Skip to main content
. 2022 Aug 15;22(16):6104. doi: 10.3390/s22166104
Algorithm 1 Multi-Variable Hybrid Attentive Model
  • Input:

  •      Multivariable physiological signals

  • Output:

  •      The predicted result of intravenous intervention: 0 or 1

  • 1:

      s = getSeg(S); // split S into M equal length segments

  • 2:

      tr(kt) = getDiff(s); // calculate the difference between sk of all channels

  • 3:

      P = conv(s); // convert s into features

  • 4:

      O = sum(P); // output of the CNN layer

  • 5:

      α = getFluAtt(O); // calculate the fluctuant level attention weights

  • 6:

      H = biLSTM(αO); // convert αO into recurrent features

  • 7:

      Z = sum(H); // output of the LSTM layer

  • 8:

      X = getFull(Z); // convert Z into X through the full connected layer

  • 9:

      β = getTreAtt(X); // calculate the trend level attention weights

  • 10:

    y^i = getPre(βX, tr(kt)); // obtain the prediction result