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Abstract: CNNs and other deep learners are now state-of-the-art in medical imaging research.
However, the small sample size of many medical data sets dampens performance and results in
overfitting. In some medical areas, it is simply too labor-intensive and expensive to amass images
numbering in the hundreds of thousands. Building Deep CNN ensembles of pre-trained CNNs is
one powerful method for overcoming this problem. Ensembles combine the outputs of multiple
classifiers to improve performance. This method relies on the introduction of diversity, which can
be introduced on many levels in the classification workflow. A recent ensembling method that has
shown promise is to vary the activation functions in a set of CNNs or within different layers of a
single CNN. This study aims to examine the performance of both methods using a large set of twenty
activations functions, six of which are presented here for the first time: 2D Mexican ReLU, TanELU,
MeLU + GaLU, Symmetric MeLU, Symmetric GaLU, and Flexible MeLU. The proposed method was
tested on fifteen medical data sets representing various classification tasks. The best performing
ensemble combined two well-known CNNs (VGG16 and ResNet50) whose standard ReLU activation
layers were randomly replaced with another. Results demonstrate the superiority in performance of
this approach.

Keywords: convolutional neural networks; activation functions; biomedical classification; ensembles;
MeLU variants

1. Introduction

First developed in the 1940s, artificial neural networks have had a checkered history, some-
times lauded by researchers for their unique computational powers and other times discounted
for being no better than statistical methods. About a decade ago, the power of deep artificial
neural networks radically changed the direction of machine learning and rapidly made sig-
nificant inroads into many scientific, medical, and engineering areas [1–8]. The strength of
deep learners is demonstrated by the many successes achieved by one of the most famous and
robust deep learning architectures, Convolutional Neural Networks (CNNs). CNNs frequently
win image recognition competitions and have consistently outperformed other classifiers on
a variety of applications, including image classification [9,10], object detection [11,12], face
recognition [13,14], and machine translation [15], to name a few. Not only do CNNs con-
tinue to perform better than traditional classifiers, but they also outperform human beings,
including experts, in many image recognition tasks. In the medical domain, for example,
CNNs have been shown to outperform human experts in recognizing skin cancer [16], skin
lesions on the face and scalp [17], and the detection of esophageal cancer [18].

It is no wonder, then, that CNNs and other deep learners have exploded exponentially
in medical imaging research [19]. CNNs have been successfully applied to a wide range
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of applications (as evidenced by these very recent reviews and studies): the identification
and recognition of facial phenotypes of genetic disorders [20], diabetic retinopathy [21–23],
glaucoma [24], lung cancer [25], breast cancer [26], colon cancer [27], gastric cancer [28,29],
ovarian cancer [30–32], Alzheimer’s disease [33,34], skin cancer [16], skin lesions [17], oral
cancer [35,36], esophageal cancer [18], and GI ulcers [37].

Despite these successes, the unique characteristics of medical images pose challenges
for CNN classification. The first challenge concerns the image size of medical data. Typical
CNN image inputs are around 200 × 200 pixels. Many medical images are gigantic. For
instance, histopathology slides, once digitized, often result in gigapixel images, around
100,000 × 100,000 pixels [38]. Another problem for CNNs is the small sample size of many
medical data sets. As is well known, CNNs require massive numbers of samples to prevent
overfitting. It is too cumbersome, labor-intensive, and expensive to acquire collections
of images numbering in the hundreds of thousands in some medical areas. There are
well-known techniques for tackling the problem of overfitting when data are low, the two
most common being transfer learning with pre-trained CNNs and data argumentation. The
medical literature is replete with studies using both methods (for some literature reviews on
these two methods in medical imaging, see [39–41]). As observed in [40], transfer learning
works well combined with data augmentation. Transfer learning is typically applied in two
ways: for fine-tuning with pre-trained CNNs and as feature extractors, with the features
then fed into more traditional classifiers.

