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Abstract: We propose a dual-module robotic system to tackle the problem of generating and perform-
ing antipodal robotic grasps for unknown objects from the n-channel image of the scene. We present
an improved version of the Generative Residual Convolutional Neural Network (GR-ConvNet v2)
model that can generate robust antipodal grasps from n-channel image input at real-time speeds
(20 ms). We evaluated the proposed model architecture on three standard datasets and achieved a
new state-of-the-art accuracy of 98.8%, 95.1%, and 97.4% on Cornell, Jacquard and Graspnet grasping
datasets, respectively. Empirical results show that our model significantly outperformed the prior
work with a stricter IoU-based grasp detection metric. We conducted a suite of tests in simulation and
the real world on a diverse set of previously unseen objects with adversarial geometry and household
items. We demonstrate the adaptability of our approach by directly transferring the trained model
to a 7 DoF robotic manipulator with a grasp success rate of 95.4% and 93.0% on novel household
and adversarial objects, respectively. Furthermore, we validate the generalization capability of our
pixel-wise grasp prediction model by validating it on complex Ravens-10 benchmark tasks, some of
which require closed-loop visual feedback for multi-step sequencing.

Keywords: robotic manipulation; grasping; deep learning

1. Introduction

Robotic manipulators are constantly compared to humans due to the inherent charac-
teristics of humans to instinctively grasp an unknown object rapidly and with ease based
on their own experiences. As increasing research is being conducted to make robots more
intelligent, there exists a demand for a generalized technique to infer fast and robust grasps
for any kind of object that the robot encounters. The major challenge is being able to
precisely transfer the knowledge that the robot learns to novel real-world objects.

In this work, we present a modular robot agnostic approach to tackle this problem
of grasping unknown objects. We propose a Generative Residual Convolutional Neural
Network (GR-ConvNet) that generates antipodal grasps for every pixel in an n-channel
input image. We use the term generative to distinguish our method from other techniques
that output a grasp probability or classify grasp candidates in order to predict the best
grasp. We provide several experiments and ablation studies in both standard benchmarking
datasets and real settings to evaluate the key components of the proposed system.

Figure 1 shows an overview of the proposed system architecture. It consists of two
main modules: the inference module and the control module. The inference module
acquires RGB and aligned depth images of the scene from the RGB-D camera. The images
are pre-processed to match the input format of the proposed GR-ConvNet model trained
on an offline grasping dataset. The network generates quality, angle, and width images,
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which are then used to infer antipodal grasp poses. The control module consists of a task
controller that prepares and executes a plan to perform a pick and place task using the
grasp pose generated by the inference module. It communicates the required actions to the
robot through a ROS interface using a trajectory planner and controller.

Figure 1. Overview. A real-time multi-grasp detection framework to predict, plan and perform robust
antipodal grasps for the objects in the camera’s field of view using an offline trained GR-ConvNet
model. Our system can grasp novel objects in isolation as well as in clutter. Video (accessed on 20
July 2022): https://youtu.be/cwlEhdoxY4U.

In robotic grasping, it is very essential to generate grasps that are not just robust
but also the ones that require the least amount of computation time. Our state-of-the-art
technique demonstrates both of these from our outstanding results in generating robust
grasps with the lowest recorded inference time of 20 ms on the Cornell Grasp dataset as
well as the new Jacquard dataset. We also demonstrate that our technique works equally
well in the real world with novel objects using a robotic manipulator. Unlike the previous
work performed in robotic grasping [1–4], where the required grasp is predicted as a grasp
rectangle calculated by choosing the best grasp from multiple grasp probabilities, our net-
work generates three images from which we can infer grasp rectangles for multiple objects.
Additionally, it is possible to infer multiple grasp rectangles for multiple objects from the
output of GR-ConvNet in one shot thereby decreasing the overall computational time.

The key contributions of this work are:

• A dual-module robotic system that predicts, plans, and performs antipodal grasps for
single or multiple objects in the scene. We open-sourced the implementation of the
proposed inference and control modules.

• A novel Generative Residual Convolutional Neural Network (GR-ConvNet) architec-
ture that predicts suitable antipodal grasp configurations for objects in the camera’s
field of view at real-time speeds of 20 ms.

• We evaluate the generalization capabilities of the architecture and its prediction per-
formance on publicly available grasping datasets and achieve a new state-of-the-art
accuracy of 98.8%, 95.1%, and 97.4% on Cornell [5], Jacquard [6] and Graspnet [7]
grasping datasets, respectively.

• An ablation study to understand the contribution of each component of the GR-
ConvNet architecture and training process.

https://youtu.be/cwlEhdoxY4U
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• Simulation experiments to evaluate the performance of GR-ConvNet trained on Cor-
nell and Jacquard datasets with objects from Yale-CMU-Berkeley (YCB) object set [8]
in isolated and cluttered scenarios. We demonstrated that GR-ConvNet performs sig-
nificantly better than the GGCNN models [9] in both isolated and cluttered scenarios,
with improvements of 12.5% and 14.5%, respectively.

• Real-world experiments with a 7 degree of freedom robotic manipulator to demon-
strate that the proposed model can be deployed on a robotic manipulator to perform
antipodal grasp at real-time speeds with a success rate of 95.4% and 93% on novel
household and adversarial objects, respectively.

• Demonstration of the generalization capabilities of the proposed GR-ConvNet to
various manipulation tasks by evaluating it on the Ravens-10 benchmark tasks pre-
sented by Zeng et al. in [10]. Furthermore, we validate that the sampling efficiency of
GR-ConvNet is extremely impressive when evaluated on unseen test settings.

This journal paper is an extension of a conference paper that appeared in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) 2020 [11]. This version
introduces an improved version of the GR-ConvNet along with an ablation study in
Section 6.5. In addition to Cornell and Jacquard datasets, this paper includes network
performance evaluation on the Graspnet dataset in Section 6.4. It also includes additional
simulation and real-world experiments and more system details in Section 7. In addition,
we validate the flexibility and generalizability of the GR-ConvNet model to various vision-
based manipulation tasks in Section 8. Other additional changes include details of the
calibration procedure, visualizations and analysis of predicted grasps as compared to
ground truth grasps, and illustrations of the clutter scene removal task in a real-world setup.

2. Related Work

Our work lies at the intersection of robotic grasping, computer vision, and deep
learning. In this section, we briefly review the related work in these domains. Table 1
provides a comparison of our work with recent related work in robotic grasping for
unknown objects using learning-based approaches. Figure 2 shows the performance
comparison of GR-ConvNet on Cornell Grasping Dataset with prior work in terms of speed
and accuracy.

Table 1. A comparison of related work.

