Algorithm 1 Multi-Variable Hybrid Attentive Model |
Input:
Multivariable physiological signals
Output:
The predicted result of intravenous intervention: 0 or 1
-
1:
s = getSeg(S); // split S into M equal length segments
-
2:
= getDiff(s); // calculate the difference between of all channels
-
3:
P = conv(s); // convert s into features
-
4:
O = sum(P); // output of the CNN layer
-
5:
= getFluAtt(O); // calculate the fluctuant level attention weights
-
6:
H = biLSTM(O); // convert O into recurrent features
-
7:
Z = sum(H); // output of the LSTM layer
-
8:
X = getFull(Z); // convert Z into X through the full connected layer
-
9:
= getTreAtt(X); // calculate the trend level attention weights
-
10:
= getPre(X, ); // obtain the prediction result
|