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Abstract: The development of light detection and ranging (lidar) technology began in the 1960s,
following the invention of the laser, which represents the central component of this system, integrating
laser scanning with an inertial measurement unit (IMU) and Global Positioning System (GPS). Lidar
technology is spreading to many different areas of application, from those in autonomous vehicles
for road detection and object recognition, to those in the maritime sector, including object detection
for autonomous navigation, monitoring ocean ecosystems, mapping coastal areas, and other diverse
applications. This paper presents lidar system technology and reviews its application in the modern
road transportation and maritime sector. Some of the better-known lidar systems for practical
applications, on which current commercial models are based, are presented, and their advantages
and disadvantages are described and analyzed. Moreover, current challenges and future trends of
application are discussed. This paper also provides a systematic review of recent scientific research
on the application of lidar system technology and the corresponding computational algorithms for
data analysis, mainly focusing on deep learning algorithms, in the modern road transportation and
maritime sector, based on an extensive analysis of the available scientific literature.

Keywords: lidar; laser sensors; remote sensing; transportation; road transportation; autonomous
vehicles; maritime sector; data analysis; deep learning; object detection

1. Introduction

Different sensors and measuring instruments contribute significantly to today’s tech-
nologies. Data collection represents the basis of building, developing, and implementing
various systems. Due to its efficiency, speed, and flexibility in the modern transportation
sector, the application of the light detection and ranging (lidar) system stands out as one of
the leading solutions for measuring various parameters in a wide range of activities. Object
detection, a significant factor in modern transportation, especially in autonomous vehicles,
is more detailed and precise when using the lidar system to supplement existing radio
detection and ranging (radar), ultrasound, and other sensors. The system is characterized
by unique characteristics such as independence from external light for detection purposes,
high resolution of detected points, and speed of operation. The research in this field,
reviewed and discussed in this paper, gives great promise for the further development and
application of lidar technology in the modern transportation sector.

This paper provides a comprehensive overview of various lidar system applications
in modern road transportation and the maritime sector. For this purpose, we conducted
an extensive literature review by first performing a search in the Web of Science Core
Collection database for papers on these topics, published in the last 10 years. The search
was conducted using the “lidar” keyword combined with other keywords, including “road
transportation”, “autonomous driving”, “maritime”, and “autonomous ship”. The selection
of the reduced set of found papers was made by taking into account paper relevance,
the number of citations, publication source indicators, and recent year of publication.
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Moreover, the selection procedure also included choosing those papers addressing specific
areas of lidar application within the main topics of road transportation and the maritime
sector, in order to achieve adequate representation of particular areas as much as possible,
thus providing a complete overview of the field. The selected papers included several
important review papers in this field, while most were specific studies, focusing on those
recently published in relevant scientific journals, in order to better present the current
state-of-the-art.

Most review papers in the field of lidar system application in road transportation
focus on a specific, narrow application area. On the other hand, this paper provides a
comprehensive overview of applications, analyzing different areas within the main topic.
Moreover, we also provide a research background by briefly describing the lidar system
technology, operating principles, different system types, measurement principles, and
system parameters. Furthermore, we also extend the analysis from the lidar application in
modern road transportation to the maritime sector, logically connecting these two fields and
emphasizing their specifics, while highlighting common features and challenges, which has
not been adequately addressed in previous review papers on these topics, to the best of the
authors’ knowledge. Finally, we also critically assess the current challenges and limitations
of the technology and discuss future trends and developments.

This paper is organized into the following main sections:

1. Introduction
2. Lidar System
3. Application of Lidar System in Road Transportation
4. Application of the Lidar System in the Maritime Sector
5. Challenges and Future Trends
6. Conclusions

Section 2 describes the lidar system as a core laser system for detecting objects. The
main types, architectures, and important parameters are briefly described. Next, Section 3
goes into depth about the topic, explaining the application of the lidar system in autonomous
driving, the detection of obstacles, the impact of weather conditions on the system itself, and
the detection of roads and objects on and along the road. Furthermore, Section 4 addresses
the existing applications of the lidar system in the maritime sector, from object detection
to other diverse applications. Finally, Section 5 presents and discusses current challenges
and future trends in applying the lidar system in modern transportation, while Section 6
summarizes the conclusions.

2. Lidar System

The most generic form of the system called lidar (abbreviated for light detection
and ranging, or laser imaging, detection, and ranging) is described here to provide an
understanding of the working principle of a laser system for detecting objects and their
distances. Lidar works by scanning its field of view (FoV) with one or several laser beams
and represents a method for determining the distance of an object from the laser signal
transmitter. The scanning system steers laser beams at different horizontal and vertical
angles. The transmitted light, i.e., the optical signal from the laser whose waveform
intensity, phase, or frequency have been modulated, is reflected from a surface, object, or
particle. The signal then returns to the receiver, where the distance is calculated based
on the time of flight (ToF), i.e., the time required for the reflected signal to return to the
receiver. As it is an optical signal, the laws of geometric optics apply, so, depending on the
transmission medium, the optical signal’s propagation speed is close to the speed of light.

Furthermore, the wavelength is usually changed during transmission for the device to
recognize the transmitted or received signal. The receiver optical lens acts like a telescope
and focuses the reflected optical signal onto the photodetector that converts the collected
photons returning from the environment into the electronic signal, using the photoelectric
effect [1,2]. After that, the signal is filtered according to the variable output/input char-
acteristics and processed for further analysis or storage [3]. Signal processing techniques
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are used to account for differences in reflected energy caused by surface materials and the
environment between the transmitter and receiver [1]. Finally, the lidar outputs contain
three-dimensional (3D) point clouds, corresponding to the scanned environment and inten-
sities corresponding to the reflected laser energies [1]. A diagram representation in Figure 1
depicts the described basic concept of the lidar operating principle.

Figure 1. Conceptual representation of the lidar system operating principle.

The light sources once used in early experiments on lidar systems were mercury and
sodium lamps [3], which were replaced entirely by modern lasers, i.e., light amplification by
stimulated emission of radiation. The emitted light can also be outside the visible spectrum,
including infrared, ultraviolet, and X-rays [3], but for lidar purposes, the most commonly
used is 850–1550 nm range in the infrared spectrum [1]. The range can be divided into
two sub-ranges: laser diodes are used at 800–950 nm, while optical-based lasers from the
telecommunications industry are used at 1000–1550 nm [4]. The laser is selected depending
on the purpose and the location of its use, according to various parameters such as peak
power, power consumption, operating temperature, bandwidth, wavelength, emission
type, size, weight, and others [4].

For the lidar to receive back its transmitted signal when the reflected light returns, it
must contain a photodetector, whose task is to convert an optical into an electrical signal
based on the photoelectric effect. The most critical parameter of the detector is expressed in
the photosensitivity when receiving photons from the environment, and another essential
parameter is the detection of short pulses, which requires a large bandwidth [1,4]. Some
of the most used detectors are PIN photodiodes, single-photon avalanche photodiodes
(SPADs), avalanche photodiodes (APDs), silicon photomultipliers (SiPMs), and photomul-
tiplier tubes (PMTs) [1,3,4]. Silicon detectors are useful for the 300–1100 nm range, while
for wavelengths above 1100 nm, InGaAs or InP detectors are used [1,4]. Besides light
transmitter and detector, a typical lidar system also includes a time-to-digital converter
(TDC) and signal processing units.

Since lidar and radar both use electromagnetic waves for detection purposes, they
are often compared to each other. The shorter wavelength of lidar optical waves results
in better resolution, i.e., more precise detection, making it a better choice for creating 3D
images and maps. The ability to integrate lidars on an electronic or photonic chip can
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reduce the size, cost, and power consumption, making it affordable for many applications,
including object detection.

2.1. Types of Lidar Systems

There are currently several types of lidar systems on the market, which depend on
different types of scanners. The scanner positions the laser beam in a particular direction
by changing the angle and characteristics of the radiation beam to generate a 3D point
cloud, i.e., to collect data for mapping the environment [4]. The specific method of directing
the laser beam affects the precision, speed, FOV, and their effect on the object detection,
thus directly affecting the obtained image resolution [4]. We distinguish two main systems
according to how the radiation beam is directed—mechanical lidar and solid-state lidar [1,4].

In the transportation sector, lidar is most often used for autonomous vehicles, where
three types of systems stand out as the best solution. The first solution is a mechanical
lidar that uses rotating mirrors and galvanometric or piezoelectric positioning of mirrors
and prisms to scan the environment [4]. The other two solutions include solid-state
lidar versions—a micro-electromechanical system (MEMS) that uses electromagnet or
piezoelectric-controlled micro-mirrors and optical phased arrays (OPAs) that direct a beam
of radiation from an array of optical antennas [1,4].

2.1.1. Mechanical Lidar

Mechanical lidar uses expensive optics and a rotating or galvanometric system, with
mirrors or prisms attached to mechanical actuators, to provide a wide FOV of usually
360◦ [4]. Units that include both sources and detectors rotate around the same axis, which
can be achieved either by rotating the optical setup around a mechanical axis where several
detectors are positioned in parallel along the spinning axis, or by successively aiming the
beam across the target in the two-dimensional (2D) space [4]. The rotation of the optical
setup is usually the most preferred scanning option because it offers angularly equispaced
concentric data lines, or straight and parallel scan lines, with a constant scanning speed
over a wide FOV [4,5].