Author Cornell
Results

Jacquard
Results

Graspnet
Results

Real
Robot

Household
Objects

Adversarial
Objects

Cluttered
Objects

Code
Available

Lenz et al. [1] 3 7 7 3 3 7 7 3

Redmon et al. [2] 3 7 7 7 7 7 7 7

Wang et al. [12] 3 7 7 7 7 7 7 7

Kumra et al. [4] 3 7 7 7 7 7 7 7

Depierre et al. [6] 3 3 7 3 3 7 7 7

Chu et al. [13] 3 7 7 3 3 7 7 3

Zhou et al. [14] 3 3 7 7 7 7 7 7

Asif et al. [15] 3 7 7 3 3 7 3 7

Morrison et al. [9] 3 7 7 3 3 3 3 3

Zhang et al. [16] 3 3 7 3 3 7 7 7

Ours 3 3 3 3 3 3 3 3
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Figure 2. Performance comparison of GR-ConvNet on Cornell Grasping Dataset with prior work.

2.1. Robotic Grasping

There has been extensive ongoing research in the field of robotics, especially robotic
grasping. Although the problem seems to just be able to find a suitable grasp for an
object, the actual task involves multifaceted elements such as the object to be grasped,
the shape of the object, physical properties of the object and the gripper with which it needs
to be grasped among others. Early research in this field involved hand-engineering the
features [17,18], which can be a tedious and time-consuming task but can be helpful for
learning to grasp objects with multiple fingers such as [19,20].

Initially for obtaining a stable grasp, the mechanics and contact kinematics of the
end effector in contact with the object were studied and the grasp analysis was performed
as seen from the survey by [21,22]. Prior work [23] in robotic grasping for novel objects
involved using supervised learning which was trained on synthetic data, but it was limited
to environments such as offices, kitchens, and dishwashers. Satish et al. [24] introduced a
Fully Convolutional Grasp Quality Convolutional Neural Network (FC-GQ-CNN) which
predicted a robust grasp quality by using a data collection policy and synthetic training
environment. This method enabled an increase in the number of grasps considered to
5000 times in 0.625 s. Bousmalis et al. [25] discussed domain adaptation and simulation in
order to bridge the gap between simulated and real-world data. In that pixel-level domain
adaptation model, GraspGAN was used to generate adapted images that are similar to real
ones and are differentiated by the discriminator network. Trembley et al. [26] worked on a
similar problem as Bousmalis et al., they used a deep network trained only on synthetic
images with 6 DoF pose of known objects. However, this has been shown to work with
household items only. James et al. [27] discuss a Randomized to Canonical Adaptation
Networks (RCANs) method that learns to translate images from randomized simulated
environments to their equivalent simulated canonical images using an image-conditioned
GAN. They then use this to train their RL algorithm for real-world images. Furthermore,
an actor–critic network that combines the results obtained by the actor network is presented
in [28] which samples grasp samples directly with the results obtained from a critic network
that re-scores the results obtained from the actor network to find stable and robust grasps.
However, the current research relies more on using the RGB-D data to predict grasp poses.
These approaches depend wholly on deep learning techniques.

2.2. Deep Learning for Grasping

Deep learning has been a hot topic of research since the advent of ImageNet success
and the use of GPUs and other fast computational techniques. Moreover, the availability
of affordable RGB-D sensors enabled the use of deep learning techniques to learn the
features of objects directly from image data. Recent experimentations using deep neural
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networks [2,29,30] have demonstrated that they can be used to efficiently compute stable
grasps. Pinto et al. [3] used an architecture similar to AlexNet which shows that by
increasing the size of the data, their CNN was able to generalize better to new data. Varley
et al. [31] propose an interesting approach to grasp planning through shape completion
where a 3D CNN was used to train the network on the 3D prototype of objects on their
own dataset captured from various viewpoints. Guo et al. [32] used tactile data along
with visual data to train a hybrid deep architecture. Mahler et al. [33] proposed a Grasp
Quality Convolutional Neural Network (GQ-CNN) that predicts grasps from synthetic
point cloud data trained with Dex-Net 2.0 grasp planner dataset. Levine et al. [34] discuss
the use of monocular images for hand-to-eye coordination for robotic grasping using a
deep learning framework. They use a CNN for grasp success prediction and further use
continuous servoing to continuously servo the manipulator to correct mistakes. Antanas
et al. [35] discuss an interesting approach known as a probabilistic logic framework that is
said to improve the grasping capability of a robot with the help of semantic object parts.
This framework combines high-level reasoning with low-level grasping. The high-level
reasoning comprises object affordances, its categories, and task-based information while
low-level reasoning uses visual shape features. This has been observed to work well in
kitchen-related scenarios.

2.3. Grasping Using Uni-Modal Data

Johns et al. [36] used a simulated depth image to predict a grasp outcome for every
grasp pose predicted and select the best grasp by smoothing the predicted pose using a
grasp uncertainty function. A generative approach to grasping is discussed by Morrison
et al. [9]. The Generative grasp CNN architecture generates grasp poses using a depth
image and the network computes grasp on a pixel-wise basis. Morrison et al. [9] suggests
that it reduces existing shortcomings of discrete sampling and computational complexity.
Another recent approach that merely relies on depth data as the sole input to the deep CNN
is as seen in [29].

2.4. Grasping Using Multi-Modal Data

There are different ways of handling objects in multi-modalities. Many have used
separate features to learn the modalities which can be computationally exhaustive. Wang
et al. [12] proposed methods that consider multi-modal information as the same. Jiang
et al. [5] used RGB-D images to infer grasps based on a two-step learning process. The first
step was used to narrow down the search space and the second step was used to compute
the optimal grasp rectangle from the top grasps obtained using the first method. Lenz
et al. [1] used a similar two-step approach but with a deep learning architecture, which,
however, could not work well on all types of objects and often predicted a grasp location
that was not the best grasp for that particular object such as in [5] the algorithm predicted
grasp for a shoe was from its laces which in practice failed when the robot tried to grasp
using the shoelaces while in [1] the algorithm sometimes could not predict grasps which are
more practical using just the local information as well as due to the RGB-D sensor used. Yan
et al. [37] used a point cloud prediction network to generate a grasp by first preprocessing
the data by obtaining the color, depth, and masked images and then obtaining a 3D point
cloud of the object to be fed into a critic network to predict a grasp. Chu et al. [13] propose
a novel architecture that can predict multiple grasps for multiple objects simultaneously
rather than for a single object. For this, they used a multi-object dataset of their own.
The model was also tested on the Cornell Grasp Dataset. A robotic grasping method that
consists of a ConvNet for object recognition and a grasping method for manipulating the
objects is discussed by Ogas et al. [38]. The grasping method assumes an industry assembly
line where the object parameters are assumed to be known in advance. Kumra et al. [4]
proposed a Deep CNN architecture that uses residual layers for predicting robust grasps.
The paper demonstrates that a deeper network along with residual layers learns better
features and performs faster. Asif et al. [39] introduced a consolidated framework known as
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EnsembleNet in which the grasp generation network generates four grasp representations
and EnsembleNet synthesizes these generated grasps to produce grasp scores from which
the grasp with the highest score gets selected.

