity models, 

error rate increased when PN activity was channeled outside community PN types, and 

recovered if signal was channeled exclusively through the community PN types (Figure 7B–

F). Similarly, discrimination performance recovered when activity was channeled through 

food-responsive PN types, the core community, and PNs known to respond to a natural fruit 

odor (Figure S7H–J). Consistent with these results, when PN activity was spread across all 

PN types, overall discrimination performance was worse for more realistic connectivity 

models (Figure 7G). Thus, the observed network structure compromised performance 

on the simulated discrimination task, unless all the signal was channeled through the 

overconvergent PN types. This suggests that the observed PN-to-KC network structure may 

not be optimal for the simulated discrimination task.

Discussion

The comprehensive EM-based mapping of PN-to-KC connectivity presented here revealed 

non-random network structure, in which a community of predominantly food-responsive 

PN types converge at above-chance levels onto downstream KCs (Figure 3B). The 

network structure is set up anatomically. The axonal boutons of overconvergent PN 

types are ensheathed by more KC dendrite claws of KCs (Figure 3C–D), and the axons 

of overconvergent PN types and the dendrites of many postsynaptic KCs arborize in 

overlapping, restricted regions within the MB main calyx (Figure 6). Available data suggest 

that this PN community may be stereotyped across individuals: first, the core community 

PN axonal arbor territories are similar to those obtained in earlier studies based on light 

microscopy data (cf. Figure 4C–D, cluster 1 in Jefferis et al.29 and Figure 2C, E, green 

cluster in Tanaka et al.58; Seki et al.64) and second, re-analysis of the “hemibrain” dataset, 

acquired from a separate female adult fruit fly,26 also revealed a similar core community of 

overconvergent PN types (Figure S5E–H). The developmental precision required to achieve 

this network structure seems within reach of the fly nervous system, given the highly 

reproducible geometries of most cell types in the fly brain, including those innervating 

the MB main calyx.2,9,26,65 Our data showed that the overconvergent input from core 

community PNs is specific to KCαβ and KCα’β’ subtypes (Figure S4A–I), consistent with 

the greater overlap of dendritic arbors observed between these subtypes and the axons of 
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core community PNs (Figure 6G–I). Within a given KC subtype, birth order and neuroblast 

origin may contribute additional specificity to KC arbor territories;59 future studies will 

be required to address the extent to which these fine-scale developmental processes may 

contribute to the observed network structure.

The extent of overconvergence, and the exact PN types comprising the core community, 

likely vary to some extent between individuals. It will be of interest to learn whether 

the observed network structure varies as a function of sex, genetic background, neuronal 

activity levels, or environmental conditions during development.66,67 Even if the observed 

network structure is conserved across individuals, it is likely that synaptic output from 

food-responsive KCs is variable, given that MBON odorant responses are highly variable 

across individuals.68 Additional datasets and alternative analysis methods69–71 might also 

reveal additional network structure.

Past efforts may have missed or deemphasized the observed PN-to-KC network structure 

for a variety of reasons. Earlier work based on light microscopy or electrophysiology likely 

lacked sufficient statistical power to detect the PN community. Indeed, subsampling to 

match the number of samples of the most thorough of these efforts35 renders the community 

of food-responsive PNs undetectable in our own dataset (Figure S5). Following presentation 

of these results in preprint form60, nonrandom PN-to-KC network structure was detected 

in an analysis of MB connectivity based on the hemibrain dataset26. There was substantial 

agreement between the two studies, particularly in the number of connections made by 

each PN type in the MB calyx (Figure 1G–H); the lack of network structure for the γ 
KC subtype (Figure S4; c.f. Figure 13A, 14D in26), and the ability of a geometrically 

constrained null model to recapitulate the observed network structure (Figure 5; c.f. Figure 

14 in26). However, the nonrandom network structure was described as relatively modest in 

extent and effect, possibly because much of the PN-to-KC network structure is generated by 

non-uniformity of output across PN types (Figure 3G–I); in Li et al., the initial comparison 

of observed connectivity (Figure 13A in26) was to a null model that already incorporated this 

non-uniformity (similar to the random claw model described here; Figure 4), reducing the 

extent of apparent network structure.

Although the network structure we observe is statistically significant, its effect on the 

operation of the mushroom body remains unknown. There are several reasons to think it may 

be important. First, the overconvergent PN types were mostly food-responsive, suggesting 

an ethological role. Second, the overconvergence was detected in two different datasets, 

suggesting it may be general across individuals. Third, the PN core community we observe 

in MB calyx is nearly identical to an independently discovered PN subnetwork formed 

by axo-axonic synapses in the LH (c.f. Figure 3F in20). These axo-axonic synapses are 

physiologically uncharacterized, but the existence of distinct subnetworks of these PN types 

in both LH and MB suggests that the information they relay is distinctive.

The effect of the observed nonrandom network structure on associative memory formation 

and recall in the MB will require additional experimental and theoretical work to 

determine. Many challenges likely await. The observed network structure is intermingled 

with extensive recurrent circuitry within the MB calyx, involving both local and extrinsic 
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neurons.32,37,72–74 The calyx also includes little-understood and recently discovered 

cell types2 and many physiologically uncharacterized connections, including KC-KC 

synapses,52,75–77 PN-PN synapses,20 and KC-to-PN synapses.2 It is also unknown whether 

the cell types involved fire exclusively in all-or-none fashion, or whether synaptic release 

can be evoked locally at the compartment or even neurite level78–81. This question becomes 

especially pertinent given that nearly all neurites in the fly brain (with the exception 

of the finest dendritic processes) have a mixture of both input and output synapses 

(our unpublished observations; refs. 20,82–84). The dynamics of MB as a whole during 

learning and recall are also complex5,72,85–87 and may affect how local activity within the 

calyx is read out. Better understanding of MB microcircuitry, as well as richer models 

incorporating recurrent dynamics,88 will likely be required to fully characterize the effect of 

the observed network structure. Future studies could also incorporate behavioral responses 

to field-collected odor samples89,90 potentially allowing exploration of the relationship 

between neuronal network structure and chemical ecology.