Mechanical lidar structure allows for a large signal-to-noise ratio (SNR) for a wide
FOV but with several drawbacks, including larger size, bulky design, high cost, reliability
and maintenance issues, and sensitivity to vibrations [1,4]. Mechanical lidar almost always
utilizes a pulsed laser source. Moreover, it is characterized by high power consumption and
frequency limited to approximately 100 Hz due to the inertia of the rotating assembly [4].
Nevertheless, mechanical lidar is very efficient for long-distance detection (beyond 1 km)
and valuable for researching and testing autonomous vehicle systems, algorithm training,
and robotics [4]. However, it is not tempting to the end-user due to the abovementioned
shortcomings, so it is often replaced by a solid-state version.

2.1.2. Solid-State Lidar

Unlike mechanical, solid-state lidar has no moving mechanical components, resulting
in a reduced FOV [1,4]. However, these systems increase their FOV to the one competitive
with mechanical lidars by using multiple sensors on each vehicle side and fusing their
data [4,6,7]. Solid-state lidars have a higher resolution, are faster, more robust, and cheaper
than the mechanical lidar, in addition to being physically smaller and lighter.

The sensor principle of MEMS lidar operation is based on the MEMS mirror embedded
in the silicon chip and rotated by balancing the electromagnetic force produced by the
coil around it and the elastic force of a torsion bar representing a fixed axis around which
it rotates [1,5]. MEMS provides programmable laser beam control using small mirrors
whose angle is determined by applying a stimulus, thus directing a beam to a specific
location [4]. Depending on the application and other requirements, different electrostatic,
magnetic, piezoelectric, and thermal technologies are used for actuation [4]. The most
common approach involves controlling the mirrors by drive voltages generated from a
memory-stored digital scan pattern using a digital-to-analog converter (DAC) [4]. For
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MEMS systems, the receiver light collection aperture, defining the receiver SNR, is often
fairly small (in the range of a few millimeters) [7]. Lightweight characteristic, compact
design, and low power consumption have increased interest in MEMS lidars, so it is
increasingly used in the automotive and transportation sectors, as well as in robotics and
space exploration [4].

Another representative of the solid-state lidar structure is a novel technology called
OPA that, like the previously mentioned MEMS structure, does not use moving components
but is based on steering the laser beam using optical phase modulators and multiple micro-
structured waveguides [4]. Namely, the speed at which light travels through the device
is adjusted using an optical phase modulator, which allows controlling the orientation
and shape of the optical wave-front coming from the combined emission of the synced
waveguides [4,7]. For example, the beams are delayed by increasing amounts, which allows
steering the beam in different directions [7]. This type of lidar system can provide very
stable, precise, and rapid beam steering [4]. Moreover, the OPA structure is highly compact,
robust, capable of very high measurement speeds of over 100 kHz for a wide FOV, and can
be implemented in a single chip, thus gaining interest as a technology with great potential
in automotive research and industry [4]. Nevertheless, the laser output power loss is a
major disadvantage, so scanning at larger distances is still not feasible [4,8].

2.2. Measurement Principles

Given the operating mode of the laser, the lidar can be classified into continuous wave
architectures, with the possibility of intensity modulation and pulsating mode architecture
where light radiation is emitted by intense short-term pulses. The most popular solutions
are pulsed laser, amplitude modulated continuous wave (AMCW) laser, and frequency
modulated continuous wave (FMCW) laser.

2.2.1. Pulsed Lidar

In order to determine the distance of an object with a pulsed laser, the travel time of
a short-term pulse from the transmitter to the detector is measured. It is desirable that
the short-term pulses have as much power as allowed, taking into account the possible
exposure and danger to human eyes [4]. Pulses lasting from 1 to 10 ns are used for
most applications [9]. Pulsed lasers often use the abovementioned SPAD for detection
due to their higher sensitivity and increased operating range, but these photodetectors
require a long recovery time and are sensitive to the thermal noise of electrons. The main
advantages of pulsed lasers are the simple principle of operation and the possibility of
measuring at greater distances [4]. On the other hand, their operation is limited by the
SNR of the measurements that requires utilizing intense light pulses while maintaining
eye safety limitations and using very sensitive detectors that may significantly increase
the cost [4]. Moreover, the utilized electronics have become significantly more sophisticated
due to detection requirements in the form of high-frequency rates and large amplification
factors [4]. However, this architecture is most commonly used in commercial lidar systems
for autonomous driving and transportation, due to its simplicity and ability to work
outdoors [4].

2.2.2. AMCW Lidar

AMCW lasers use a continuous light signal of modulated intensity [9]. They use a
phase shift to determine the distance of the detected object, which can be considered an
indirect TOF measurement. Furthermore, modulation is performed on a constant frequency
signal, typically in the range of about 10 MHz on sine or square waveform [4]. AMCW
laser does not provide high range resolution, although the accuracy can range within a few
centimeters and even less, which satisfies most applications [9]. As laser diodes are often
used instead of lasers in the AMCW lidar, the emitting power is limited, which introduces
more detection noise and reduces the range, thus limiting the application to interiors such
as large object detection or driver and front passenger detection [4].
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2.2.3. FMCW Lidar

The FMCW lidar operation depends on the characteristics of the coherent radiated
wave [9]. Namely, the source’s power is typically varied to periodically shift the emitted
instantaneous optical frequency [4]. By converting the received signal into an optical
domain, the need for wideband electrical circuits is eliminated, so it is possible to use
traditional complementary metal-oxide semiconductor (CMOS) electronics, which achieve
significantly higher range resolution and precision [9]. The sawtooth wave is modulated pe-
riodically, and the reflected signal is mixed with the emitting one, thus creating a frequency
difference based on which the object’s distance is determined [4,10]. The FMCW method
allows the range resolution in millimeters and even less [4]. Due to their speed, they are
suitable for use in autonomous vehicles and dynamic traffic detections. The FMCW laser
has the highest precision for shorter distances compared to the other operating modes [4].
The problem with the FMCW method is the stability of coherent light within the entire
measurement cycle, which arises from the laser characteristics such as temperature stability,
precision, voltage linearity dependence, and external conditions [4].

2.3. Parameters

The most important parameters of the lidar system are axial precision, FOV, angular
resolution, transmitting power with respect to the safety regulations for the human eye, sen-
sitivity to interference and ambient light, maximum operating range, power consumption,
and price [9].

Axial or range precision represents the standard deviation of several measurements
performed for a target at a fixed distance [9]. It is affected by the distance and target
surface properties. Precision is also called a measure of repeatability, and it is necessary to
distinguish it from accuracy. Namely, the term accuracy refers to how closely the measured
value matches the actual value. Moreover, range resolution represents the system’s capacity
to distinguish two or more different closely spaced objects in the axial direction [9]. It
is determined by the detected object’s type and size, the transmitted pulse width, and
the receiver efficiency. The pulsed lidars provide the centimeter-level resolutions for a
wide range of detection distances, including long-distance measurements [4]. Moreover,
the AMCW lidars can offer similar precision but only at moderate distances [4]. Finally,
the FMCW lidars significantly outperform the other two approaches in terms of achieved
resolution by allowing even the micrometer-level resolutions [4].

The FOV is the angle covered by the lidar sensor. Depending on the structure and
technology of the particular lidar system, this angle may vary. For example, a rotating
lidar uses a mechanical system that rotates the laser through 360◦ of the environment,
whereas less complex systems use fewer lasers and scan sector by sector, directing the
laser towards the desired area. Moreover, different angles are used for different scanning
applications. The FOV is typically defined by two horizontal and vertical angles around
an axis perpendicular to the front of the sensor, within which distance measurements
can be performed [9]. Furthermore, angular resolution defines the ability to resolve two
adjacent points in the FOV, where optical waves with micrometer wavelength achieve
angular resolutions on the order of 0.1◦, while requiring aperture sizes in the range of only
a few hundred micrometers [7,9]. The FOV and angular resolution of the classic pulsed
lidar are determined by the receiver’s optical characteristics and the photodetector’s size,
whereas in the beam-steering lidar, the beam properties have a significant impact on these
parameters [9]. In addition to using mechanical rotating assembly, the often desired 360◦

FOV can be achieved computationally by fusing data from multiple sensors [9].
Emission power is defined as the highest energy density of light radiation. Although

the higher power of the laser beam is desirable to enable detection at greater distances, its
maximum value is limited due to the potential damage to the human eye [9]. Namely, even
lasers with milliwatt-level power can cause significant damage [9]. Thus, the maximum
permissible exposure (MPE), together with the emitted power, is strictly determined by the
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wavelength and laser beam diameter, as well as the duration of exposure for continuous
mode lasers, and pulse width and frequency for pulsed lasers [9].

The transmitter’s power and the receiver’s sensitivity are generally the two factors
that restrict the maximum operating range [9]. Lidar systems can generally detect objects
from a few meters to over 200 m away [7]. With more powerful radiation, the operating
range increases but requires the use of a larger receiver aperture [9]. Furthermore, the use
of beam-steering lidars for long-range applications is a better choice than the classic pulsed
lidar considering that the laser power focuses on one point at a time, creating a stronger
feedback signal [9].