2.5. 6-DoF Grasping

The 3-DOF grasp representation constrains the gripper pose to be parallel to the RGB
image plane, which can be a challenge when grasping objects from a dense clutter. To over-
come this, Liang et al. proposed PointNetGPD, which can directly process the 3D point
cloud that locates within the gripper for grasp evaluation [40]. Similarly, Mousavian et al.
introduced a 6-DOF GraspNet, which is a grasp evaluator network that maps a point cloud
of the observed object and the robot gripper to a quality assessment of the 6D gripper
pose. Moreover, they demonstrated that the gradient of GraspNet can be used to move
the gripper out of collision and ensure that the gripper is well aligned with the object [41].
Murali et al. proposed a method that plans 6-DOF grasps for objects in a cluttered scene
from partial point cloud observations. Their learned collision checking module was able
to provide effective grasp sequences to retrieve objects that were not immediately acces-
sible [42]. The two step deep geometry-aware grasping network (DGGN) proposed by
Yan et al. first learns to build the mental geometry-aware representation by reconstructing
the scene from RGB-D input, and then learns to predict grasp outcome with its internal
geometry-aware representation. The outcome of the model is used to sequentially propose
grasping solutions via analysis-by-synthesis optimization [43]. A large-scale benchmark
for object grasping called GraspNet-1Billion along with an end-to-end grasp pose predic-
tion network to learn the approaching direction and operation parameters in a decoupled
manner is introduced in [7].

3. Problem Formulation

In this work, we define the problem of robotic grasping as predicting antipodal grasps
for unknown objects from an n-channel image of the scene and executing it on a robot.

Instead of the five-dimensional grasp representation used in [1,2,4], we use an im-
proved version of the grasp representation similar to the one proposed by Morrison et al.
in [9]. We denote the grasp pose in the robot frame as:

Gr = (P, Θr, Wr, Q) (1)

where, P = (x, y, z) is tool tip’s center position, Θr is tools rotation around the z-axis, Wr is
the required width for the tool, and Q is the grasp quality score.

We detect a grasp from an n-channel image I ∈ Rn×h×w with height h and width w,
which can be defined as:

Gi = (u, v, d, Θi, Wi, Q) (2)

where (u, v) corresponds to the center of grasp in image coordinates, d is the depth value,
Θi is the rotation in the camera’s frame of reference, Wi is the required width in image
coordinates, and Q is the same scalar as in Equation (1).

The grasp quality score Q is the quality of the grasp at every point in the image and is
indicated as a score value between 0 and 1, where a value that is in proximity to 1 indicates
a greater chance of grasp success. Θi indicates the antipodal measurement of the amount
of angular rotation required at each point to grasp the object of interest and is represented
as a value in the range [−π

2 , π
2 ]. Wi is the required width which is represented as a measure

of uniform depth and indicated as a value in the range of [0, Wmax] pixels. Wmax is the
maximum width of the antipodal gripper.

To execute a grasp obtained in the image space on a robot, we can apply the following
transformations to convert the image coordinates to the robot’s frame of reference.

Gr = Trc(Tci(Gi)) (3)
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where, Tci is a transformation that converts image space into the camera’s 3D space using
the intrinsic parameters of the camera, and Trc converts camera space into the robot space
using the camera pose calibration value.

This notation can be scaled for multiple grasps in an image. The collective group of all
the grasps can be denoted as:

G = (Θ, W, Q) ∈ R3×h×w (4)

where Θ, W, and Q represents three images in the form of grasp angle, grasp width,
and grasp quality score, respectively, calculated at every pixel of an image using Equation (2).

4. Proposed Approach

In this section, we describe our proposed dual-module system to predict, plan and
perform antipodal grasps for novel objects in the scene. The overview of the proposed
system is shown in Figure 1. The inference module is used to predict grasp poses in the
image frame (Gi) for the objects in the camera’s field of view. The control module converts
these grasp poses into robot frames (Gr) and then plans and executes robot trajectories to
perform antipodal grasps.

4.1. Inference Module

Figure 3 shows the inference module, which consists of three parts: image pre-
processing, generation of pixel-wise grasp using GR-ConvNet v2, and computation of
grasp pose(s). The input data is first pre-processed where it is cropped, resized, and nor-
malized to suit the input requirements of GR-ConvNet. If the input has a depth image,
it is inpainted to obtain a depth representation [44]. The 224× 224 n-channel processed
input image is fed into the GR-ConvNet v2. It uses n-channel input that is not limited to
a particular type of input modality such as a depth-only or RGB-only image as our input
image. Thus, making it generalized for any kind of input modality. The GR-ConvNet
generates pixel-wise grasp in the form of grasp angle Θ, grasp width W, and grasp quality
score Q as the output using the features extracted from the pre-processed image.

Figure 3. Inference module predicts suitable grasp poses for the objects in the camera’s field of view.

The three output images are utilized to infer grasp poses in the image frame (Gi) using
Equation (2). In the case of a single grasp prediction, the pixel with maximum value in
Q is identified and the corresponding pixel location is used as (u, v) and pixel value is
used a Q. The same pixel locations in Θ, W and depth frame are used to determine Θi, Wi,
and d, respectively. For multi-grasp prediction, local peaks are determined in Q using [45]
to calculate all grasp poses.

4.2. Control Module

The control module mainly incorporates a task controller that performs tasks such as
pick-and-place and calibration. The architecture of the control module is shown in Figure 4.
The task controller requests a grasp pose from the inference module, which returns the
grasp pose with the highest quality score. The grasp pose is then converted from the
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camera frame into the robot frame using Equation (3) and the transform is calculated from
an automatic hand-eye calibration process described in Section 7.3. Further, the grasp pose
in the robot frame (Gr) is used to plan a collision-free trajectory to perform the pick and
place action using inverse kinematics through a ROS interface. The robot then executes
the planned trajectory. Due to our modular approach and automatic hand-eye calibration
process, this system can be adapted for any robotic manipulator and camera setup.

Figure 4. Control module uses the grasp poses generated by the inference module to plan and execute
robot trajectories to perform antipodal grasps.

5. Generative Residual Convolutional Neural Network

Deep learning has redefined how robotic grasping was approached in the past. Further,
CNNs have enhanced the way object detection and classification problems have been dealt
with in computer vision. Furthermore, state-of-the-art results have been obtained by using
residual networks for deeper architectures [4,14]. These two deep learning techniques
are the building blocks of our novel architecture. In this section, we present an improved
Generative Residual Convolutional Neural Network (GR-ConvNet v2) to approximate the

complex function I
fθ−→ Gi, where fθ denotes a neural network with θ being the weights.

5.1. Network Architecture

Figure 5 shows the proposed GR-ConvNet v2 model, which is a generative architecture
that takes in an n-channel input image of size 224× 224 and generates pixel-wise grasps in
the form of four images of the same size. These output images consist of grasp quality score
Q, required angle Θ in the form of cos 2Θ, and sin 2Θ, as well as the required width W of
the end effector. Since the antipodal grasp is uniform around ±π

2 , we extract the angle in
the form of two elements cos 2Θ and sin 2Θ that output distinct values that are combined
to form the required angle.