Despite these unknowns, some speculation may be offered. Computational modeling 

showed that the discrimination performance of the observed network was inferior to that 

of a random network (Figure 7), as expected.39,40 However, performance was rescued 

when simulated PN activity was channeled through overconvergent, predominantly food-

responsive PN types. This suggests that the PN-to-KC network structure may be balancing 

discrimination capacity with other imperatives, for example generalization.91–93 The rescue 

of discrimination capacity when activity is channeled through food-responsive PN types 

calls to mind the efficient coding hypothesis, which states that neuronal resources are 

allocated to match the distribution of natural stimuli, and that more frequently encountered 

stimuli (such as food odorants94) are sampled more densely.95,96 In this regard it is attractive 

to think of the observed network structure as a kind of ‘associational fovea’, in which 

combinations of input from food-responsive PN types are sampled more densely than 

combinations from other types.

The present work joins other studies in which quantitative comparison of observed 

connectivity to null models of neurogeometry has allowed unexpected structure to be 

detected in neuronal networks.97–102 A spectrum of null models was used, ranging from 

the simplistic random glomerulus model to the more sophisticated local random model. 

The latter incorporates all known nonuniformities in sampling of PN inputs by KCs, as 

well as the fine-scale territories of each cell type’s axonal and dendritic arbors of each 

identified cell type. This class of high-resolution model provides a baseline against which 

additional connectivity datasets can be tested for unexpected network structure. Although 

connectomics-style synaptic wiring diagrams are by themselves insufficient to explain 

neuronal circuit function,103 they are a useful scaffolding for integrative analysis of network 

function.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—All queries and requests for resources should be directed to the Lead 

Contact, Davi D. Bock (dbock@uvm.edu).
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Materials Availability—This study did not generate new unique reagents.

Data and Code Availability

• All neuron reconstructions described in this study will be uploaded 

to a public CATMAID instance hosted by Virtual Fly Brain (https://

fafb.catmaid.virtualflybrain.org/) following publication.

• The full source code is available at https://github.com/bocklab/pn_kc.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

METHOD DETAILS

Neuron tracing—Neurons were reconstructed from the whole brain EM dataset of an 

adult fly.2 Skeleton tracing of neuronal arbors and criteria of synapse annotations are 

conducted as described previously2 with the CATMAID tracing environment.106,110 To 

summarize, all the manually traced neurons were reconstructed with an iterative tracing 

method by at least two tracers, an initial tracer and a subsequent proofreader. The initial 

tracer reconstructed arbors, followed by systematic review by a different proofreader. When 

either tracer was not confident about the identifications of a neural process or synapses, they 

cooperatively examined the image data to reach a consensus. All such sites were further 

reviewed and resolved by an expert tracer. A chemical synapse was identified if it met at 

least three of the four following features, with the first as an absolute requirement: 1) an 

active zone with vesicles; 2) presynaptic specializations such as a ribbon or T-bar with or 

without a platform; 3) synaptic clefts; and 4) postsynaptic membrane specializations such as 

postsynaptic densities (PSDs).

Our tracing approach is biased to errors of omission rather than commission. This approach 

has been shown to have minimal impact on network connectivity in the fly larva.110 In 

addition, the present study is focused on the connectivity between PNs and KCs at a 

distinctive structure called the microglomerulus, which contains a multitude of synapses 

between a given PN bouton and its postsynaptic KC claws.32–34 It is therefore unlikely that 

the loss of any particular synapse during reconstruction qualitatively affected the analysis 

described here.

As in Zheng et al. 2 two reconstruction strategies were used: tracing to classification 

and tracing to completion. In tracing to classification, in general only backbones, and 

not twigs microtubule-containing, large diameter neurites, and microtubule-free, fine 

neurites, respecitvely; 110 are reconstructed. Tracing is halted once the reconstructed 

neuronal morphology unambiguously recapitulates that observed by LM or previous EM 

reconstruction studies for a given cell class. In tracing to completion, all of a given neurite 

is reconstructed, along with all of its input and output synapses, unless ambiguities in the 

data make tracing impossible. In some cases, tracing to completion is done only within a 

given brain compartment; in the present study, for example, manually reconstructed KCs 

were traced to completion only within the MB main calyx (see below).
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Random sampling of KCs—Kenyon cells were randomly sampled from within MB 

pedunculus (“Random Draw KCs”) on the right side of the brain. The pedunculus is a tract 

of fasciculated KC axons projecting from the posterior of the brain, where KC dendrites 

ramify in the MB calyx, to the lobes of the MB at the anterior of the brain, where synapses 

are made between KCs, MBONs and DANs.21; Figure 1A All neuronal processes in a 

frontal plane of pedunculus (section #4186 in the FAFB dataset; the “seed node plane”) 

were labelled with seed nodes (2740 in total; Figure 1C–D). Seed nodes were randomly 

selected for reconstruction, which proceeded posteriorly (i.e. retrogradely, in the case of 

KCs) from the seed node plane. In addition to KCs, the anterior paired lateral (APL) neuron 

a wide-field inhibitory neuron; 74 and MB-CP1 an MBON; 23 were known to have neurites 

in the pedunculus.2 Therefore tracing to classification was done to determine whether the 

neuron arising from a given seed node was a KC, using the following morphological criteria. 

