Algorithm 1. Proposed HNIDS method (EGA-with PSO) |
Input: attributes set, Random population (RP), the maximum number of generations (Max_g), Binary vector Output: Optimized individual generation RP(n) |
Step1: Apply RF method to determine the best fitness value for each participant |
1.1 for each participant i to RP |
1.2 do |
1.3 determine the best fitness (i) |
1.3.1 call random_forest (); |
Step 2: Apply the enhanced selection process of GA |
2.1 while (iteration_count< n) |
2.2 call selection (i); |
2.2.1 set New_selected_value = selection (i); |
Step 3: Select best bit individuals using enhanced mutation and crossover (EGA) |
3.1 Choose the best fit |
3.1.1 if (New_selected_value == Best_fit), than |
3.2 if (Crossover_generation) than |
3.2.1 Choose two parents randomly (i_pa, i_pb) |
3.2.2 Generates offspring parent (i_pc) = Crossover_generation (i_pa, i_pb); |
3.3 else |
3.4 Call enhanced mutation process |
3.4.1 randomly select an independent value (i) from the parent set |
3.4.2 Generates offspring parent (i_pc) = Crossover_generation (i_pa, i_pb); |
3.5 else |
Step 4: Calculate the best fit (fitness value) for each participant |
4.1 if (New_selected_value == Best_fit) |
4.1.1 Process Best_fit |
4.2 else |
4.2.1 Interchange the least fit participants with offspring parent (i_pc) |
4.3 else |
Step 5: Apply the PSO method to check the outcome best fir |
5.1 New_Output_PSO = PSO_Rejected (offspring parent (i_pc)) |
5.2 End |
Step 6: apply enhanced selection to generate a new population |
6.1 if (New_Output_PSO == Best_fit) then |
6.2 New_Output_PSO = New_Output_PSO + Current_PSO_Output |
6.3 else |
6.4 Call Enhanced_selection (); |
6.5 End |