To illustrate with examples of the values of the parameters described above, the
examples of several commercial lidar systems from different manufacturers used in today’s
applications are provided next. Velodyne Lidar’s Puck is a small and compact 16-channel
lidar that generates up to 600,000 points per second and has a measurement range of 100 m,
a range accuracy up to ±3 cm, a 360◦ horizontal FOV with a 0.1–0.4◦ horizontal angular
resolution, a 30◦ vertical FOV with a 2.0◦ vertical angular resolution, a 5–20 Hz rotation
rate, and power consumption of 8 W [11]. Moreover, Velodyne Lidar’s Alpha Prime is
a 128-channel lidar system designed for long-range detection in autonomous mobility,
which generates up to 4.6 million points per second and has a measurement range up
to 300 m, a range accuracy of ±3 cm, a 360◦ horizontal FOV with a 0.1–0.4◦ horizontal
angular resolution, a 40◦ vertical FOV with a minimum vertical angular resolution of 0.11◦,
a 5–20 Hz rotation rate, and power consumption of 23 W [12]. Furthermore, RIEGL’s
VUX-1HA is a kinematic lidar that generates up to 1.8 million points per second and
has a maximum measurement range of 475 m (depending on the target’s reflectivity and
laser pulse repetition rate), a minimum range of 1 m, an accuracy of 5 mm, a precision of
3 mm, a 360◦ horizontal FOV, an angular resolution of 0.001◦, and power consumption of
65 W [13]. Finally, Leica ScanStation P50 is a long-range terrestrial lidar that generates up
to 1 million points per second and has a maximum measurement range greater than 1 km
(for 80% target’s reflectivity), a minimum range of 0.4 m, a range accuracy of 1.2–3 mm, a
360◦ horizontal FOV, a 290◦ vertical FOV, and a horizontal and vertical angular accuracy
of 8′′ [14].

3. Application of Lidar System in Road Transportation

Due to the previously analyzed characteristics of lidar systems of high precision
and resolution, the technology has found application in the transportation sector, both in
autonomous vehicles for detection of obstacles, pedestrians, roads, and other vehicles, and
in other traffic systems for recognizing objects on the road and along the road [15].

A key factor in using the lidar system in transportation is generating a 3D image,
called a point cloud, representing a computer representation of the actual situation in the
vehicle’s environment. After lidar scanning, a 3D grid of data points is provided where the
data files obtained by measurements contain information on the distance of each detected
point in 3D space defined by the X-Y-Z coordinates, as well as the information on the
reflectivity data over time [2]. Different colors in these 3D representations indicate the
intensities of the radiation energy reflected from particular points. Any location within this
computer-generated 3D scenery can be selected as the observer’s point of view [2]. The
computer analyzes a vast number of these points in real-time using the visual information
from multiple views to assess the environmental conditions [2]. Neighboring points moving
together are detected, recognized, and classified as specific objects [2]. The obtained 3D
lidar images can help us plan, simulate, map, and visualize situations, with the possibility
of training decision-making algorithms.

An example of such lidar-generated 3D representation, i.e., point cloud, is shown in
Figure 2. This image shows the laboratory interior, including several people and laboratory
equipment. It was obtained using Velodyne’s Puck lidar [11,16], which utilizes an array of
16 infrared lasers connected to infrared detectors.
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Figure 2. Example of 3D point cloud representation obtained by the lidar system.

Mobile laser scanning (MLS) is a system that uses laser scanner technology to create
highly reliable 3D images that can be used for a wide range of needs [17]. The system
consists of a 3D laser scanner that measures the distance of detected objects from the device,
the Global Navigation Satellite System (GNSS) that determines and saves the position,
an inertial measurement unit (IMU) that determines the correlation of position between
data and photo or video camera that captures the color spectrum of the radiation from
the recorded objects [17,18]. The components are usually mounted on a vehicle or person
moving in the area where the scan is taking place [17]. Thanks to the technology discussed
in the previous section, MLS systems are able to measure very small details, even at
the millimeter level, with high point density [17]. The collected data are often used in
classification algorithms for machine learning and prediction developed in the fields of
sensors, robotics, and computer vision [17]. In the last decade, the intensity of the research
and development of MLS systems has increased significantly.

The main advantage of the MLS system is high precision and measurement resolu-
tion that can range around several thousand measured points per square meter, with a
centimeter or even millimeter precision [17]. For comparison, the data density measured
by the airborne laser scanning (ALS) technique usually ranges up to 10 points per square
meter, and the typical resolution of individual points ranges between 30 and 50 cm [17].
Although the density of measurements with the terrestrial laser scanning (TLS) technique
can reach the same level as MLS, measurements are often performed without an IMU,
so individual measurements from different positions are more difficult to combine into a
single image [17]. On the other hand, the disadvantage of the MLS system is the very high
measurement density that causes large files within gigabytes for each recorded kilometer,
which results in lengthy image processing and image generation time [17]. Furthermore,
MLS cannot perform fine-detail measurements due to the urban environment’s terrain
characteristics [17]. Therefore, in urban environments consisting of natural and man-
made elements, a combination of MLS and ALS techniques is used to create a complete
picture [17]. However, due to the mentioned significant progress in surveying techniques,
a detailed survey with the MLS technique is sufficient in many cases, from which road
markings, pavement edges, pedestrian crossings, trees, street poles, traffic signs, traffic
lights, and buildings can be distinguished.
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The collected MLS system data consist of distances and angles, along with timestamps
that reference the exact position relative to the measuring device [18]. Combining vehicle
odometry, GNSS, and IMU sensors, the measured data is converted into three-dimensional
coordinates to create a point cloud that seeks to recreate the most accurate representation
of the scanned area [18]. Most MLS data go through the following processing order:
georeferencing data, mapping color information, filtering data, and generating models or
extracting features from the point clouds [18].

Additional steps are possible depending on the place of use and the desired result. In
order to manage the data collection process with the MLS method, a good knowledge of
the system is required for the data processing to give the best possible result [18]. Data
georeferencing seeks to combine data from multiple sensors into one complete dataset of a
3D coordinate system with as few errors as possible [18]. As mentioned earlier, lidar, GNSS,
and IMU synergy is essential for proper integration. While the scanning system collects
distance and location data, a photo or video camera captures colors in the red-green-blue
(RGB) spectrum for each measured point in a point cloud, and stores it as a numerical
value in the range of 0–255 [18,19]. Then, the colors are mapped by connecting them to
the known recorded X-Y-Z coordinates, so each point is characterized by seven descriptive
elements (X, Y, Z, R, G, B, I), where I represents the intensity [18]. Color mapping allows
a significantly more straightforward method for classifying objects due to their different
reflected light. Furthermore, after data recording, filtering is performed to eliminate the
data that is not useful for the end result, such as transient objects targeted by the scanner,
unwanted vegetation, and the like [18]. Also, filtering is often performed to reduce the size
of recorded files because they often take up much space and require a lot of processing
power [18]. Filtering is beneficial when measuring on a bendy road or in the middle of an
intersection, where the measured data is very dense on the side the operator is turning, and
sparse on the opposite side [18].

As MLS technology has brought many advantages over the traditional and static TLS
method, its use has led to many benefits for the transportation sector, such as increased
safety, efficiency, accuracy, technical improvements, and lower cost [18].

Most commercial MLS systems are based on the already explained TOF method, which
results in an extended range, while TLS systems use a phase shift whose features include
a higher precision and a higher density of scanned points [20]. Velodyne, Innoviz, Leica,
Optech Lynx, LeddarTech, RIEGL, Sense Photonics, DYNASCAN MDL, Blickfeld, Trimble,
and SICK are examples of TOF-based scanners, whereas Z+F and FARO scanners stand out
among phase shift-based TLS systems [20].

Figure 3 shows the flowchart depicting the main areas of application of lidar systems
in modern road transportation, which are discussed in this paper. These application areas
include autonomous driving, road detection, and object recognition on and along the road.
Moreover, an overview of the recent scientific papers on the application and analysis of the
lidar system in modern road transportation, which are mentioned and described in this
paper, can be found in Table 1. This table briefly summarizes the main application studied
and the main findings of each paper.

Figure 3. Application of the lidar system in modern road transportation.
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Table 1. Review of scientific papers on the application and analysis of the lidar system in modern
road transportation.

Reference Description of Application Conclusion

Autonomous driving

[1]
A review of the state-of-the-art lidar technologies and the

associated perception algorithms for application in
autonomous driving

The limitations and challenges of the lidar technology are
presented, as well as the impressive results of the analyzed

algorithms

[21] Discussion of the lidar systems’ role in autonomous
driving applications The vital role of monitoring fixed and moving objects in traffic

[22]
A review of lidar applications in automated extraction of
road features and a discussion on challenges and future

research

Use of lidar for various transportation applications, including
on-road (road surface, lane, and road edge), roadside (traffic
signs, objects), and geometric (road cross, vertical alignment,

pavement condition, sight distance, vertical clearance)
information extraction

[23]

Simultaneous localization and mapping (SLAM)-based
indoor navigation for autonomous vehicles directly

based on the three-dimensional (3D) spatial information
from the lidar point cloud data

A comparative analysis of different navigation methods is
conducted based on extensive experiments in real

environments

[24]
Extensive analysis of automotive lidar performance in

adverse weather conditions, such as dense fog and heavy
rain

Poor perception and detection of objects during rain and fog;
the proposed rain and fog classification method provides

satisfactory results

[25]
Testing the lidar system for outdoor unmanned ground
vehicles in adverse weather conditions, including rain,

dust, and smoke

Signal attenuation due to scattering, reflection, and absorption
of light and the reduction of detection distance are identified

[26]
Analysis of the effects of fog conditions on the lidar

system for visibility distance estimation for autonomous
vehicles on roads

The visibility distances obtained by lidar systems are in the
same range as those obtained by human observers; the

correlation between the decrease in the optical power and the
decrease of the visual acuity in fog conditions is established

[27] Analysis of the performance of a time-of-flight (ToF) lidar
in a fog environment for different fog densities

The relations between the ranging performance and different
types of fog are investigated, and a machine learning-based

model is developed to predict the minimum fog visibility that
allows successful ranging