Kenyon cell somata are posterior and slightly dorsal to the MB calyx; each KC makes 

a handful of dendritic specializations called “claws” within the calyx; and has a single 

axon projecting anteriorly, with few branches, in the pedunculus.9 The APL neuron (one 

within the MB on each side of the brain) has numerous, densely branching and fine neurites 

ramifying throughout the entire MB. The MB-CP1 neuron similarly branches densely in the 

pedunculus and calyx. Disambiguating between these neuron types was therefore relatively 

straightforward, and tracing was halted and discarded from further analysis if the neuron 

arising from a seed node was determined not to be a KC. The Random Draw KCs were 

reconstructed either manually (440 KCs) or by an automatic segmentation-assisted approach 

(916 KCs), described below. The total sample size of 1,356 KCs was constrained by the 

time and resources available for the effort; the overall goal was to obtain as large a sample 

as possible to maximize statistical power. The average number of claws per KC, 5.2 ± 1.6 

(mean ± s.d., Figure 1F), was within a standard deviation of previously reported numbers: 1) 

6.8 ± 1.7 for all KCs;35 2) 7.3 ± for γ KCs, 5.8 ± 1.8 for α’β’ KCs, and 5.5 ± 1.9 for α’β’ 

KCs.32

In a total of 7,102 claws that are reconstructed, ~9% of claws receive inputs from one 

of the following categories: 1) multi-glomerular PNs, often with inconclusive innervating 

glomeruli; 2) thermosensory or hygro-sensory PNs; 3) less than 3 synapses per claws 

identified; and 4) Lateral Horn neurons (LHNs), interneurons (e.g. APL), or MBONs (e.g. 

MB-CP1). Given each category of these inputs represents a small fraction of the total input, 

our analysis is focused on 91% of the claws that receive input from uniglomerular olfactory 

PNs (Table S4).

Sampling of a KC bundle in the pedunculus—To study the arbor pattern of 

fasciculating KCs (Figure S6A–C), a ‘bundle’ of KCs axons bounded by astrocytic 

processes in the pendunculus of MB was selected. The calyceal dendrites and peduncular 

axons of all KCs in the bundle were manually reconstructed (see Manual tracing of KCs). 

The KCs in the bundle mostly consist of the KCαβ subtype.

Manual tracing of KCs—Each manually reconstructed KC was retrogradely traced to 

completion from at least section 4,186 (the seed node plane) of the FAFB dataset to the 

posterior of the brain. This volume spans the posterior ~1/3 of pedunculus, and the entire 
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MB calyx, where the dendrites of the three main KC types (γ, αβ, and α’β’) and their 

claws ramify. In previous work,2 the boutons of all PNs in calyx as well as the glomerular 

types of all PNs were identified. Typically, each dendritic claw received input from a single 

bouton.33,34 To facilitate downstream analysis (see below), “claw border” tags were applied 

to each KC at a node between the “arm” and distal fingers of each KC claw. The “claw 

border” tags therefore delineated KC claws post-synaptic to distinct PN boutons. Similarly, 

“bouton border” tags were applied to the PN arbors within MB main calyx.

The majority of reconstructed KCs received olfactory inputs from PNs within MB main 

calyx. There are 3 main KC classes, γ, α’/β’, α/β, named according to which of 

the eponymous lobes at the anterior MB the KC axon projects.9,23–25 Two additional, 

numerically fewer types of KC (α/βp and γd) receive non-olfactory inputs such as 

visual, gustatory, and temperature information, via dendritic arbors within MB accessory 

calyces.111 These were excluded from analysis. All Random Draw KCs were traced to 

classification anterior to the seed node plane. Subtype was assigned depending on which MB 

lobe the KC axon ramified within.

Automated segmentation-assisted tracing of KCs—During the KC reconstruction 

effort, a segmentation of the FAFB dataset became available.61 A tracing workflow 

using this segmentation was therefore adopted. Automated segmentation-derived skeleton 

fragments were manually concatenated, and the entire resulting arbor was proofread as 

described above. While all claws from each KC were identified, KC claws were only 

partially reconstructed, sufficient to define which PN bouton was contained and to identify 

and annotate at least 3 synapses from the bouton to the claw. Control experiments in which 

one tracing team manually reconstructed KCs to completion and another independently used 

the automated segmentation to map PN-to-KC connectivity demonstrated the consistency 

of results between both approaches in quantifying PN bouton/KC claw connection counts 

(data not shown). Volume reconstruction of the KC and the PN boutons in Figure 1B (right 

panel) are generated directly from another recently completed segmentation of the FAFB 

image data “FlyWire”; 105 with minor proofreading. The axonal branches of input PNs in 

this figure were removed for better visualization of boutons.

Connectivity matrix analysis—To determine whether input to KCs from PNs was 

independent or conditional on PN type, a new method was devised which we termed 

“conditional input analysis” (Figure S2A). The result is a matrix that indicates whether, 

given input from the row PN type, a given KC is more (or less) likely than chance to get 

input from the column PN type. Each observed PN bouton-KC claw connection is treated 

as a single count. The observed number of counts for a given pair of PN types is compared 

to the distribution of counts generated using a null model. Several null models were used in 

this study (described below). For each combination of PN types, a z-score is computed, i.e., 

how many standard deviations from the mean of the null distribution the observed number of 

counts is (Figure S2B). Unsupervised k-means clustering of the z-score matrix was used to 

group matrix entries.