Figure 5. Network architecture of the Generative Residual Convolutional Neural Network v2, where
n is the number of input channels, k is the number of filters, and d is the dropout rate. The network
takes in an n-channel input image of size 224× 224 and generates pixel-wise grasps in the form of
grasp quality, grasp angle and grasp width.
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The network consists of three parts: encoder, residual layers, and decoder. The n-
channel image is passed through the encoder which consists of three convolutional layers,
followed by five residual layers, and the decoder which consists of three convolution
transpose layers to generate four images. The convolutional layers with a filter size of k
extract the features from the input image. The output of the convolutional layer is then fed
into five residual layers. As we know, accuracy increases with increasing the number of
layers. However, it is not true when you exceed a certain number of layers, which results
in the problem of vanishing gradients and dimensionality error, thereby causing saturation
and degradation in the accuracy. Thus, using residual layers enables us to better learn the
identity functions by using skip connections [46]. After passing the image through these
convolutional and residual layers, the size of the image is reduced to 56× 56, which can be
difficult to interpret. Therefore, to make it easier to interpret and retain spatial features of
the image after convolution operation, we up-sample the image by using a convolution
transpose operation. Thus, we obtain the same size of the image at the output as the size
of the input. In this improved version of the network, as compared to [11], we added a
dropout layer after each of the outputs for regularization that favors rare but useful features.
We also replaced the ReLU activation function with Mish throughout the network, which
delivered across-the-board improvements in training stability. We believe that the slight
allowance for negative values in the Mish activation function allows for better gradient
flow compared to the hard zero bound in ReLU.

Our network has only 1.9 million parameters with k = 32 and n = 4, which indicates
that our network is comparatively shorter as opposed to other networks [4,14,39]. Thereby
making it computationally less expensive and faster in contrast to other architectures
using similar grasp prediction techniques that contain millions of parameters and complex
architectures. The lightweight nature of our model makes it suitable for closed-loop control
at a rate of up to 50 Hz.

5.2. Training Methodology

For a dataset having objects D = {D1 . . . Dn}, input scene images I =
{

I1 . . . In}
and ground truth grasp labels in image frame Ĝi =

{
g1

1 . . . g1
m1

. . . g2
1 . . . gn

mn

}
, we train the

proposed GR-ConvNet model end-to-end to learn the mapping function f : (I, D)→ Gi,
where Gi is the grasp generated by the network in image frame.

We analyzed the performance of various loss functions for our network and after
running a few trials found that in order to handle exploding gradients, the smooth L1 loss
also known as Huber loss works best. We define our loss as:

L(yi, ŷi) =
1
n

N

∑
i

SmoothL1(yi − ŷi) (5)

where SmoothL1 is given by:

SmoothL1(x) =
{

0.5x2, i f |x| < 1
|x| − 0.5 otherwise

(6)

and yi ∈ (Q, ΘcosΘsin, W) is the image generated by the model and ŷi is the ground truth
image. The overall loss function denoted in Equation (7) is a combined loss of the four
output images generated by the model, which are in the form of quality, angle in cos and
sin, and required width.

L = Lquality + Lcos + Lsin + Lwidth (7)

We improved the training pipeline, as compared to [11], by training the models using
Ranger optimizer [47] instead of the Adam optimizer [48]. Ranger combines two latest
breakthroughs in deep learning optimizers that builds on top of Adam—Rectified Adam,
and LookAhead. Training with Rectified Adam gets off to a solid start intrinsically by
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adding in a rectifier that dynamically tamps down the adaptive learning rate until the
variance stabilizes [49]. LookAhead lessens the need for extensive hyperparameter tuning
while achieving faster convergence across different deep learning tasks with minimal
computational overhead [50].

Instead of keeping the learning rate fixed at 10−3 throughout the training process,
as in [11], we used the Flat + Cosine anneal as ramp-up and ramp-down curve for the
learning rates during training. The learning rate is kept constant at 10−4 for first few epochs
and then annealed to the target learning rate of 10−7 according to the law of cosine learning
rate [51]. The ramp up and ramp-down cycle is down twice during training as illustrated
in Figure 6.

Figure 6. Flat + Cosine anneal learning rate curve used for training.

5.3. Grasp Detection Metric

For a fair comparison of our results, we use the rectangle metric [5] proposed by Jiang
et al. to report the performance of our system. According to the proposed rectangle metric,
a grasp is considered valid when it satisfies the following two conditions:

• The Jaccard index or intersection over union (IoU) score between the ground truth
grasp rectangle and the predicted grasp rectangle is more than 25%.

• The offset between the grasp orientation of the predicted grasp rectangle and the
ground truth rectangle is less than 30◦.

This IoU-based metric requires a grasp rectangle representation, but our model predicts
image-based grasp representation Ĝi using Equation (2). Therefore, in order to convert
from the image-based grasp representation to the rectangle representation, the value
corresponding to each pixel in the output image is mapped to its equivalent rectangle
representation similar to [9].

6. Network Evaluation

We evaluate GR-ConvNet v2 on three publicly available datasets to examine the
outcome for each of the datasets based on factors, such as the size of the dataset, type of
training data, and demonstrate our model’s capacity to generalize to any kind of object. We
trained the model using three random seeds and reported the average of the three seeds.
The execution times for our proposed model are measured on a system running Ubuntu
18.04 with an Intel Core i7-7800X CPU clocked at 3.50 GHz and an NVIDIA GeForce GTX
1080 Ti graphics card with CUDA 11.

Figures 7–9 shows the qualitative results obtained on previously unseen objects in
Cornell, Jacquard, and Graspnet grasping datasets, respectively. The figure consists of
output in the image representation Gi in the form of grasp quality score Q, the required
angle for grasping Θi, and the required gripper width Wi. It also includes the output in
the form of a rectangle grasp representation projected on the RGB image and the ground
truth grasps.
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Figure 7. Qualitative results on Cornell Grasping Dataset. The top three rows (quality, angle and
width) are the output of GR-Convnet. The bottom two rows are the predicted and ground truth
grasps in rectangle grasp representation.

Figure 8. Qualitative results on Jacquard Grasping Dataset. The top three rows (quality, angle and
width) are the output of GR-Convnet. The bottom two rows are the predicted and ground truth
grasps in rectangle grasp representation.
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Figure 9. Qualitative results on Graspnet 1-billion Dataset. The top three rows (quality, angle and
width) are the output of GR-Convnet. The bottom two rows are the predicted and ground truth
grasps in rectangle grasp representation.

6.1. Datasets

There are a limited number of publicly available antipodal grasping datasets. Table 2
shows a summary of the publicly available antipodal grasping datasets. We used three
of these datasets for training and evaluating our model. The first one is the Cornell
grasp dataset [5], which is the most common grasping dataset used to benchmark results,
the second is a simulation Jacquard grasping dataset [6], which is more than 50 times bigger
than the Cornell grasp dataset, and the third one is the more recent Graspnet 1-billion
dataset [7].

Table 2. Summary of antipodal robotic grasping datasets.