[28]

Application of Kalman filter and nearby point cloud
denoising to reconstruct lidar measurements from

autonomous vehicles in adverse weather conditions,
including rain, thick smoke, and their combination

The experiments in the 2 × 2 × 0.6 m space show an improved
normal weather 3D signal reconstruction from the lidar data
in adverse weather conditions, with a 10–30% improvement

[29]
Analysis of the influence of adverse environmental

factors on the ToF lidar detection range, considering the
905 nm and 1550 nm laser wavelengths

A significant difference in the performance of the two laser
types is identified—a 905 nm laser is recommended for poor

environmental conditions

Road
detection

[30]

Deep learning road detection based on the simple and
fast fully convolutional neural networks (FCNs) using

only lidar data, where a top-view representation of point
cloud data is considered, thus reducing road detection to

a single-scale problem

High accuracy of road segmentation in all lighting conditions
accompanied by fast inference suitable for real-time

applications

[31]

Automatic traffic lane detection method based on the
roadside lidar data of the vehicle trajectories, where the
proposed method consists of background filtering and

road boundary identification

Two case studies confirm the method’s ability to detect the
boundaries of lanes for curvy roads while not being affected

by pedestrians’ presence

[32] Deep learning road detection based on the FCNs using
camera and lidar data fusion

High system accuracy is achieved by the multimodal
approach, in contrast to the poor detection results obtained by

using only a camera

[33]
Road detection based on the lidar data as input to the
system integrating the building information modeling

(BIM) and geographic information system (GIS)

Accurate road detection is achieved by lidar data classification,
but additional manual adjustments are still required

[34]
Lidar-histogram method for detecting roads and

obstacles based on the linear classification of the obstacle
projections with respect to the line representing the road

Promising results in urban and off-road environments, with
the proposed method being suitable for real-time applications

[35] Road-segmentation-based pavement edge detection for
autonomous vehicles using 3D lidar sensors

The accuracy, robustness, and fast processing time of the
proposed method are demonstrated on the experimental data

acquired by a self-driving car

[36]
An automated algorithm based on the parametric active
contour model for detecting road edges from terrestrial

mobile lidar data

Tests on various road types show satisfactory results, with
dependence on the algorithm parameter settings

Object
recognition on and

along the road

[37]
Visual localization of an autonomous vehicle in the urban
environment based on a 3D lidar map and a monocular

camera

The possibility of using a single monocular camera for the
needs of visual localization on a 3D lidar map is confirmed,

achieving performance close to the state-of-the-art lidar-only
vehicle localization while using a much cheaper sensor

[38]
Probabilistic localization of an autonomous vehicle
combining lidar data with Kalman-filtered Global

Navigation Satellite System (GNSS) data

Improved localization with smooth transitions between using
GNSS data to using lidar and map data

[39]
Generating high-definition 3D maps based on the

autonomous vehicle sensor data integration, including
GNSS, inertial measurement unit (IMU), and lidar

Existing autonomous vehicle sensor systems can be
successfully utilized to generate high-resolution maps with a

centimeter-level accuracy

[40]

Vehicle localization consisting of curb detection based on
ring compression analysis and least trimmed squares,

road marking detection based on road segmentation, and
Monte Carlo localization

Experimental tests in urban environments show high
detection accuracy with lateral and longitudinal errors of less

than 0.3 m
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Table 1. Cont.

Reference Description of Application Conclusion

[41] Vehicle localization based on the free-resolution
probability distributions map (FRPDM) using lidar data

Efficient object representation with reduced map size and
good position accuracy in urban areas are achieved

[42]
Optimal vehicle pose estimation based on the ensemble

learning network utilizing spatial tightness and time
series obtained from the lidar data

Improved pose estimation accuracy is obtained, even on
curved roads

[43] Autonomous vehicle localization based on the IMU,
wheel encoder, and lidar odometry

Accurate and high-frequency localization results in a diverse
environment

[44] Automatic recognition of road markings from mobile
lidar point clouds

Good performance in recognizing road markings; further
research is needed for more complex markings and

intersections

[45]

Development and implementation of a strategy for
automatic extraction of road markings from the mobile

lidar data based on the two-dimensional (2D)
georeferenced feature images, modified inverse distance

weighted (IDW) interpolation, weighted neighboring
difference histogram (WNDH)-based dynamic

thresholding, and multiscale tensor voting (MSTV)

Experimental tests in a subtropical urban environment show
more accurate and complete recognition of road markings

with fewer errors

[46] Automatic detection of traffic signs, road markings, and
pole-shaped objects

The experimental tests on the two-kilometer long road in an
urban area show that the proposed method is suitable for
detecting individual signs, while there are difficulties in
distinguishing multiple signs on the same construction

[47]

Recognition of traffic signs for lidar-equipped vehicles
based on the latent structural support vector machine

(SVM)-based weakly supervised metric learning
(WSMLR) method

Experiments indicate the effectiveness and efficiency of the
proposed method, both for the single-view and multi-view

sign recognition

[48]
Automatic highway sign extraction based on the

multiple filtering and clustering of the mobile lidar point
cloud data

The tests conducted on three different highways show that the
proposed straightforward method can achieve high accuracy

values and can be efficiently used to create an accurate
inventory of traffic signs

[49]

Pedestrian and vehicle detection and tracking at
intersections using roadside lidar data, the density-based
spatial clustering of applications with noise (DBSCAN),

backpropagation artificial neural network (BP-ANN),
and Kalman filter

The experimental tests with a 16-laser lidar show the
proposed method’s accuracy above 95% and detection range

of about 30 m

[50]
Vehicle tracking using roadside lidar data and a method

consisting of background filtering, lane identification,
and vehicle position and speed tracking

Satisfactory vehicle detection and speed tracking in
experimental case studies, with a detection range of about 30

m; difficulties in the vehicle type identification

[51]
Vehicle detection from the Velodyne 64E 3D lidar data

using 2D FCN, where the data are transformed to the 2D
point maps

An end-to-end (E2E) detection method with excellent
performance and a possibility for additional improvements by
including more training data and designing deeper networks

[52]

Convolutional neural network (CNN)-based multimodal
vehicle detection using three data modalities from the

color camera and 3D lidar (dense-depth map, reflectance
map, and red-green-blue (RGB) image)

The proposed data fusion approach provides higher accuracy
than the individual modalities for the Karlsruhe Institute of

Technology and Toyota Technological Institute (KITTI) dataset

[53]

Camera and lidar data fusion for pedestrian detection
using CNNs, where lidar data features (horizontal

disparity, height above ground, and angle) are fused with
RGB images

The tests on the KITTI pedestrian detection dataset show that
the proposed approach outperforms the one using only

camera imagery

[54]

CNN-based classification of objects using camera and
lidar data from autonomous vehicles, where point cloud

lidar data are upsampled and converted into the
pixel-level depth feature map, which is then fused with

the RGB images and fed to the deep CNN

Results obtained on the public dataset support the
effectiveness and efficiency of the data fusion and object
classification strategies, where the proposed approach

outperforms the approach using only RGB or depth data

[55]
Real-time detection of non-stationary (moving) objects
based on the CNN using intensity data in automotive

lidar SLAM

It is demonstrated that non-stationary objects can be detected
using CNNs trained with the 2D intensity grayscale images in

the supervised or unsupervised manner while achieving
improved map consistency and localization results

[56]

Target detection for autonomous vehicles in complex
environments based on the dual-modal instance

segmentation deep neural network (DM-ISDNN) using
camera and lidar data fusion

The experimental results show the robustness and
effectiveness of the proposed approach, which outperforms

the competitive methods

[57]

Road segmentation, obstacle detection, and vehicle
tracking based on an encoder-decoder-based FCN, an
extended Kalman filter, and camera, lidar, and radar

sensor fusion for autonomous vehicles

Experimental results indicate that the proposed affordable,
compact, and robust fusion system outperforms benchmark

models and can be efficiently used in real-time for the
vehicle’s environment perception

[58]

CNN-based real-time semantic segmentation of 3D lidar
data for autonomous vehicle perception based on the

projection method and the adaptive break point detector
method

Practical implementation and satisfactory speed and accuracy
of the proposed method

[59]
E2E self-driving algorithm using a CNN that predicts the
vehicles’ longitudinal and lateral control values based on

the input camera images and 2D lidar point cloud data

Experimental tests in the real-world complex urban
environments show promising results

[60]

Pedestrian recognition and tracking for autonomous
vehicles using an SVM classifier and Velodyne 64 lidar
data, generating alarms when pedestrians are detected

on the road or close to curbs

The validity of the method was confirmed on the autonomous
vehicle platform in two scenarios: when the vehicle is

stationary and while driving
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3.1. Application in Autonomous Driving

As MLS data can be used to observe street environments and detect and pinpoint
objects, vehicle orientation, and behavior, it can be concluded that the system is crucial
for Advanced Driver Assistance Systems (ADAS) and visual perception in autonomous
vehicles [2,61]. The most important factors of the MLS system in autonomous driving are
the detection of vehicles and pedestrians, the detection of traffic lanes, and the detection
of the road or other driving surface [22]. Existing MLS systems are often combined with
various cameras and radar sensors [2,62], thus improving the timely detection and predic-
tion of both pedestrians and vehicle movements in traffic. Each of these sensors has its
own advantages and drawbacks. Namely, optical cameras are affected by environmental
factors, such as lighting, weather changes, and different obstacles obscuring sight, whereas
lidar is affected by adverse weather conditions [62]. On the other hand, radar is not af-
fected by environmental light or weather conditions, but has lower detection accuracy and
resolution [62]. Therefore, data fusion from these complementary sensors is beneficial for
autonomous driving applications [62].