A summary of the steps in conditional input analysis follows.
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Projection neuron types are named after the glomerulus (‘Glom’) in the antennal lobe that 

PN’s dendrites innervate. Consider types Glom A, B, C, and so on. For a given connectivity 

matrix,

1. Select all KCs having at least one claw receiving input from a bouton of Glom A.

2. The number of inputs to these KCs from Glom B, C, D, and so on are counted. 

This provides a count of the number of inputs to the KC cell population from 

Glom B-D, given input from Glom A.

3. Repeat (1) – (2) for Glom B, C, D, and so on.

4. For each null model (see below), repeat (1)-(3) above on 10,000 in silico 
randomizations of the observed PN-to-KC network. This generates the null 

distributions from which a z-score can be generated for observed connectivity 

for each PN type pair. All z-score matrices in the study use the same color scale 

as in Figure 3B.

5. Apply k-means clustering to the z-score matrix. The k-means algorithm112 

clustered PN types into groups such that within-group z-score variance is 

minimized, and the cluster number of each PN type is used to re-order both 

the columns and rows of the z-score matrix. All z-score matrices are ordered 

based on the k-means clustering procedure with two exceptions: (1) Figure 

S2H (hierarchical clustering); (2) Figure S3E, Figure S4A–C, Figure S5B–E, G, 

Figure 5F, Figure S6G, Figure S7A (to facilitate comparison with other z-score 

matrices).

K-means clustering of the z-score matrix groups glomeruli with similar z-scores together, 

and therefore reveals subsets of PNs that as a group provide more (or less) convergent input 

onto KCs than predicted by a given null model. Overconvergence (red in our figures) is 

more strongly detected by this approach, since pairs of PN types with low probability of 

being selected during randomization (e.g. small numbers of boutons in the random bouton 

model) can have minimal or zero convergence onto common KCs. This, in turn, lowers the 

magnitude of negative z-scores (since the mean of the null model values is already low).

The key parameter in k-means clustering is the number of clusters (i.e. the parameter ‘k’) 

sought in the data. Although objective methods for determining k have been devised, the 

‘best’ value is largely subjective. The three most commonly used methods to determine k 

are the average silhouette method;113 the elbow method;114 and the gap statistic method.115 

Silhouette coefficients are a measure of how close each data point in one cluster is to 

points in neighboring clusters. The average silhouette method identifies the value of k 

that maximizes the average of silhouette coefficients. The elbow method computes the 

total within-cluster sum of square (total WSS), a quantification of the compactness of the 

clustering, for a range of potential k values. The optimal k is that for which WSS cannot be 

improved further by adding another cluster, often shown as an “elbow” point in the plot of 

WSS as a function of k. The gap statistic method generates a uniform distribution of z-scores 

as a null model, and maximizes total intra-cluster variations between observed values and 

the null model, for different values of k.
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For the main z-score matrix (Figure 3B), objective methods yielded an optimal k value of 

2–3 (Figure S2E–G); nonetheless, we opted for k = 4, since four clusters better separated 

underconvergent PNs, and gave results more consistent with hierarchical clustering (Figure 

S2H–K; Table S3). For consistency, a k=4 was used for all other z-score matrices (Figure 

S2C; Figure 4B–C; Figure S5F, H–N; Figure 5D–E; Figure S7B). For most matrices, 

clustering results did not differ qualitatively even when the objectively determined optimal 

k value differed from 4 (data not shown). However, in four cases (Figures 4B, 5E, S5F, and 

S7B), the gap statistic method determined that no cluster was present in the data (i.e. k=1), 

and the other objective methods returned k values of 2 or 3. In this situation, k=4 was still 

used, to maintain consistency with the rest of the analyses.

To identify overconvergent and underconvergent PN “communities”, clusters were first 

ranked by the average z-score for each k-means cluster. The PN types most frequently found 

in the most overconvergent cluster (highest average z-score) were defined as comprising a 

“core community” (Figure 3B, dark green area; Table S2), and types most frequently found 

in the second-highest z-score cluster were defined as comprising a “secondary community” 

(Figure 3B, light green area). Similarly, PN types most frequently appearing in the lowest 

z-score cluster were defined as the “underconvergent” set of PNs (Figure 3B, blue area; 

Table S3). Note that the conclusion that most overconvergent PNs tend to respond to food 

odorants did not depend on membership in “core” or “secondary” communities, nor on the 

parameter k for number of clusters (Figure S2I–J; Table S2).

Z-score matrix can also be clustered by hierarchical clustering algorithm (Figure S2H). This 

hierarchy of clusters is represented as a dendrogram and the dendrogram and matrix are 

reordered such that the Euclidean distance (dendrogram height) between successive entries 

is minimal.116

Connectivity matrices can also be analyzed with principal component analysis (PCA).26,35 

The fraction of variance between the observed network and a given null model explained 

by each component can then be visualized, allowing comparison of different null models 

(Figure S7C–F). While useful and generally powerful, this approach does not allow easy 

attribution of effect to specific glomeruli. In contrast, the conditional input analysis used 

here allows for visualization of overconvergence or underconvergence by any given pair of 

glomeruli.