Dataset Modality Type Objects Images Grasps

Cornell [5] RGB-D Real 240 1035 8k
Multi-Object [13] RGB-D Real - 96 2.9k

Jacquard [6] RGB-D Sim 11k 54k 1.1M
Dexnet [33] Depth Sim 1500 6.7M 6.7M

VR-Grasping [43] RGB-D Sim 101 10k 4.8M
VMRD [16] RGB Real 100 4.6k 100k
Graspnet [7] RGB-D Real 88 97k 1.2B

6.1.1. Cornell Grasp Dataset

The extended version of Cornell Grasp Dataset comprises 1035 RGB-D images with
a resolution of 640× 480 pixels of 240 different real objects with 5110 positive and 2909
negative grasps. The annotated ground truth consists of several grasp rectangles repre-
senting grasping possibilities per object. However, it is a small dataset for training our
GR-ConvNet model; therefore, we create an augmented dataset using random crops, zooms,
and rotations which effectively has 51k grasp examples. Only positively labeled grasps
from the dataset were considered during training.
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6.1.2. Jacquard Grasping Dataset

The Jacquard Grasping Dataset is built on a subset of ShapeNet which is a large CAD
model dataset. It consists of 54k RGB-D images with a resolution of 1024× 1024 pixels
and annotations of successful grasping positions based on grasp attempts performed in a
simulated environment. In total, it has 1,181,330 unique grasp annotations for 11,619 distinct
objects in simulation.

6.1.3. Graspnet 1-Billion Dataset

Graspnet is a large-scale benchmark dataset that contains 190 cluttered and com-
plex scenes captured by Kinect Azure and RealSense D435 cameras. In total, it contains
97,280 RGB-D images with over 1.1 billion grasp poses of 88 different objects. To use
the raw rectangular images with a resolution of 1280× 720 pixels, a square image of size
720× 720 pixels is cropped around the mean center of the ground truth bounding box.
Graspnet consists of 190 scenes, and each includes 256 images with annotations.

6.2. Evaluation on Cornell Dataset

We follow a cross-validation setup as in previous works [1,2,4,15,32], using image-
wise, and object-wise data splits. The image-wise data split means that the training and
validation sets are divided randomly, whereas the object-wise data split means that the
objects in the validation set do not appear in the training set. Table 3 shows the performance
of our method in comparison with other techniques used for grasp prediction. We obtained
state-of-the-art accuracy of 98.8% on image-wise split and 97.7% on object-wise split using
the improved GR-ConvNet model, outperforming all competitive methods as seen in
Table 3. The results obtained on the previously unseen objects in the dataset depict that
our network can predict robust grasps for different types of objects in the validation set.
The data augmentation performed on the Cornell grasp dataset improved the overall
performance of the network. Furthermore, the recorded prediction speed of 20 ms per
image suggests that GR-ConvNet is suitable for real-time closed-loop applications.

Table 3. Comparative results on Cornell grasping dataset.

Authors Algorithm Accuracy (%) with IoU > 25% Speed
IW OW (ms)

Jiang et al. [5] Fast Search 60.5 58.3 5000
Lenz et al. [1] SAE, struct. reg. 73.9 75.6 1350

Redmon et al. [2] AlexNet, MultiGrasp 88.0 87.1 76
Wang et al. [12] Two-stage closed-loop 85.3 - 140
Asif et al. [52] STEM-CaRFs 88.2 87.5 -

Kumra et al. [4] ResNet-50x2 89.2 88.9 103
Guo et al. [32] ZF-net 93.2 89.1 -
Zhou et al. [14] FCGN, ResNet-101 97.7 96.6 117
Asif et al. [15] GraspNet 90.2 90.6 24
Chu et al. [13] Multi-grasp Res-50 96.0 96.1 120

Morrison et al. [53] GG-CNN 73.0 69.0 19
Morrison et al. [9] GG-CNN2 84.0 82.0 20

Karaoguz et al. [54] GRPN 88.7 - 200
Zhang et al. [16] ROI-GD, ResNet-101 93.6 93.5 39
Wang et al. [55] DD-Net, Hourglass 97.2 96.1 -

Shi et al. [56] EDINet-RGBD 97.7 96.6 25
Yu et al. [57] SE-ResUNet 98.2 97.1 25

GR-ConvNet 97.7 96.6 20
Ours GR-ConvNet v2 98.8 97.7 20

We also evaluate the accuracy of our trained model at higher IoU thresholds. Table 4
contains the comparison of outcomes for the Cornell Dataset at different Jaccard thresholds.
In contrast to the prior work [13,32,58], our approach maintains a high prediction accuracy
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even if the grasp detection metric is stricter. Our model outperforms the network proposed
in [13] by 14% and in [58] by 11% at 40% IoU threshold.

Table 4. Grasp prediction accuracy (%) for Cornell dataset at different Jaccard thresholds.

Approach IoU > 25% IoU > 30% IoU > 35% IoU > 40%

Guo et al. [32] 93.2 91.0 85.3 -
Chu et al. [13] 96.0 92.7 87.6 82.6

Wang et al. [58] 94.4 92.8 90.2 85.7
Shi et al. [56] 97.7 97.6 97.1 96.5

Ours 98.8 98.8 98.8 96.6

6.3. Evaluation on Jacquard Dataset

For the Jacquard dataset, we trained our network on 90% of the dataset images and
validated it on 10% of the remaining dataset. As the Jacquard dataset is much larger than
the Cornell dataset, no data augmentation was required. Table 5 compares the results of
our network with other methods on the Jacquard dataset. We used the IoU metric for grasp
evaluation and observed an accuracy of 95.1% using GR-ConvNet v2 with RGB-D data as
the input and a batch size of 16.

Table 5. Comparative results on the Jacquard dataset.

Authors Algorithm Accuracy (%)
IoU SGT

Depierre et al. [6] AlexNet 74.2 72.4
Morrison et al. [9] GG-CNN2 84.0 85.0

Zhou et al. [14] FCGN, ResNet-101 92.8 81.9
Zhang et al. [16] ROI-GD, ResNet-101 93.6 -

Wang [55] DD-Net, Hourglass 97.0 89.4
Yu et al. [57] SE-ResUNet 95.7 -

GR-ConvNet (b = 8, d = 0.0) 94.6 89.5
Ours GR-ConvNet v2 (b = 16, d = 0.1) 95.1 91.4

Depierre et al. released a web-based Simulated Grasp Trails (SGT) system to upload
the scene index and corresponding grasp prediction [6]. The system rebuilds the scene in
simulation and the grasp is executed by the simulated robot. The results of the execution
are emailed to the user. We report these results in Table 5. Our results are the new state-of-
the-art with an accuracy of 91.4% using the SGT metric.

6.4. Evaluation on Graspnet Dataset

The Graspnet dataset is gigantic, and the load on the computer when loading the
immense amounts of grasps can cause problems. We reduced the load on computing re-
sources by reducing the number of ground truth labels loaded per scene and pre-processing
the dataset. Each grasp label in the Graspnet dataset has a quality measure associated with
it, which is measured based on the friction coefficient µ. We discarded the ground-truth
labels that are outside the cropped image and have poor grasp quality (µ < 0.4).