The envisaged autonomous driving system should cover 360◦ of the environment, not
just the isolated sections in front of and behind the vehicle. For higher autonomy, the sensors
should adequately detect and expect hazards from the sides. Lateral detection is essential
to avoid accidents caused by changing lanes, or to detect other vehicles at intersections.

The successful detection of all obstacles and traffic participants requires the synergy
of many sensors that do not only include the lidar system. Thus, various sensors are
used depending on the manufacturer and the detection method, such as long-range and
short-range radar, ultrasonic sensors, optical cameras, and lidar sensors [21]. Lidar sensors
in the range of about 900 nm are limited in terms of distance as opposed to those at 1550 nm,
capable of detecting at 200–300 m [21]. In addition to high-resolution detection, which
allows the observation of smaller detected details, the lidar is able to measure the speed of
objects directly [21]. Likewise, as previously stated for detecting moving objects, vehicles,
and other road users, the lidar can also map or record a static environment, which can also
serve as a reference when predicting danger [21]. Of all these sensors, lidar is the most
efficient. Working together with a camera, GNSS, and IMU system brings the application
to a whole new level. In the future, it is expected that lidar, together with its integrated
radar and camera systems, will replace all other sensors, which no other system is capable
of. However, the current limit is an enormous amount of data to be processed and a high
price that should decrease with technology development over time [21]. Moreover, the
development of MEMS lidar could make this system more affordable for autonomous
vehicles [5].

The synergy of all sensors helps the computer make decisions for the vehicle’s au-
tonomous driving, be it a system of braking, turning, acceleration, or signaling. Until
recently, research on autonomous vehicles, while driving or standing still in a real urban
environment, showed a pedestrian detection ability of 93–99%, while the classification
of road users (such as cars, cyclists, pedestrians, and trucks) using convolutional neural
networks (CNNs) achieves an average accuracy of 97% [17].

Perceptual algorithms are usually trained to detect moving and stationary objects and
estimate the ground surface by intentionally ignoring the effects of weather conditions
to reduce potential misdetections [24]. However, if lidar systems are planned to be used
at higher autonomy levels, it is necessary to observe their behavior even in bad weather
conditions such as heavy rain or thick fog [63]. In addition to rain and fog, direct sunlight,
smoke, and dirt can also be an obstacle.

This phenomenon is due to the different interactions of light and matter. Namely,
light reflection from a surface or object, and detection of such reflected signal, occurs
due to various interactions between the radiated signal and matter depending on the
wavelength of radiation, the size of the matter, and other causes. When electromagnetic
radiation interacts with matter in the form of a molecule or atom, scattering occurs, i.e.,
a change in the radiated signal’s direction [3]. If the photon changes its direction several
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times, a multiple scattering process occurs [3]. Moreover, reflection occurs when the
direction of movement of radiated electromagnetic waves between two media changes
where the signal returns to the medium from which it came. Furthermore, absorption
occurs when electromagnetic radiation interacts with matter resulting in the absorbed
photon, causing a change in the energy state of the atom or molecule in the matter, i.e., the
radiation is converted into heat or some other form of energy [3]. Additionally, fluorescence
occurs when a photon is absorbed, and a molecule emits a photon of the same or greater
wavelength after a certain time [3]. Finally, the relative motion of the transmitter and
detector leads to the Doppler effect manifesting in the radiated waves’ apparent frequency
or wavelength shift [3].

When testing the lidar system in demanding conditions, it was proven that dust
particles in the air prevented the detection of objects behind them [25]. This was due to
the previously explained multiple scattering, reflections, and light absorption. Therefore,
an algorithm was developed to reject signals reflected from dust particles by filtering data
according to radar. Fog conditions have a similar effect on lidar performance [26,27]. In [28],
an algorithm based on the Kalman filter and nearby point cloud denoising was developed
to improve the reconstruction of 3D lidar measurements from autonomous vehicles in
adverse weather conditions. Further research has shown that radar sensors are generally
more robust than lidar sensors and cameras, which are heavily affected by rain and fog.
Due to such performance, the distance of detectable objects is drastically reduced.

Furthermore, interesting results were obtained in [29] when analyzing the results
obtained by lasers with 905 nm and 1550 nm wavelengths. The target comparison area
was high humidity, rain, fog, and wet object detection performance. If the detected object
was dry, it generally reflected light better at a wavelength of 1550 nm than at 905 nm
(with some exceptions, such as military uniforms). However, the comparison results under
adverse conditions showed that the laser at a wavelength of 905 nm retained its nominal
characteristics much better than that at 1550 nm. The most considerable difference was
observed in rainy conditions (25 mm/h), where the 905 nm laser was able to detect twice the
distance than the laser at 1550 nm. The fog had the most significant impact on reducing the
detected distance for both cases, yet the 905 nm laser detected up to 60% greater distance
than its competitor. The wetness of the objects was not a significant factor in determining
the distance, where the leading laser was again more successful by 10–15%. When tested,
the humidity did not show any noticeable effect for both wavelengths, which does not
mean that it would not be the case when measuring very long (kilometer) distances, where
it is expected to impact the results significantly. In addition to the achieved results, it was
noted that the laser at a wavelength of 1550 nm is safer for human vision, which can be
an essential factor in some applications, given that the 905 nm laser requires more power.
Also, 905 nm laser radiation is visible with most night vision systems, so its use for military
purposes is not acceptable. Thus, the research in [29] proved a significant difference in the
performance of two lasers under the same adverse weather conditions, and recommended
using lasers at 905 nm if such conditions are involved.

3.2. Road Detection

The use of optical cameras to detect roads and road edges is not an ideal solution due
to the high dependence on outdoor lighting. As an alternative, a lidar system is offered
that emits its own light, which eliminates dependence on external conditions, so detection
is also possible at night. Due to this characteristic, the lidar-based road detection system
has the same accuracy level either during the day or at night, achieving satisfactory results
for automated vehicles. Several road detection algorithms have been proposed exclusively
for data captured by lidar, or fusion of optical camera and lidar data [30], but no solution
has long been able to outperform the results of the best optical camera-based system.

The continuation of the research proposed a system based on deep learning which
used fully convolutional neural networks (FCNs) [30]. It was tested on the classic Karlsruhe
Institute of Technology and Toyota Technological Institute (KITTI) dataset [64], often used
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for robotics and autonomous driving tests. The newly created Lidar-only Deep Neural
Network (LoDNN) system achieved excellent performance, surpassing the previously best
lidar-based system by 7.4%. Also, its calculation time was significantly less than one of
all other systems, which made it suitable for predicting in real situations, and it showed
excellent precision in detecting the edges of the road surface. The potential difficulties
encountered by the system were highlighted when detecting connecting sidewalks and
pavements, as is the case with pedestrian crossings or when changing terrain elevation.
In addition, the FCN provided the best results at a distance of up to 31 m, after which a
significant degradation was observed up to a maximum of 46 m. It was concluded that
the use of such a system, together with the graphics processing unit (GPU)-accelerated
hardware, met the needs of real-time road detection for autonomous vehicles, which did
not include distinguishing traffic lanes and their directions. The problem of automatic
lane identification was addressed in [31] using the vehicle trajectory data acquired by
roadside lidar sensors, achieving satisfactory results even on non-straight roads and with
the presence of pedestrians, but failing at intersections.

Building on previous research, a new LidCamNet detection system based on the
principle of fusion of data recorded by lidar, and those recorded by the optical camera, was
presented in [32]. The FCN fusion concept provided excellent results, achieving an accuracy
of 96.03%. Additionally, a continuation of the research was proposed to extend the testing
to roads covered with mud or snow to confirm the method’s effectiveness. The study in [33]
proposed a road detection and parametrization approach using the lidar data as input to
the integrated system, based on the building information modeling (BIM) and geographic
information system (GIS). Furthermore, the lidar-histogram method was developed in [34]
to detect roads and different obstacles, where the detection problem was reduced to the
linear classification in 2D space, as a 3D road plane was projected as a straight line segment
with obstacles projected above or below this line.

With the further development of lidar technology, edge detection accuracy has im-
proved, as indicated by the 2018 study where test datasets collected by an autonomous
vehicle from Tongji University in China were used [35]. Namely, the “sliding beam” method
was utilized, as well as the pavement edge search method, after each taken shot. Process-
ing time with such methods was extremely fast and amounted to 12 ms. However, the
average error in determining the edge of the pavement was 32.42 cm, which was not ideal.
In addition, it should be noted that in over 90% of cases, the detected pavement edge
had a deviation within 10 cm, which means that a large average error was affected by a
small number of false-positive results that had a greater distance. Some of these errors
were caused by damage to the curbs and other edges. Detailed testing with datasets and
real-time detections showed good precision and a robust base for autonomous driving
needs, achieving an average accuracy of approximately 85%. Moreover, an automated
algorithm for detecting road edges from terrestrial mobile lidar data was proposed in [36]
based on the modification of the parametric active contour model. The algorithm was
tested on various road types, achieving satisfactory results. However, it is very important
to emphasize that detecting road edges is still a significant problem if other vehicles or
pedestrians are on the road, which is a common situation.