Connectivity matrices can also be analyzed using covariance analysis.117 Unlike covariance 

analysis, conditional input analysis allows asymmetries in conditional input to be detected 

(the case where, e.g., KCs on average get more input from type B, given input from type 

A; but less input from type A, given input from type B). The results, however, indicate that 

most overconvergent inputs are symmetric (Figure 3B). Covariance analysis is therefore a 

reasonable alternative to the conditional input analysis described above. For each pair of PN 

types, the covariance measured in the observed network was compared to the distribution 

of covariances generated from 1,000 runs of a given null model of connectivity (see 

below). The null hypothesis is the observed covariance is equal to or less than 95% of 

the covariances in the null model distribution for that pair of PN types. When the observed 

covariance is larger than 95% of the null model distribution, the null hypothesis is rejected 
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(i.e. p < 0.05), and we say there’s an above-chance correlation in the output to common KCs 

for this pair of PN types.

A p value of less than 0.05 (significance level) implies the probability of obtaining such 

a covariance in a random network is low, and the alternative hypothesis of seeing such an 

observed value in a null model is therefore rejected. The results are shown in a p-value 

matrix (Figure S3A–D) in which each cell represents a p value for a given pair of glomeruli 

indicated in the corresponding row and column labels.

The p-value matrix was re-ordered either using the Figure 3B clustering order (Figure S3A, 

C) or using order given by k-means clustering (Figure S3B, D). To aid k-means clustering of 

very low p-values, the p-value matrix was binarized such that all p values less than 0.05 were 

set to 1, and otherwise to 0.

For the analysis of synaptic connectivity (Figure S3C–D), covariance measures were directly 

calculated from synapse counts, using only the manually reconstructed Random Draw KCs 

(whose dendritic arbors in MB calyx were reconstructed to completion; see Manual Tracing 

of KCs, above). To generate the null model of synaptic connectivity, the bouton-claw binary 

network is randomized and each bouton-claw connection is assigned a synapse count that 

was randomly drawn (with replacement) from the distribution of number of synapses per 

claw.

Null models of PN-to-KC connectivity—Nonrandom PN-to-KC connectivity can in 

principle arise from various anatomical parameters, such as: variable numbers of PNs per 

glomerulus; variable numbers of boutons per PN type; non-uniform sampling of PN boutons 

by KCs; and regionalized distribution of PN boutons and KC claws. By testing observed 

connectivity against a range of null models, incorporating none, some, or all of the observed 

values of these parameters, the relative contribution of each parameter to the observed 

network structure can be assessed.

In the random glomerulus model (Figure S7A–B), each claw of each KC is randomly 

assigned to a PN with equal probability per PN type (i.e. glomerulus). The observed values 

of all the other parameters listed above are ignored. As a result, in this null model, each PN 

type provides input to equal number of claws, on average.

In the random bouton model (Figure 3A), each KC claw is reassigned to a randomly selected 

PN bouton in the calyx. All boutons in the calyx are available to be assigned to any given 

claw with equal probability per bouton. On average, the number of outputs provided by a 

given PN type (i.e. out-degree per PN type) will be proportional to the number of boutons 

that belong to that type. Since the number of boutons per PN type is the product of the 

number of PNs per glomerulus and the number of boutons per PN, the observed value of 

these anatomical parameters is incorporated into the random bouton null model. The number 

of claws for each KC (i.e. in-degree per KC) is also maintained. To apply conditional input 

analysis to the data of Caron et al. 35 using this null model (Figure S5J, L), the bouton 

counts per PN type obtained from our work were used, since bouton counts per PN type 

were not generated in that study. Similarly, when the PN-to-KC network in Li et al. 26 is 
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analyzed using this null model (Figure S5E–H), values of bouton counts per PN type from 

our dataset were used. A caveat of this approach is that bouton counts per PN type may 

not be consistent across animals. However, the broad consistency of outputs for PN types 

(Figure 1G) suggests the result may be robust to this parameter.

The random claw model (Figure 4A) is similar to the random bouton model, except that the 

number of KC claws assigned to a given PN bouton is held equal to the number of claws 

ensheathing that bouton in the observed PN-to-KC network. Therefore, in this null model, 

the number of claws receiving input from a given PN type (i.e. out-degree per PN type) and 

the number of claws each KC has (i.e. in-degree per KC) are maintained.

In the local random model (Figure 5A), each claw of each KC is randomly assigned 

to one of the five nearest PN boutons (including the one it ensheathed in the observed 

network). Distances were measured between claw and bouton centroids. The number of 

claws assigned to each bouton is allowed to deviate from the observed value (unlike the 

random claw model). Therefore in this model, both KC in-degree and geometric constraints 

on connectivity are preserved, and out-degree per PN type is allowed to vary.

Morphological clustering of PNs using NBLAST—The complete set of reconstructed 

PNs and all reconstructed KCs used in the analysis of conditional input are on the right 

hemisphere of the FAFB brain. On the right side, each PN type was classified and the 

subset of PN arbors contained in the MB calyx surface mesh was extracted, as described 

in previous work.2 The boundaries of MB calyx were generated from an nc82 (synapse)-

stained template brain aligned to the FAFB image volume as described in Zheng et al. 
2 PNs on the left side of the FAFB brain were reconstructed in a separate study.20 In 

the current work, the subset of PN arbors innervating the left-side MB main calyx were 

obtained through intersection with the left-side MB calyx surface mesh. The reconstructed 

PNs and calyx mesh of the hemibrain dataset10 were obtained from the neuprint server 

(neuprint.janelia.org) using the neuprintr R package (github.com/natverse/neuprintr).20,109 