In addition to the 5-fold cross-validation split (similar to the one used for the Cornell
dataset), we use the predesignated data provided with the Graspnet dataset for training
and testing. There are a total of 190 scenes. The first 100 scenes are used for training, and the
testing data has been split into three categories: (i) objects already seen (scenes 101–130),
(ii) objects similar to training (scenes 131–160), and (iii) objects not seen before (scenes
161–190). The validation results compared to prior work are summarized in Table 6 for the
three testing splits provided with the dataset and the 5-fold cross-validation method. It can
be seen that the proposed GR-ConvNet outperforms the state-of-the-art counterparts [9,13]
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by a large margin, with an improvement of 14.2% for the novel test set, which demonstrates
its effectiveness in handling unseen scenarios.

Table 6. Comparative results for grasp prediction accuracy (%) on Graspnet 1-billion dataset for
different validation splits.

Approach 5-Fold Seen Similar Novel

GGCNN [9] 82.3 83.0 79.4 76.3
Multi-grasp [13] 86.0 82.7 77.8 72.7

GR-ConvNet (k = 32, d = 0.0) 96.1 96.2 94.8 87.9
GR-ConvNet v2 (k = 32, d = 0.1) 98.7 97.9 96.0 90.5

6.5. Ablation Study

To better understand the performance of our model, a series of experiments were
performed by tweaking a number of parameters including filter size, batch size, learning
rate, and varying the number of layers. After evaluating the performance of multiple
parameters, we determined the architecture that gave us the highest grasp prediction
accuracy along with the lowest recorded inference time. This section discusses these
experiments and elaborates on the contributions of each of the individual components and
parameters that were chosen during our network design by evaluating the model on the
Cornell dataset.

Firstly, we evaluated our network by varying the number of filters (k) at each layer as
shown in Figure 10a–c. It can be seen from the figure that varying the number of filters plays
a significant role in determining the accuracy of the network. We found that by increasing
the number of filters (k), the accuracy increased proportionately until it reached a certain
value and then started decreasing substantially. At this point, we also observed that the
number of parameters and execution time increased drastically. In comparison, increasing
the number of filters had little impact on the execution time as opposed to providing higher
accuracy. However, the accuracy dropped when the number of filters (k) was increased
beyond k = 32 while also increasing the number of parameters and execution time. Thus,
we chose the set of parameters indicated in green, that yielded the maximum accuracy in
comparison to an increased number of parameters and execution time.

Furthermore, we evaluated the performance of our network on different input modal-
ities. The modalities that the model was tested on included uni-modal input such as
depth only and RGB only input images; and multi-modal input such as RGB-D images.
Figure 10e–f shows the performance of the network on different modalities. While RGB-
only input data had lower execution times than the RGB-D input data, it had lower accuracy
than the RGB-D input. The depth-only input data had the lowest execution times and the
lowest accuracy compared to the RGB and the RGB-D input data. Thus, we observed that
our network performed better on multi-modal data in comparison to uni-modal data since
multiple input modalities enabled better learning of the input features.

Additionally, to study the effect of regularization on our network, we added dropout
layers after the deconvolution layers. We tested the model with a dropout of 10%, 20%,
and 30% feature drop against no dropout. From Figure 10g we can see that a dropout of
10% bumped the accuracy from 97.7% to 98.8% and a dropout of 20% and 30% reduced the
accuracy below 97.7%. From the results, we can see that the model was slightly overfitting,
and by dropping 10% of the features during training, we achieved an increase in the success
rate by 1% on the validation set.

Finally, we studied the impact of different optimizers and learning rates discussed in
Section 5.2 on the grasp prediction accuracy. Figure 10d shows that the Ranger optimizer
improved the accuracy by 3.3% compared to the standard SGD optimizer. We also observed
an improvement of 1.1% accuracy (shown in Figure 10h) when the model is trained using
Flat + Cosine anneal as a ramp-up and ramp-down curve for the learning rates instead of a
fixed learning rate as in [9,11].
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Figure 10. Ablation study results for GR-Convnet by training on different filter sizes (k), input
channels (n), dropout (d), optimizers and learning rates. The model is evaluated using the 25%
IoU metric against the Cornell dataset. Green indicates the selected parameter. (a–c) Number of
parameters, execution time and accuracy for different number of filters. (d) Grasp prediction accuracy
for different optimizers. (e–f) Execution time and prediction accuracy of the network for different
modalities. (g) Grasp prediction accuracy for different dropout percentage. (h) Grasp prediction
accuracy for different learning rates.

7. Antipodal Grasping Using GR-ConvNet

In this section, we discuss our antipodal robotic grasping experiments and the results.
Along with the state-of-the-art results on two standard datasets, we also demonstrate
that our system equally outperforms in robotic grasping experiments for novel real-world
objects. Furthermore, we show that our model can not only generate a single grasp for
isolated objects but also multiple grasps for multiple objects in clutter. For a fair comparison,
we implement an open-loop grasping method similar to previous work ([1,3,33]) and
evaluate our approach on: (i) household objects, (ii) adversarial objects and (iii) objects
in clutter.

7.1. Simulation Setup

To evaluate antipodal robotic grasping in simulation, we developed a simulation
environment (show in Figure 11) in PyBullet [59], where a UR5e with a Robotiq 2F-140
antipodal gripper perceived the environment using an RGB-D camera looking over the
robot’s workspace. Simulated objects from the Yale-CMU-Berkeley (YCB) object set [8],
a benchmarking object set for robotic grasping, are used for the simulation experiments.
At the beginning of each experiment, the robot is set to a predefined pose, and randomly
selected object(s) are placed in an arbitrary pose(s) inside the robot’s workspace. In all
experiments, the robot knows in advance about the placement pose in a basket, while the
GR-ConvNet model needs to predict the best graspable pose for the given scene and send it
to the robot to grasp the object, pick it up, and put it in the placement basket. A particular
grasp is recorded as a success if the object is inside the basket at the end of the pick and
place mission.
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Figure 11. Examples of antipodal grasping in simulation. (Left) Grasping YCB objects in isolation.
(Right) Grasping YCB objects in clutter.

7.2. Simulation Experiments

We evaluated the performance of GR-ConvNet trained on Cornell and Jacquard in
two different scenarios: isolated and cluttered. For the isolated object scenario, a randomly
selected object is placed in an arbitrary pose inside the robot’s workspace and the robot
executed the pick and place mission. In the case of the cluttered scenario, to generate a
simulated scene containing a cluttered pile of objects, 10 objects are randomly spawned
into a box placed on top of the table. The box is removed once all objects become stable,
and then the robot repeatedly executes pick and place missions until there are no objects
left in the robot’s workspace.

To report the performance of the model, we measure the pick success rate, which is the
ratio of the number of successful grasps and the number of attempts. For each experiment,
we ran a total of 200 grasp attempts and reported the pick success rate. Table 7 summarizes
the results for different models tested with objects in isolation and clutter. It can be seen
that the proposed GR-ConvNet performs significantly better than the GGCNN models in
both isolated and cluttered scenarios, with improvements of 12.5% and 14.5%, respectively.

Table 7. Pick success rate (%) on YCB objects in simulation.

Approach Training Dataset Isolated Cluttered

GGCNN Cornell 79.0 * 74.5 *
GGCNN Jacquard 85.5 * 82.0 *

GR-ConvNet v2 Cornell 98.0 92.0
GR-ConvNet v2 Jacquard 97.5 96.5

* The accuracy is calculated using the open source code and model.