3.3. Object Recognition on the Road and along the Road

In order to correctly determine the position and identify objects in traffic, it is necessary
to determine one’s own position well because it serves as a reference for everyone else’s.
Solutions using GNSS devices are not acceptable due to frequent errors and unreliability
of the satellite signal, while previously created maps are unsuitable because they do
not consider the dynamic factor of traffic and environment. Therefore, determining the
position in relation to the environment, and recognizing objects on the road and along
the road, is often done using systems based on optical cameras and lidars. Other than
using a lidar system, it is possible to do the same in a cheaper way using maps and
monocular cameras [37]. Some approaches also combine lidar-based localization with
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GNSS information [38], or utilize GNSS, IMU, and lidar sensor integration for map creation
and vehicle navigation [39].

The lidar-based system can determine the position of the detected object and plan the
trajectory according to the vehicle position information. This improves the autonomous
vehicle’s functionality due to the technique’s accuracy and precision. Due to the already
explained unreliability of satellite systems and objects that block the signal, such as build-
ings, trees, and tunnels, the GNSS system is impractical, and map-based localization is
required. The data from the sensors are combined with the maps, and due to their synergy,
the possible position of the vehicle is estimated. Environmental features that include roads,
road edges, buildings, and traffic signs are often used as a reference to connect data and
thus determine the distance between objects and vehicles [22]. Instead of optical cameras
that capture environmental features, a robust localization system based on a multilayer
lidar that is immutable with respect to external light was proposed in [40]. The study’s
success was manifested by 14–27 cm longitudinal and transverse distance errors, even in
the presence of other vehicles in traffic. Furthermore, the system’s accuracy over certain
datasets reached value, i.e., average error, within 15 cm.

The study in [41] proposed a vehicle localization approach based on the free-resolution
probability distributions map (FRPDM) generated by Gaussian mixture modeling (GMM)
using 3D lidar data, allowing efficient object representations, smaller map sizes, and
good position and heading estimation accuracy in the tested urban area. Moreover, the
authors in [42] approached the vehicle pose estimation problem by utilizing the lidar data
and ensemble learning network trained on the time series and spatial tightness evaluation
indexes, improving estimation accuracy, even at curved road segments. Furthermore,
the autonomous vehicle localization method based on the IMU, wheel encoder, and lidar
odometry was presented in [43] and provided accurate and high-frequency results in a
diverse environment.

Using a monocular camera as a competitive and cheaper method has shown results
that, although not superior, compete with results based on the lidar system, especially
when looking at the performance-price ratio [37].

Recognizing road markings and traffic signs near the vehicle is a crucial task for higher
levels of autonomy, where the vehicle alone should perform most, if not all, necessary
actions, and a useful factor at lower levels of autonomy to warn or inform the driver. As
for other objects detected by the lidar, the traffic signs must be extracted from the created
point cloud. The method of interpretation and extraction of points will depend on the
desired object, the application type, and the object’s geometric characteristics [44]. Shape
and pattern can play a significant role in interpreting points and are especially useful in
detecting man-made objects, such as traffic signs [44]. In general, pavement markings
consist of a set of predefined shapes that can be combined with each other (e.g., rectangle,
dashed line) [44]. In many cases, the markings have linear characteristics and previously
known dimensions [44].

Recent studies have approached pavement recognition by converting 3D to 2D geo-
referenced images, using weighted neighboring difference (WND) histograms, inverse
distance weighted (IDW) data interpolation, and the multiscale tensor voting (MSTV)
method [45]. Data were collected by the commercial RIEGL VMX-450 mobile lidar
system [65], and the results proved to be much better than the previously considered
studies, with an accuracy of about 90%. Also, the 2014 study at the University of the
Czech Republic proposed a way to recognize road markings, traffic signs, fences, and
other structures using two data sources [46]. The data collected from the camera and the
lidar sensor were used together to determine the objects. Like the previously mentioned
study, the RIEGL VMX mobile lidar system was used and applied in the urban area. The
success rate of detecting traffic signs was 93%, noting that the method was very successful
in detecting an independent traffic sign. However, this method could not distinguish a
single sign if multiple signs were located on a single structure. If detection was attempted
with predetermined datasets that included known traffic signs, a very good accuracy of
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over 90% could be expected [47]. Namely, in the study conducted in the USA with a
predetermined set of 112 different signs and using the weakly supervised metric learning
(WSMLR) method, the camera and lidar sensor data were also used together. Individual
tests resulted in an accuracy of over 95%, which was satisfactory for the initial phase of
the research. Furthermore, in [48], an automatic highway sign extraction method was
developed based on applying multiple filters to point cloud data and performing clustering.
The experimental tests showed high accuracy of this fast and straightforward method,
with higher efficiency for road segments without overhead signs. The results indicated the
method’s potential to generate traffic sign inventory, or import these data into autonomous
vehicle applications.

It is evident from the presented studies that the success of detecting road markings and
traffic signs is very satisfactory during real-life experiments, as well as those using available
datasets. However, although the results are presented as very good, most, if not all, systems
are not ready to be used in everyday conditions. If not indicated otherwise, most systems
are tested in good weather conditions, which does not provide system performance data
when it rains or fog forms.

The autonomous vehicle perceives the environment with its sensors and determines
the importance and significance of particular objects. The process that the lidar system per-
forms over the collected data usually consists of the following four steps: object detection,
object recognition, object tracking, and motion prediction [1]. This four-step division is
acceptable for popular mechanical lidars, such as the already mentioned Velodyne lidars,
where the processing is done in spherical coordinates (r, ϕ, θ) [1]. Object detection involves
estimating their physical characteristics, position, and shape [1]. As a first step, it also
involves initial filtering and clustering [1]. Detection, and thus object recognition, can
also be performed by machine learning, which provides the classic categories (such as
pedestrian, car, truck, tree, and building) [1]. The data features are extracted, and the
data are classified based on them [1]. Tracking objects involves recording their current
state, trajectory, orientation, and speed [1]. Bayesian and various versions of the Kalman
filter frameworks are usually used for this purpose [1]. Tracking a single object extends to
tracking multiple objects simultaneously with an interacting multiple model (IMM) filter
that consists of multiple filters connected in parallel using a different motion model [1].
The fourth step includes predicting behavior beneficial for autonomous vehicles and other
autonomous systems, where previously described steps provide the past and current state
of the detected objects [1]. For example, the authors in [66] proposed predicting car behav-
ior and movement in traffic by the GMM or hidden Markov model (HMM). However, it
is worthwhile for each step to impose machine learning that expands and supplements
each step. SemanticKITTI [67] and RangeNet [68] are examples that use deep learning
methods that take point clouds and perform the objects classification, segmentation, and
prediction [1].

Furthermore, the study in [49] investigated pedestrian and vehicle detection and
tracking at intersections using infrastructure-mounted lidar sensors. The roadside lidar data
were clustered by the modification of the density-based spatial clustering of applications
with noise (DBSCAN) [69] method, and the vehicles and pedestrians were classified by a
backpropagation artificial neural network (BP-ANN). Finally, the tracking was conducted
by a discrete Kalman filter. The experimental tests showed the accuracy of the proposed
approach above 95% and the detection range of about 30 m. Moreover, the roadside lidar
data was also used in [50] by developing a method consisting of background filtering,
lane identification, and vehicle position and speed tracking, achieving a similar detection
range. However, significant improvements and algorithm development were still required
to allow accurate vehicle type classification.

In recent years, CNNs, as special types of deep learning algorithms, have achieved
state-of-the-art performances in image classification, recognition, and segmentation in
various research fields and commercial applications [70–74]. Consequently, recent studies
on the application of lidar systems in autonomous vehicles have turned to object detection,
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classification, and prediction using CNNs. Test data are collected by some of the known
commercial lidar systems combined with optical cameras, or using KITTI datasets. There
are various applications of CNNs, where some studies use them only for a specific step,
such as vehicle detection [51,52], pedestrian detection [53], and object classification [54–58],
while some try to use them for the whole process. For example, in [59], the authors proposed
an end-to-end (E2E) self-driving algorithm utilizing a CNN that provided the vehicle speed
and angle as outputs based on the input camera and 2D lidar data. In addition to using
CNNs, the support vector machine (SVM) classifier can also be mentioned, which can be
used to detect pedestrians and predict their movements [60].

4. Application of the Lidar System in the Maritime Sector

The development of the maritime sector, and increasing traffic on the seas and oceans,
is creating an increasingly complex situation, as previously discussed for road transporta-
tion. In the last 30 years, the number of ships and other vessels in some areas has increased
by over 300%. New technologies are also being applied for maritime transport to function
efficiently and safely [75], including lidar systems.

The flowchart shown in Figure 4 depicts the main areas of application of lidar systems
in the maritime sector, which are discussed in this paper. These application areas include
autonomous navigation and object detection on seas and oceans, monitoring ocean ecosys-
tems, mapping coastal areas, and other diverse applications. Moreover, following the same
structure, Table 2 provides a brief overview of the recent studies on lidar application in the
maritime sector, including application description and main conclusions.

Figure 4. Application of the lidar system in the maritime sector.

Table 2. Review of scientific papers on the application and analysis of the lidar system in the
maritime sector.

Reference Description of Application Conclusion

Autonomous navigation and
object detection

[76]

Lidar as a part of the sensor system (absolute
positioning, visual, audio, and remote

sensing sensors) combined with artificial
intelligence (AI) techniques for situational

awareness in autonomous vessels

Several drawbacks of the current lidar technology
are detected for application on autonomous

vessels, including limited laser power due to
eye-safety issues, lower operational ranges,

expensive optics, and unsuitability for the harsh
working environment

[77]
Ship berthing information extraction based

on the 3D lidar data using principal
component analysis

The effectiveness of the proposed method in
dynamic target recognition and safe ship berthing

is confirmed by experimental validation on the
ro-ro ship berthing

[78]

Berthing perception framework for maritime
autonomous surface ships based on the

estimation of the vessel’s berthing speed,
angle, distance, and other parameters from

the 3D shipborne lidar data

The proposed method allows accurate berthing in
real-time, as confirmed by experiments

[79]
Low-cost lidar-based ship berthing and
docking system, with a novel method of
fusing lidar and GNSS positioning data

The usefulness of the proposed system in safe
ship berthing is proven experimentally during

several berthing maneuvers and compared to the
GNSS-based navigational aid system
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Table 2. Cont.