The reconstructed skeletons were re-sampled evenly at 1 μm intervals to reduce the 

sensitivity of NBLAST to local differences between small branches. For PNs in each of the 

three data sources (right-side FAFB, left-side FAFB, and hemibrain), hierarchical clustering 

was performed based on Euclidean distance (dendrogram height) matrices of NBLAST 

scores,7 using Ward’s algorithm.118

Comparison of postsynaptic KC counts between FAFB and hemibrain 
datasets—During preparation of this manuscript, a segmentation of a portion of a 

second adult fly brain was published (the ‘hemibrain’).10 In the hemibrain dataset, all 

PNs and ~2,000 KCs on the right side of the brain were segmented as part of a large-

scale proofreading effort (50 person-years over ~2 calendar years).26 In this hemibrain 

connectome, we analyzed synaptic connections only at the cell level, rather than individually 

demarcating PN boutons and KC claws as was done for the right-side of the brain in 

the FAFB dataset. We used the hemibrainr package (github.com/natverse/hemibrainr)109 

to download the connectivity matrix between all PNs and KCs (hemibrain v. 1.0.1, from 

https://neuprint.janelia.org). Comparison of PN-to-KC connectivity to the random bouton 

and random claw null models (Figure S5E–H) was done by (1) assuming that all synapses 
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between a given PN-KC pair were the result of a single PN bouton-KC claw interaction (true 

for ~ 92% of connections in observed FAFB PN-KC pairs); and (2) using the number of 

boutons per PN type as measured in the FAFB dataset in null models of connectivity in the 

hemibrain dataset. The hemibrain PN-to-KC connectivity matrix was then binarized, such 

that each unique pair of PN and KC with 3 or more synapses is defined as one connection 

and otherwise zero. For a given PN, the number of connections is therefore equivalent to the 

number of KCs postsynaptic to the PN. Because the total number of reconstructed neurons 

is different between the FAFB and the hemibrain dataset, the number of connections for 

each PN type is divided by the total number of connections in each dataset. This results 

in a normalized percentage of connections for each PN type, enabling comparison between 

FAFB and hemibrain datasets (Figure 1G–H).

Modeling of a Discrimination Task—The PN-to-KC network computational model is 

based on earlier models used in the larval52 and adult fly with minimal modifications.40 In 

these models, simulated activities across all PN types are created for each of ten stimulus 

odors. Each stimulus is randomly assigned one of two categories with equal probability. The 

PN activity (signal) is generated by drawing independently from a rectified unit Gaussian 

distribution and then corrupted by Gaussian noise. The PN activity is simulated per PN 

type (i.e. glomerulus), such that all PNs of the same type have identical activity. Here, the 

publicly available source code for these earlier models (lk.zuckermaninstitute.columbia.edu/

#code40,52) was minimally modified to allow for channeling of PN activity through subsets 

of different PN types. To probe the effect of the observed overconvergence of all community 

PN types (19 PN types, including core and secondary community PN types; Figure 3B), 

for each stimulus, rectified Gaussian activity patterns were generated for 19 PN types. 

The fraction of activated community PN types was varied between 0 (19 non-community 

PN types) and 1 (all 19 community PN types), with intervening fractions of 4/19, 8/19, 

12/19, and 16/19 (Figure 7B–F). For fractional values less than 1, activated PNs were 

randomly selected from the 19 community PN types and non-community PN types were 

randomly selected from the set of 35 non-community PN types. Gaussian noise with 

standard deviation 0.4 was then added to the activity levels of all PNs. Kenyon cell activity 

was calculated by multiplying PN activity with the observed matrix of PN-to-KC synapse 

counts, without thresholding. In the original model,40 simulated activities across all PN 

types were created for each stimulus odor, and the KC activity was thresholded such that 

each KC is activated by 5% of odor stimuli, consistent with the general sparseness of KC 

activity.119 In the event that a given KC does not exceed this threshold, its activity was set 

to zero. In the current work, the effect of PN noise on classification capability was assessed 

by making all KC activity available to the classifier, including weak activity inherited from 

simulated noise of PN input. This change did not qualitatively alter the results (data not 

shown). Kenyon cell activity patterns were used to train a maximum-margin classifier to 

predict the pre-assigned category assigned to each PN activity pattern. In the testing phase, 

the PN activity patterns used during training were corrupted with Gaussian noise, and the 

resulting KC activities were calculated and used as input to the trained classifier.

The model requires synapse counts between each connected PN-KC cell pair. For each 

PN-to-KC network generated using one of the null models, each connection is assigned 
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number of synapses drawn from the observed dataset. All generated networks had 2,200 

KCs. Since the observed network has only 1,356 KCs, each model of the observed network 

required an additional 844 KCs, with their number of input synapses, to be drawn from the 

manually traced KC population.

In Figure S7G–I, the same model is implemented except that 22 food PN types (Table S1), 

10 core community PN types (Table S2), 4 PN types that are activated by banana odors 120 

are chosen to be activated, respectively. In the null model distribution, for each simulation 

(one count in the histogram), a random set of the same number of PN types are drawn from 

the remaining PNs and are picked to be activated.