7.3. Real-World Setup

The real-world experiments were conducted on the 7-DoF Baxter Robot by Rethink
Robotics. A two-fingered parallel gripper was used for grasping the test objects. The Intel
RealSense Depth Camera D435, which uses stereo vision to calculate depth, was used to
obtain the scene image. The image bundle consists of a pair of RGB sensors, depth sensors,
and an infrared projector. The camera was statically mounted behind the robot arm looking
over the shoulder from where it captured 640 × 480 RGB-D images for each inference.

The statically mounted overlooking camera is localized with respect to the robot frame
using an automatic calibration task developed in the control module. Figure 12 shows the
setup used to perform the calibration procedure. The camera detects the location of the
checkerboard pattern marker mounted on the robot TCP and optimizes the extrinsics as
the robot’s arm moves over a predefined grid of 3D locations in the camera’s field of view.
The procedure generates transformations Trc and Tci, which are used to convert the grasp
poses in image frame (Gi) to robot’s frame of reference (Gr).
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Figure 12. Setup for hand-eye calibration procedure.

A total of 35 household objects were chosen for testing the performance of our system.
Each object was tested individually for 10 different positions and orientations which
resulted in 350 grasp attempts. The objects were chosen such that each object represented
a different shape, size, and geometry; and had minimum or no resemblance with each
other. We created a mix of deformable, difficult to grasp, reflective, and small objects that
need high precision. Figure 13a shows the set of household objects that were used for
the experiments.

Figure 13. Objects used for robotic grasping experiments. (a) Household test objects. (b) Adversarial
test objects.

Another set consisting of 10 adversarial objects with complex geometry was used to
evaluate the accuracy of our proposed system. These 3D printed objects have abstract
geometry with indefinite surfaces and edges that are hard to perceive and grasp. Each of
these objects was tested in isolation for 10 different orientations and positions and made
up of a total of 100 grasp attempts. Figure 13b shows the adversarial objects used during
the experiments.

Grasp poses predicted by the inference module are used to execute the grasps in an
open-loop using a pick and place task. This task plans and executes open-loop collision-
free trajectories considering the robot’s arm motion for planning the trajectory towards a
perch position with the gripper tip aligned with and approximately 15 cm above the grasp
pose Gr. The arm then moves vertically down until it reaches the required grasp pose,
or a collision is detected by the robot using the force feedback. The robot then closes the
antipodal gripper and moves back to the perch position. A grasp is successful if the robot
lifts the object in the air at the perch position 15 cm above the grasp pose.
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7.4. Real-World Experiments

Industrial applications such as warehouses require objects to be picked in isolation
as well as from clutter. To understand how well our model trained on the Cornell dataset
generalizes to novel objects, we performed grasping experiments with household and
adversarial objects in isolation and clutter. For the experiment with objects in isolation,
each object was tested for 10 different positions and orientations. The robot performed
334 successful grasps of the total 350 grasp attempts on household objects resulting in
a grasp success rate of 95.4%, and 93 successful grasps out of 100 grasp attempts on
adversarial objects giving a grasp success rate of 93%.

To evaluate the performance of our system for cluttered objects, we carried out multiple
trials with a set of 10 to 15 distinct objects for each run. The objects were shaken in a box and
emptied into a pile in front of the robot to create a cluttered scene. The robot continuously
attempted to grasp and remove the object from the scene after a successful grasp. Each run
was terminated when there were no objects in the camera’s field of view. An example of this
is shown in Figure 14 for household objects and in Figure 15 for adversarial objects. Each
run was performed without object replacement, and we recorded a mean grasp success rate
of 93.5% on household object clutter and 91.0% on adversarial object clutter. This shows
our method’s ability to maintain a high level of accuracy when grasping from a clutter of
multiple objects. We believe that accurate grasping width prediction by GR-ConvNet for
the antipodal gripper was the key reason behind the high success rate in cluttered scenes.

Figure 14. Visualization of the household objects clutter scene removal task in the real world using
our GR-Convnet model trained on Cornell dataset. See attached video for a complete run. (a–l) show
the grasp pose generated by inference module (top), robot grasping the object (bottom left), and robot
retracting after successful grasp (bottom right) for each object.
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Figure 15. Visualization of the adversarial objects clutter scene removal task in the real world using
our GR-Convnet model trained on Cornell dataset. See attached video for a complete run. (a–f) show
the grasp pose generated by inference module (top), robot grasping the object (bottom left), and robot
retracting after successful grasp (bottom right) for each object.

Despite the model being trained only on isolated objects in the Cornell dataset, we
observed that it was able to efficiently predict grasps for objects in clutter. A comparison
of the results for our approach compared with other deep learning-based approaches in
robotic grasping is shown in Table 8. These results indicate that GR-ConvNet can effectively
generalize to new objects that it has never seen before. Moreover, we can see the robustness
of GR-ConvNet as it is able to predict antipodal grasps for multiple objects in a cluttered
scene with high accuracy of 93.5%. The performance of GR-ConvNet in isolated scenarios
is comparable to CTR [60] and DexNet 2.0 [33] for household and adversarial objects,
respectively. The performance reported for our work is statically more meaningful as
our sample size is 8 times more as compared to [60]. Meanwhile, we can also notice that
GR-ConvNet reaches the best grasp success rate in cluttered scenarios.

Table 8. Comparative results for grasp success rate (%) in real-world for different scenarios.

Approach Training Dataset Household
Isolated

Adversarial
Isolated

Household
Cluttered

Adversarial
Cluttered

SAE, struct. reg. [1] Cornell 89.0 (89/100) - - -
Alexnet based CNN [3] Custom 66.0 (99/150) - 38.4 (50/130) -
Robust Best Grasp [36] ModelNet in Sim 80.0 (80/100) - - -
Multi-grasp Res-50 [13] Cornell 89.0 (89/100) - - -

DexNet 2.0 [33] DexNet in Sim 80.0 (40/50) 92.5 (74/80) - -
GPD [61] CAD models - - 77.3 (116/138) -
CTR [60] Custom in OpenRAVE 97.5 (39/40) - 88.8 (66/74) -

GGCNN [9] Cornell 91.6 (110/120) 83.7 (67/80) 86.4 (83/96) -

GR-ConvNet Cornell 95.4 (334/350) 93.0 (93/100) 93.5 (187/200) 91.0 (91/100)

7.5. Failure Case Analysis

In our experimental results, there are only a few cases that can be accounted for as
failures. Of them, the objects that had extremely low grasp scores and those that slipped
from the gripper in spite of the gripper being closed were the most common ones. This
could be attributed to the inaccurate depth information coming from the camera and the
gripper misalignment due to collision between the gripper and nearby objects.