Reference Description of Application Conclusion

[80]

Computer-aided method for bollard
segmentation and position estimation from

the 3D lidar point cloud data for
autonomous mooring based on the 3D

feature matching and mixed
feature-correspondence matching algorithms

The proposed approach is validated on
experimental mooring scenes with a robotic arm

equipped with lidar

[81]

Use of the dual-channel lidar for rotorcraft
searching, positioning, tracking, and landing

on a ship at sea based on the estimation of
the azimuth angle, the distance of the ship

relative to the rotorcraft, and the ship’s
course

The simulation and experimental tests confirm
the effectiveness of the developed method and

associated models

[82]

Algorithm for detecting objects on seas and
oceans using lidar data for application on

maritime vessels in different environmental
conditions

A proven accurate object detection method called
DBSCAN is used to cluster the data points

[83]

Detection, monitoring, and classification of
objects on seas and oceans based on the SVM
classifier and the fusion of lidar and camera

data

The proposed method is proven to be highly
effective, with an overall accuracy of 98.7% for six

classes

[84]

Detection, classification, and mapping of
objects on seas and oceans using an
unmanned surface vehicle with four

multi-beam lidar sensors and polygon
representation methods

The ability to create a map of the environment
with detected objects that are not in motion, with
polygons being accurate to 20 cm using a 10 cm

occupancy grid

Monitoring ocean ecosystems

[85] A review of the development of profiling
oceanographic lidars

The possibility of sea and ocean analysis and
monitoring of animal species using lidar is
described where these lidars can provide

quantitative profiles of the optical properties of
the water column to depths of 20–30 m in coastal

waters and 100 m for a blue lidar in the open
ocean

[86] Application of lidar for monitoring and
mapping the marine coral reef ecosystems

Successful monitoring of fish, plankton, and coral
reef distribution using 3D lidar data

[87] Spaceborne lidar for ocean observations
The usefulness of satellite lidar for observations
of ocean ecosystems, particularly in combination

with ocean color observations

Mapping coastal areas

[88] A review of lidar application in creating
shoreline and bathymetric maps

Lidar, combined with Global Positioning System
(GPS), provides accurate topographical and

bathymetric coastal maps, with 10–15 cm vertical
accuracy, where best water penetration is

achieved by using a blue-green laser with a
wavelength of 530 nm

[89] Classification of large bodies of water using
airborne laser scanning (ALS)

Automatic and efficient classification of water
surfaces with an SVM classifier, with an accuracy

of over 95% for most cases of coastal areas

[90] Mapping coastal terrains using unmanned
aerial vehicle (UAV) lidar

High resolution and quality of topographic data
(5–10 cm accuracy) of UAV lidar that outperforms
UAV imagery in terms of ground coverage, point
density, and the ability to penetrate through the

vegetation

[91] Semi-automatic coastal waste detection and
recognition using 3D lidar data

Possible classification of waste into plastic, paper,
fabric, and metal

Other
applications

[92]
Monitoring the dynamics of the upper part

of the ocean by ship-lidar with the analysis of
motion impact on lidar measurements

Measurement of waves, turbulence, and the
impact of wind farms on the seas

[93] Doppler lidar-based data collection for
offshore wind farms

High-resolution measuring of wind speed and
direction at various altitudes for proper

realization of offshore wind farms

4.1. Autonomous Navigation and Object Detection on Seas and Oceans

The development of a lidar system for object detection on the seas and oceans, in
addition to greater safety for modern ships, offers the possibility of developing autonomous
navigation [76,94–96]. Autonomous ships, as well as road vehicles, promise greater safety
and lower fuel consumption, which is particularly important today in the context of
maritime transport emission reduction [97,98]. The authors in [76] studied the integration
of various sensors into a system that should enable the situational awareness of autonomous
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vessels when combined with artificial intelligence (AI) techniques. The analyzed sensors
included absolute positioning sensors (GNSS and IMU), visual sensors (cameras), audio
sensors (microphones), and sensors for remote sensing (lidar and radar). Several reasons
were detected for the current lidar systems not being widely used for object detection
onboard autonomous vessels. One of the discussed drawbacks was the laser power being
limited due to eye-safety issues. Moreover, today’s lower-cost commercial lidar systems
are intended for automotive applications, thus being focused on cost and size optimization,
while having lower operational ranges than those required in maritime navigation of
larger vessels. On the other hand, lidar systems used for remote survey purposes have
longer ranges, but the required optics are prohibitively expensive and not designed for
harsh working environments characteristic of maritime vessels, such as adverse weather
conditions and constant motion.

There are several recent studies on utilizing lidar systems in vessel berthing. The
study in [77] proposed a berthing information extraction system based on the 3D lidar data
and experimentally validated it on the ro-ro ship berthing, demonstrating the effectiveness
of the proposed approach in dynamic target recognition and safe ship berthing. Another
berthing perception framework for maritime autonomous surface ships based on the ship-
borne lidar was presented in [78]. The developed procedures for estimating the vessel’s
berthing speed, angle, distance, and other parameters from the 3D point cloud lidar data,
satisfied the required accuracy for berthing in real-time. Furthermore, the study in [79]
described the development of a low-cost lidar-based ship berthing and docking system,
proposing a novel method of fusing lidar data with GNSS positioning data. The per-
formance of the proposed system was analyzed during several berthing maneuvers and
compared to the performance of the commonly used GNSS-based navigational aid system,
proving its usefulness in safe berthing experimentally. Additionally, bollard segmentation
and position estimation from lidar point cloud data for autonomous mooring was pro-
posed in [80]. Moreover, the authors in [81] developed a system based on the dual-channel
lidar for rotorcraft searching, positioning, tracking, and landing on a ship at sea.

The information received by the lidar system can also be collected using radar, which
is often mentioned in the case of detecting objects at sea. Because of that, it is necessary
to analyze and understand what improvements the proposed lidar system brings. The
already well-known application of radar on ships competes with lidar technology with its
ability to detect objects at greater distances and perform better in poor weather conditions,
such as rain, fog, or snow [82]. Also, radar sensors are more affordable than lidar. On
the other hand, unlike radar, lidar is more precise and detailed when measuring, and can
also detect non-metallic objects such as rocks and vessels made of wood or plastic [82].
Additionally, as the lidar system detects fewer objects and noises in the seas and oceans, its
task should be simpler than the one required in road traffic [82]. Due to these differences
and yet similarities in detection, one system cannot replace another, so a combination of
both systems is proposed for the best possible results [82]. Furthermore, a fusion of sensors
is required to provide greater safety for all potential conditions, including radar, lidar,
cameras, and Global Positioning System (GPS) devices.

The SICK lidar system has been proposed for the application in detecting objects at
sea and is characterized by better performance over longer distances and a lower price
than its competitors [82]. Some studies conducted measurements [83] and mappings [84]
based on the Velodyne lidar system using the SVM classifier, but cannot compete with
the SICK lidar in terms of operating range. Lidars with 360◦ FOV often have a smaller
maximum range, while the SICK lidar can detect up to 300 m with an FOV of 85◦ [82]. Ships,
especially autonomous ones, require timely detection of objects because avoiding them is
much more difficult and complex than in road traffic, which emphasizes the importance
of the operating range factor [82]. Velodyne’s competitive lidar system has the ability to
detect with a FOV of 360◦ and a more detailed recording. However, the SICK system, with
a larger operating range and a lower price, is also characterized by a better temperature
characteristic [82]. Namely, the SICK lidar operates at a higher temperature range than
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the Velodyne, giving the proposed system a greater advantage for working in very cold or
hot areas [82]. Other competing systems include Quanergy and LeddarTech, which provide
similar performance in their respective price ranges [82].

Although there are fewer objects and noises at sea [82,99], measuring with lidar is
not that simple. Since light penetrates the water, there will be no feedback signal [82], so
the sea cannot be detected the same as the road. The most common stationary objects at
sea are rocks and buoys, but light can also be reflected from algae and seagrass floating
on the sea’s surface, resulting in a false positive detection [82]. Among other things, the
system detects surface sea turbulence caused by the ship’s propeller [82]. Therefore, it is
difficult to filter out false-positive data because a rock or similar obstacle may have been
detected [82]. Other sensors onboard can also cause some complications [82]. The pulses
of the lidar system can interfere with GPS receivers, so the simplest solution is to remove
the device from each other’s vicinity [82]. Radio waves from the radar can create noise
detected by the lidar, so such a problem is solved by filtering according to the periodic
action, i.e., the rotation of the radar system [82]. Among other things, when measuring, the
rocking factor of the ship, whether longitudinal or transverse, must be taken into account.

After scanning the environment and collecting data to form point clouds, grouping
of points, i.e., clustering, is performed. As with road transportation, several algorithms
can be used for clustering, but the most acceptable clustering is often achieved with the
DBSCAN method. The method is simple because only two parameters need to be adjusted,
including the maximum distance of two points to be considered part of the same object
and the minimum number of points needed for something to be considered an object [82].
Despite uneven recognition due to the constant angle between laser beams, the DBSCAN
method was selected as the best solution for categorizing objects on lidar datasets in [82].