In this class of discrimination task,40 the more PNs that are activated, the more information 

(signal) is available for the classifier to solve the task. Since there are more food PN types 

(22 PN types) than core community PN types (10 PN types), simulating activity in all food 

PNs results in lower error rates than core community PNs (Figure S7G vs. Figure S7H).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in Python using the scipy package (https://

www.scipy.org).121 In each of all z-score matrices, 10,000 random networks were generated 

for a given null connectivity model (random glomerulus, random bouton, random claw, local 

random). Z-score was defined as the number of standard deviations of the observed value 

from the mean of the distribution generated by the null model. For modeling of the PN-KC 

networks in Figure 7B–G and Figure S7H–J, error rates are first averaged over random input 

patterns (10,000 trials) for an instance of a randomized network, then averaged over 100 

instantiations of null-model network architectures, as in40. The standard deviations of the 

mean across network architectures for the error rates are used. The expected error rate for 

chance performance is 50%.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mushroom body Kenyon cells sample olfactory projection neuron input 

nonrandomly

• Network structure arises from axon and dendrite overlap between specific cell 

types

• Food-responsive projection neurons converge preferentially onto αβ and α’β’ 

KCs

• Activation of overconvergent PNs rescues MB discrimination in a 

computational model
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Figure 1. Reconstruction of the PN-to-KC network
(A) Olfactory pathway schematic. Blue line, the frontal plane where KCs were randomly 

sampled for reconstruction (C-D).

(B) A representative EM-reconstructed KC. Each claw receives a variable number of 

synapses (numbers in white) from a single ensheathed PN bouton. Left, skeletonized 

reconstructions. Right, volumetric segmentation of the same KC (purple) and ensheathed 

PN boutons (various colors).

(C) Subarea of a frontal section from the whole-brain EM volume, showing the cross-section 

through pedunculus (blue false color) used for random sampling (D).

(D) Randomly sampled KCs (magenta dots) in the pedunculus. A discrete region in the 

middle is devoid of magenta points, as it is occupied by other cell classes such as APL and 

non-olfactory KCs from accessory calyces (i.e. KC-α/βp and KC-γd9).

(E) Number of PN types for each category of behavioral significance based on a literature 

review (Table S1).

(F) Distribution of number of claws per KC for all randomly sampled KCs (mean ± s.d., 5.2 

± 1.6).
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(G-H) The number of PN-KC connections per PN type is consistent between the current 

study and the ‘hemibrain’ dataset.10 (G), Three or more synapses between each PN-KC pair 

is counted as a connection. The fraction of connections made by each PN type out of the 

total number of connections in each dataset is shown. (H), the fraction of output per PN type 

is highly correlated across the two datasets (r2=0.83; blue shade, 95% confidence interval). 

Bar labels (G) and points (H) are colored according to behavioral category (E).

See also Table S1.
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Figure 2. Non-uniformity of olfactory input to the mushroom body
(A-C) For each PN type, the number of PNs (A); average number of boutons per PN (B); 

and number of boutons (C), in descending order.

See also Figure S1.
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Figure 3. Non-random sampling of olfactory PN input by KCs
(A) Random bouton null model schematic. Each claw is reassigned to a bouton chosen 

randomly from all boutons in the MB calyx. This null model ignores the fact that KC 

dendrites and PN arbors have restricted territories within the calyx, but ensures that the 

number of claws assigned to a given PN type is proportional to the number of boutons.

(B) Observed PN-to-KC connectivity compared to the random bouton model. Conditional 

input analysis was applied to 1,356 randomly sampled KCs. A group of PN types 

(‘community’ PNs, dark and light green lines) provide above-chance levels of convergent 

input to downstream KCs. All PN types in the core community (dark green with overline), 

and most in the secondary community (light green), have been reported to primarily respond 

to food-related odorants (Table S1). In this and subsequent z-score matrices, PN types are 

color-coded according to behavioral category as in Figure 1E, and core community PN types 

are decorated with overlines.
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(C) Kenyon cells over-sample inputs from core community PN types. The observed number 

of claws receiving input from core community PNs (1,916; red dot) greatly exceeds the 

random bouton null model prediction (blue histogram; 10,000 random networks, mean ± 

s.d., 1,421.7 ± 35.7; z-score, 13.8).

(D) Core community PNs have more claws per bouton than other PNs (mean ± s.d., 17.4 ± 

9.3 vs. 11.5 ± 7.4; K-S test p<1×10−9).

(E-F) Core community PNs in the observed network are presynaptic to more KC claws 

than predicted by the random bouton model (error bars, s.d. of 10,000 random networks; 

Chi-square test p<1×10−10). Each bar in (E) and dot in (F) represents a PN. Bar labels (E) 

and points (H) are colored according to behavioral category (Figure 1E).

(G, I) Number of claws per bouton (G) and number of claws (I) per PN type, in descending 

order.

(H, J) Food-responsive PNs provided output to more claws than non-food PNs on both 

a per-bouton (H, mean ± s.d., 15.66 ± 3.08 vs. 10.53 ± 7.3, K-S test p<1.3×10−9) and 

per-glomerulus (J, mean ± s.d., 162.95 ± 60.74 vs. 100.06 ± 56.17, K-S test p<2.5×10−5) 

basis.

See also Figure S2–4 and Table S2–4.
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Figure 4. Preferential ensheathment of food-responsive PN boutons by KC claws
(A) Random claw null model schematic. The biased ensheathment of PN boutons by 

KCs according to PN subtype is maintained in this null model, while territoriality in the 

distribution of boutons and claws within the MB calyx is ignored.

(B) Core community PNs types converge more frequently than predicted by the random 

claw model, suggesting that the preferential ensheathment of their boutons is insufficient to 

explain the observed network structure.

(C) Conditional input analysis of a single representative network generated using the random 

claw model shows no clustered structure.

(D) Z-scores for the random claw model (Figure 4B) vary less than for the random bouton 

model (Figure 3B; mean ± s.d., −0.044 ± 2.11 vs. −0.058 ± 1.47; K-S test p<1×10−10), 

indicating random claw model captures more of the observed network structure.