Building Deep CNN ensembles of pre-trained CNNs is yet another powerful tech-
nique for enhancing CNN performance on small sample sizes. Some examples of robust
CNN ensembles reported in the last couple of years include [42], for classifying ER sta-
tus from DCE-MRI breast volumes; [43], where a hierarchical ensemble was trained for
diabetic macular edema diagnosis; [44] for whole-brain segmentation; and [45] for small
lesion detection.

Ensemble learning combines outputs from multiple classifiers to improve performance.
This method relies on the introduction of diversity, whether in the data each CNN is trained
on, the type of CNNs used to build the ensemble, or some other changes in the architecture
of the CNNs. For example, in [43], mentioned above, ensembles were built on the classifier
level by combining the results of two sets of CNNs within a hierarchical schema. In [44], a
novel ensemble was developed on the data level by looking at different brain areas, and
in [45], multiple-depth CNNs were trained on image patches. In [46], CNNs with different
activation functions were shown to be highly effective, and in [47], different activation
functions were inserted into different layers within a single CNN network.

In this paper, we extend [46] by testing several activation functions with two CNNs,
VGG16 [48] and ResNet50 [49], and their fusions across fifteen biomedical data sets repre-
senting different biomedical classification tasks. The set of activation functions includes
the best-performing ones used with these networks and six new ones: 2D Mexican ReLU,
TanELU, MeLU + GaLU, Symmetric MeLU, Symmetric GaLU, and Flexible MeLU. The best
performance was obtained by randomly replacing every ReLU layer of each CNN with a
different activation function.

The contributions of this study are the following:

(1) The performance of twenty individual activation functions is assessed using two
CNNs (VGG16 and ResNet50) across fifteen different medical data sets.

(2) The performance of ensembles composed of the CNNs examined in #1 and four other
topologies is evaluated.

(3) Six new activation functions are proposed.

The remainder of this paper is organized as follows. In Section 2, we review the litera-
ture on activation functions used with CNNs. In Section 3, we describe all the activation
functions tested in this work. In Section 4, the stochastic approach for constructing CNN
ensembles is detailed (some other methods are described in the experimental section). In
Section 5, we present a detailed evaluation of each of the activation functions using both
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CNNs on the fifteen data sets, along with the results of their fusions. Finally, in Section 6,
we suggest new ideas for future investigation together with some concluding remarks.

The MATLAB source code for this study will be available at https://github.com/LorisNanni.

2. Related Work with Activation Functions

Evolutions in CNN design initially focused on building better network topologies. As
activation functions impact training dynamics and performance, many researchers have
also focused on developing better activation functions. For many years, the sigmoid and
the hyperbolic tangent were the most popular neural network activation functions. The
hyperbolic tangent’s main advantage over the sigmoid is that the hyperbolic has a steeper
derivative than the sigmoid function. Neither function, however, works that well with
deep learners since both are subject to the vanishing gradient problem. It was soon realized
that nonlinearities work better with deep learners.

One of the first nonlinearities to demonstrate improved performance with CNNs
was the Rectified Linear Unit (ReLU) activation function [50], which is equal to the iden-
tity function with positive input and zero with negative input [51]. Although ReLU is
nondifferentiable, it gave AlexNet the edge to win the 2012 ImageNet competition [52].

The success of ReLU in AlexNet motivated researchers to investigate other nonlineari-
ties and the desirable properties they possess. As a consequence, variations of ReLU have
proliferated. For example, Leaky ReLU [53], like ReLU, is also equivalent to the identity
function for positive values but has a hyperparameter α > 0 applied to the negative inputs
to ensure the gradient is never zero. As a result, Leaky ReLU is not as prone to getting
caught in local minima and solves the ReLU problem with hard zeros that makes it more
likely to fail to activate. The Exponential Linear Unit (ELU) [54] is an activation function
similar to Leaky ReLU. The advantage offered by ELU is that it always produces a positive
gradient since it exponentially decreases to the limit point α as the input goes to minus
infinity. The main disadvantage of ELU is that it saturates on the left side. Another activa-
tion function designed to handle the vanishing gradient problem is the Scaled Exponential
Linear Unit (SELU) [55]. SELU is identical to ELU except that it is multiplied by the constant
λ > 1 to maintain the mean and the variance of the input features.