4.2. Monitoring Ocean Ecosystems

In addition to possible applications for detecting objects at sea, lidar systems, if set up
accordingly, are suitable for monitoring and analyzing sea and ocean ecosystems. A review
of the development of profiling oceanographic lidars was provided in [85]. These remote
sensing systems can provide optical properties of the water columns and allow studying
distributions of animal species, such as fish and plankton. Moreover, they also provide
information on the dynamics of the upper ocean. Furthermore, the authors in [86] described
the application of lidar technology in monitoring, mapping, and quantifying coral reef
ecosystems. In addition to aerial lidar, satellite lidar can also be used for ocean ecosystem
monitoring applications. In [87], an approach combining satellite ocean color observations
with the data from a spaceborne lidar was presented, and its application in the study of
ocean subsurface properties, especially the plankton properties, was further analyzed.

4.3. Mapping Coastal Areas

Lidar ecosystem monitoring provides the potential to use this remote sensing technol-
ogy for research and mapping coastal areas. Following the monitoring of coastal areas, the
detection of sediments on the shores, their deposition, or soil erosion can be mentioned,
which can affect changes in temperature and increase the acidity of water.

As one of the most significant applications in the field of geomorphology, lidar is
used with GPS to precisely survey coastal areas and create up-to-date topographic and
bathymetric coastal maps [88]. Such capability provides an opportunity for many scientific
studies, including flood zone delineation, ecosystem protection, monitoring of changes in
sandy beaches and other shallow areas after storms or prolonged sedimentary processes,
and classification of large water areas [89]. Previous coastal analysis has been based on
historical aerial photographs and topographic maps, but topographic and depth data can
now be effectively collected by aerial laser imaging with ALS systems, including unmanned
aerial vehicle (UAV) lidar [90].

Lidar is most effective when measuring clean seas and oceans where the detected
depth reaches up to 50 m. Best water penetration is achieved by using a blue-green laser
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with a wavelength of about 530 nm [88]. Unlike popular lasers at 1064 nm, its accuracy
and range resolution are lower, but it is still a better choice for measuring underwater
areas due to the approximately exponential attenuation of energy in water with increasing
wavelength [88]. Another interesting application that has become increasingly important
recently is detecting and recognizing waste on shores, with a possible classification into
plastic, paper, fabric, and metal [91].

4.4. Other Applications

In addition to the most prominent application in maritime transport for detecting
objects, and the already mentioned monitoring of flora and fauna in waters and mapping
coastal areas, lidar is also suitable for many other applications in the maritime sector.

Using signal scattering and reflection as a detection factor also makes it possible
to monitor upper ocean dynamics, waves, turbulence, and the impact of offshore wind
farms [92]. Nd:YAG laser with the “Q-switching” technique is often used for many of these
marine applications due to its reliability [85], while the blue laser would be more suitable
for analyzing deeper areas of the sea and ocean up to 100 m, but its application is somewhat
prevented by its complexity [88].

Also, Doppler lidar can measure wind speed and direction, which is especially use-
ful for developing and designing offshore wind farms [93]. The Doppler lidar works
similarly to the Doppler radar, except that aerosol particles are used for scattering and
feedback measurements.

5. Challenges and Future Trends

The undeniable fact is that lidar technology finds its applications in ever wider ar-
eas and has unique characteristics. However, in today’s systems, several limitations and
challenges need to be overcome, such as high cost, compliance with safety and reliability
standards, measurements over long distances for highways and maritime needs, perfor-
mance in adverse weather conditions, and the need for the smaller physical size of the
device that encourages integration [1]. As measurements are most often carried out on
the move, whether in road or maritime transportation, the measurements are dependent
on high-precision GPS and IMU devices for precise georeferencing [18]. The size and
complexity of the recorded data also pose a significant challenge [45]. Existing variable
laser source solutions (905 nm, 1064 nm, 1550 nm), operating principles (pulsed, AMCW,
FMCW), or scanning methods (mechanical, MEMS, OPA) are used to overcome some of the
difficulties [1]. A graphical overview of the currently most important challenges in lidar
application in modern transportation is provided in Figure 5.

Although it is difficult to predict which type will dominate in the future, lidar use
will undoubtedly be introduced in more and more experimental systems for various
applications [1]. Existing and future algorithms used to accurately extract and understand
data are increasingly showing, and will continue to show, the potential of lidar technology.
Moreover, the use of machine learning, and deep learning, in particular, is expected to
make even faster progress than that achieved by classical methods, and is considered
one of the most important directions of technology in the future. Standardization of
control, accuracy, interoperability, and data quality will set guidelines for technology
development. The systems are expected to be often integrated with other sensors and
developed on different platforms in future applications. Integrating data with other sensors
allows the possibility of making conclusions that would not be possible by observing
individual data on their own [86], and allows a better understanding of the collected
information. The development of the system encourages application in various areas along
with transportation, such as geomorphology, ecology, meteorology, marine biology, and
many others. It should be mentioned that lidar technology is not expected to replace
existing methods but to complement them. Of course, as technology evolves and research
reveals new techniques and algorithms, further improvements and expansions of the
capabilities and applications of lidar-based systems are expected.
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Figure 5. Challenges in lidar system application in modern transportation.

6. Conclusions

Although lidar technology was first applied in 1961, it has experienced its most signifi-
cant development in the last two decades. By observing the results of recent studies and
research, it can be concluded that lidar systems provide a vast potential for the development
of road and maritime transportation, as well as for related scientific disciplines such as
geomorphology, ecology, meteorology, biology, and others. It is evident that the interest
in the mobile lidar system in the modern transportation sector is rapidly growing, which
encourages the standardization of specific methods and the improvement of models. Inter-
operability allows flexible data management between multiple technology systems that
yield more accurate results and new insights, while the greatest attention is paid to road
transportation due to its high complexity and most common application. The technology is
characterized by its efficiency, flexibility, speed, size, and precise data collection, creating a
3D point cloud of high resolution. Furthermore, the resistance of semiconductor systems
to vibrations enables the detection of objects in a more accessible and reliable way than
previous solutions.

An overview of existing and emerging applications shows the system’s characteristics,
existing architectures and their limitations, and the challenges for current and future
systems. The market currently offers several models from several manufacturers for
different purposes that provide satisfactory results, and new models with better technical
characteristics are presented every year. Although the technology is not perfect, it is
expected to see better performance and wider application across many different areas
through further development.

Therefore, future research and development in lidar technology application in modern
transportation will focus on addressing the current challenges and technology limitations.
This primarily refers to increasing the detection range where a reliable detection of objects
at larger distances is necessary for many traffic situations, to allow timely reaction by
either human operator or autonomous system. An example of such a situation in road
transportation is driving at higher speeds on highways, while maritime transportation and
autonomous navigation are generally characterized by maneuvers that take more time to
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perform. Improved long-distance detection will require technological improvements to
the lidar system components, the improved resolution of the 3D point clouds, and further
development and upgrades of the utilized computational algorithms.

Machine learning, particularly deep learning, will play a significant role in enabling
longer-distance detections and generally more reliable application of lidar technology in
transportation. This will include further improvements to the existing algorithms, as well as
the development of specific approaches oriented towards 3D lidar data. CNNs have a great
potential here as they have been shown to provide state-of-the-art performances in image
classification, recognition, and segmentation. Furthermore, the continuous development of
the utilized electronics should reduce the lidar system’s dimensions and allow integration
with various autonomous systems. Moreover, another area of possible improvement,
which will be crucial for the lidar system autonomy and its final beginning of widespread
application in real-world transportation systems, is improved performance in adverse
weather conditions. This ultimately important area will require the development of highly
specialized signal processing algorithms. Finally, novel signal processing approaches will
also play a vital role in fusing data from various sensors as lidar will be an integrated part
of multi-sensor systems.
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Abbreviations

2D two-dimensional
3D three-dimensional
ADAS Advanced Driver Assistance System
AI artificial intelligence
ALS airborne laser scanning
AMCW amplitude modulated continuous wave
APD avalanche photodiode
BIM building information modeling
BP-ANN backpropagation artificial neural network
CMOS complementary metal-oxide semiconductor
CNN convolutional neural network
DAC digital-to-analog converter
DBSCAN density-based spatial clustering of applications with noise
DM-ISDNN dual-modal instance segmentation deep neural network
E2E end-to-end
FCN fully convolutional neural network
FMCW frequency modulated continuous wave
FOV field of view
FRPDM free-resolution probability distributions map
GIS geographic information system
GMM Gaussian mixture model
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GNSS Global Navigation Satellite System
GPS Global Positioning System
GPU graphics processing unit
HMM hidden Markov model
IDW inverse distance weighted
IMM interacting multiple model
IMU inertial measurement unit
KITTI Karlsruhe Institute of Technology and Toyota Technological Institute
lidar light detection and ranging
LoDNN Lidar-only Deep Neural Network
MEMS micro-electromechanical system
MLS mobile laser scanning
MPE maximum permissible exposure
MSTV multiscale tensor voting
OPA optical phased array
PMT photomultiplier tube
radar radio detection and ranging
RGB red-green-blue
SiPM silicon photomultiplier
SLAM simultaneous localization and mapping
SNR signal-to-noise ratio
SPAD single-photon avalanche photodiode
SVM support vector machine
TDC time-to-digital converter
TLS terrestrial laser scanning
ToF time of flight
UAV unmanned aerial vehicle
WND weighted neighboring difference
WSMLR weakly supervised metric learning
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