Another case where the model was unable to produce a good grasp was for a trans-
parent bottle. This could be due to inaccurate depth data captured by the camera because
of possible object reflections. However, by combining depth data along with RGB data,
the model was still able to generate a fairly good grasp for the transparent objects.
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8. Multi-Step Tasks Using GR-ConvNet

To demonstrate the generalizability of the proposed GR-ConvNet to various manip-
ulation tasks, we evaluate it on the Ravens-10 benchmark tasks presented by Zeng et al.
in [10]. The Ravens-10 benchmark consists of a wide variety of vision-based multi-step
manipulation tasks such as stacking a pyramid of blocks, manipulating deformable ropes,
assembling kits with unseen objects, and pushing piles of small objects with closed-loop
feedback. We replace the 43-layer feed-forward residual networks for picking and plac-
ing by the proposed GR-ConvNet in the Transporter-based framework [10] and train the
models using behavior cloning.

8.1. Experimental Setup

An open-source simulation environment by Zeng et al. in [10] is used for a fair
comparison with baselines. The simulated environment is built with PyBullet [59], which
consists of a UR5e robot with a suction gripper overlooking the robot workspace with three
RGB-D cameras pointing towards the workspace for improved visual coverage. Examples
of four of the Ravens-10 benchmark tasks are shown in Figure 16. For each task, objects are
randomly spawned in the robot’s workspace and the agent acts with motion primitives
(pick, push or place) parameterized by a sequence of two end effector poses. The task is
completed when the agent receives a reward of 1 from the reward function that comes with
each task. A partial reward is given during tasks for tasks that require multiple actions to
be completed.

Figure 16. Examples of Ravens-10 benchmark tasks. Left to right: block insertion, palletizing boxes,
place red in green, assembling kits.

Examples of the Ravens-10 benchmark tasks are shown in Figure 16. The goal of each
task is described as follows:

(a) block-insertion: pick up the L-shaped red block and place it into the L-shaped fixture.
(b) place-red-in-green: pick up the red blocks and place them into the green bowls amidst

other objects.
(c) towers-of-hanoi: sequentially move disks from one tower to another—only smaller

disks can be on top of larger ones.
(d) align-box-corner: pick up the randomly sized box and align one of its corners to the

L-shaped marker on the tabletop.
(e) stack-block-pyramid: sequentially stack 6 blocks into a pyramid of 3-2-1 with rainbow-

colored ordering.
(f) palletizing-boxes: pick up homogeneous fixed-sized boxes and stack them in trans-

posed layers on the pallet.
(g) assembling-kits: pick up different objects and arrange them on a board marked with

corresponding silhouettes.
(h) packing-boxes: pick up randomly sized boxes and place them tightly into a container.
(i) manipulating-rope: rearrange a deformable rope such that it connects the two end-

points of a 3-sided square.
(j) sweeping-piles: push piles of small objects into a target goal zone marked on

the tabletop.
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8.2. Results

The Ravens-10 benchmark tasks are difficult as most methods tend to over-fit to the
training demonstration and generalize poorly with less than 100 demonstrations. The per-
formance is evaluated using the same metric from 0 (failure) to 100 (success) as in [10].
For each task, we report the result averaged over 100 unseen test runs trained with 1, 10, 100
and 1000 demonstrations. The performance results in Table 9 show that the GR-ConvNet-
based Transporter framework can achieve state-of-the-art performance in terms of success
rate on Ravens-10 benchmark tasks. While other methods require a hundred or thousand
demonstrations to achieve a task success rate of over 90% for tasks such as packing-boxes
and sweeping-piles, GR-ConvNet requires less than 1/10th of the number of demonstrations.
This validates that the sampling efficiency of GR-ConvNet is extremely impressive when
evaluated on unseen test settings. These results are consistent with our antipodal grasping
experiments and demonstrate how GR-ConvNet generalizes across completely different
manipulation tasks.

Table 9. GR-ConvNet performance on Ravens-10 benchmark tasks. Task success rate (mean %) vs.
demonstration used in training.

align-box-corner assembling-kits block-insertion manipulating-rope packing-boxes
Approach 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000

GR-ConvNet 62.0 91.0 100 100 56.8 83.2 99.4 99.6 100 100 100 100 25.7 87.0 99.9 100 96.1 99.9 99.9 100
Transporter [10] 35.0 85.0 97.0 98.3 28.4 78.6 90.4 94.6 100 100 100 100 21.9 73.2 85.4 92.1 56.8 58.3 72.1 81.3

Form2Fit [62] 7.0 2.0 5.0 16.0 3.4 7.6 24.2 37.6 17.0 19.0 23.0 29.0 11.9 38.8 36.7 47.7 29.9 52.5 62.3 66.8

palletizing-boxes place-red-in-green stack-block-pyramid sweeping-piles towers-of-hanoi
1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000

GR-ConvNet 84.2 98.2 100 100 92.3 100 100 100 23.5 79.3 94.6 97.1 98.2 99.1 99.2 98.9 98.2 99.9 99.9 99.9
Transporter [10] 63.2 77.4 91.7 97.9 84.5 100 100 100 13.3 42.6 56.2 78.2 52.4 74.4 71.5 96.1 73.1 83.9 97.3 98.1

Form2Fit [62] 21.6 42.0 52.1 65.3 83.4 100 100 100 19.7 17.5 18.5 32.5 13.2 15.6 26.7 38.4 3.6 4.4 3.7 7.0

9. Discussion and Conclusions

We presented a modular solution for grasping novel objects using our improved
GR-ConvNet that uses n-channel input data to generate images that can be used to infer
grasp rectangles for each pixel in an image. The lightweight nature of our model makes
it computationally less expensive and much faster compared to similar grasp prediction
techniques. We evaluated the GR-ConvNet on two standard datasets, the Cornell grasp
dataset and the Jacquard dataset, and obtained state-of-the-art results on both datasets.
Additionally, to test the robustness of our network, we used stricter IoU thresholds and
obtained consistently outstanding results on all Jaccard thresholds for the Cornell Dataset.
Furthermore, we performed ablation studies to evaluate the effect of all individual parame-
ters and components in our model. With the help of these experiments, we were able to
identify the effect of adding dropout layers which further improved the performance of
our network along with choosing the correct filter size (k) and examining the performance
of our network on multiple input modalities.

We also validated the proposed system on novel real objects including household
objects and adversarial objects in clutter by performing experiments using a robotic arm.
The results demonstrate that our system can predict and perform accurate grasps for
previously unseen objects. Moreover, the low inference time of our model makes the
system suitable for closed-loop robotic grasping. Furthermore, we performed several
experiments on cluttered scene removal to show that our system is capable to transfer
in any industrial scenario and achieved exceptional results even though the model was
trained only on singular objects.

In addition to the inference speed, using RGB-D images also simplifies the data, as it
is in fewer dimensions and is easier to handle and modify. However, this increased speed
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also comes at a cost. The 2D representation of an object is flat compared to a point cloud.
Therefore, the objects are only seen from one viewpoint, making it hard to determine the
rotation of the gripper in space. Although GR-ConvNet was used to predict 4D grasps
using RGB-D images in this work, it can potentially be extended to 6 DoF grasping in
future work. The proposed GR-ConvNet model can also be used to explore manipulation
tasks that require high precision. Another idea is to apply depth prediction techniques [63]
to accurately predict depth for reflective objects, which can aid in improving the grasp
prediction accuracy for reflective objects such as the bottle as discussed in Section 7.5.
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