See also Figure S5.
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Figure 5. Neurogeometry of PN and KC arbors best explains the observed network structure
(A) Local random null model schematic. Left: each dashed line circumscribes a claw and its 

five nearest PN boutons. Right: after randomization, each claw is randomly assigned to one 

of the five nearest boutons.

(B) The local random model recapitulates the greater number of claws ensheathing 

core community PN boutons. The observed number of claws receiving inputs from core 

community PNs (red dot; 1,916 claws) was nearly identical to the mean of the local random 

model (mean ± s.d., 1,890.6 ± 22.5). By definition, all networks created using the random 

claw model also have 1,916 claws.

(C) The local random model best recapitulates the number of claws per KC postsynaptic to 

core community PNs. Observed vs. random bouton, Chi-square test p<1×10−10; observed 

vs. random claw, Chi-square test p<1×10−10; observed vs. local random, Chi-square test 

p<0.028 (error bars, ± s.d.).
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(D) A single, representative network generated using the local random model recapitulates 

much of the core community of overconvergent PN types when compared to the random 

bouton null model.

(E-F) Core community PN types do not converge more often than predicted by the local 

random model, indicating this more geometrically realistic null model captures much of the 

observed network structure. (F), Z-scores for the core community PNs (green square) are not 

elevated compared to other PN types (columns and rows ordered as in Figure 3B).
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Figure 6. Arbor overlap between core community PNs and KCs
(A-B) Olfactory PNs project from AL to two higher brain centers, MB and LH. Core 

community PNs (green) have regionalized projection patterns in MB and LH compared to 

non-core community PNs (varying shades of purple). Scale bar in (B) applies also to (D-L).

(C) Core community PN boutons are closer to each other than to non-core community 

boutons. Each count represents the distance between a given bouton and the nearest bouton 

of a PN of a different type (green: core community PN bouton pairs; blue: pairs consisting 

of a core community PN bouton and a non-core community PN bouton; K-S test p<1×10−10; 

mean ± s.d., 10.9 ± 6.8 vs. 18.6 ± 7.4)

(D) Core community PN axon territories (green) overlap with the dendritic arbors of the 6 

KCs (red) receiving 6 or more bouton inputs from core community PNs (same view as B).

(E-F) Dorsal (E) and posterior (F) view of MB calyx shows the 46 KCs that receive 5 

or more inputs from core community PNs. The dendrites, somata, and axonal bundles 
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(proximal pedunculus; see E, bottom) of the KCs, respectively, are segregated into 4 clusters 

(4 arbitrary colors) that may correspond to the 4 KC neuroblasts in development.25,63

(G-I) In frontal view of MB calyx, dendritic arbors of KCαβ (G) and KCα’β’ (H) subtypes 

are more constrained than those of KCγ (I) to territory innervated by core community PN 

axons. To equalize the number of KC arbors plotted for each subtype, 246 out of 478 αβ 
KCs and 246 out of 575 γ KCs, were randomly selected for visualization, to be consistent 

with 246 reconstructed α’β’ KCs.

(J-L) Regionalized arbor distribution of core community PNs in three calyces: right side of 

FAFB (J), left side of FAFB (K), and hemibrain (L). The PNs are arbitrarily colored by type; 

colors are consistent across datasets (gray, calyx surface).

See also Figure S6.
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Figure 7. Effect of the observed PN-to-KC network structure on a simulated discrimination task
(A) The z-scores of core community PN types compared to the random glomerulus (Figure 

S7A); random bouton (Figure 3B); random claw (Figure 4B); and local random (Figure 

5F) null models. The least realistic null model (random glomerulus) has the highest mean z-

score, while the local random model has lowest, indicating it best recapitulates the observed 

connectivity (horizontal lines: mean; vertical bars: s.d.).

(B-F) Activation of more community PNs (including core and secondary community) leads 

to rescue of performance in a simulated discrimination task, for all connectivity models 

incorporating the observed non-uniformity of PN type input to MB calyx. A constant 

number of PN types (19; i.e., the number of core and secondary PN types) is activated, while 

the fraction of community PN types activated ranges from 0 to 100%. Error bars: ± s.d.

(G) Overall discrimination performance worsens as with decreasing randomness and 

increasing connectivity model realism. All 51 PN types provide input to the classifier.

See also Figure S7.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

The Full Adult Fly Brain (FAFB) ssTEM dataset Zheng et al.2 https://temca2data.org/

FAFB manual neuronal reconstructions: right-side PNs Zheng et al.2 https://fafb.catmaid.virtualflybrain.org/

FAFB manual neuronal reconstructions: KCs and others This paper https://fafb.catmaid.virtualflybrain.org/

FAFB manual neuronal reconstructions: left-side PNs Bates et al.20 https://fafb.catmaid.virtualflybrain.org/

Partial auto-segmentation of FAFB Li et al.104 http://fafb-ffn1.storage.googleapis.com/data.html

Hemibrain Scheffer et al.10 https://neuprint.janelia.org/

FlyWire Dorkenwald et al.105 https://flywire.ai/

Software and Algorithms

CATMAID Saalfeld et al.106

Schneider-Mizell et al.107
https://github.com/catmaid/CATMAID

NBLAST Costa et al.108 https://github.com/jefferislab/nat.nblast

Pymaid Bates et al.20 https://github.com/schlegelp/pymaid

Natverse Bates et al.109 http://natverse.org/

PN-KC model Litwin-Kumar et al.40

Eichler et al.52
lk.zuckermaninstitute.columbia.edu/#code
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