Until 2015, activation functions were engineered to modify the weights and biases of a
neural network. Parametric ReLU (PReLU) [56] gave Leaky ReLU a learnable parameter
applied to the negative slope. The success of PReLU attracted more research on the
learnable activation functions topic [57,58]. A new generation of activation functions was
then developed, one notable example being the Adaptive Piecewise Linear Unit (APLU) [57].
APLU independently learns during the training phase the piecewise slopes and points of
nondifferentiability for each neuron using gradient descent; therefore, it can imitate any
piecewise linear function.

Instead of employing a learnable parameter in the definition of an activation function,
as with PReLu and APLU, the construction of an activation function from a given set of
functions can be learned. In [59], for instance, it was proposed to create an activation
function that automatically learned the best combinations of tanh, ReLU, and the identity
function. Another activation function of this type is the S-shaped Rectified Linear Activation
Unit (SReLU) [60]. Using reinforcement learning, SReLU was designed to learn convex and
nonconvex functions to imitate both the Webner–Fechner and the Stevens law. This process
produced an activation called Swish, which the authors view as a smooth function that
nonlinearly interpolates between the linear function and ReLU.

Similar to APLU is the Mexican ReLU (MeLU [61]), whose shape resembles the Mexi-
can hat wavelet. MeLU is a piecewise linear activation function that combines PReLU with
many Mexican hat functions. Like APLU, MeLU has learnable parameters that approxi-
mate the same piecewise linear functions equivalent to identity when x is sufficiently large.
MeLU has some main differences with respect to APLU: first, it has a much larger number
of parameters; and second, the method in which the approximations are calculated for each
function is different.

https://github.com/LorisNanni
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3. Activation Functions

As described in the Introduction, this paper explores classifying medical imagery
using combinations of some of the best performing activation functions on two widely used
high-performance CNN architectures: VGG16 [48] and ResNet50 [49], each pre-trained
on ImageNet. VGG16 [48], also known as the OxfordNet, is the second-place winner in
the ILSVRC 2014 competition and was one of the deepest neural networks produced at
that time. The input into VGG16 passes through stacks of convolutional layers, with filters
having small receptive fields. Stacking these layers is similar in effect to CNNs having
larger convolutional filters, but the stacks involve fewer parameters and are thus more
efficient. ResNet50 [49], winner of the ILSVRC 2015 contest and now a popular network, is
a CNN with fifty layers known for its skip connections that sum the input of a block to its
output, a technique that promotes gradient propagation and that propagates lower-level
information to higher level layers.

The remainder of this section mathematically describes and discusses the twenty activa-
tion functions investigated in this study: ReLU [50], Leaky ReLU [62], ELU [54], SELU [55],
PReLU [56], APLU [57], SReLU [63], MeLU [61], Splash [64], Mish [65], PDELU [66],
Swish [60], Soft Learnable [67], SRS [67], and GaLU ([68]), as well as the novel activation
functions proposed here: 2D Mexican ReLU; TanELU; MeLU + GaLU; Symmetric MeLU;
Symmetric GaLU; Flexible MeLU.

The main advantage of these more complex activation functions with learnable param-
eters is that they can better learn the abstract features through nonlinear transformations.
This is a generic characteristic of learnable activation functions, well known in shallow
networks [69]. The main disadvantage is that activation functions with several learnable
parameters need large data sets for training.

A further rationale for our proposed activation functions is to create activation func-
tions that are quite different from each other to improve performance in ensembles; for this
reason, we have developed the 2D MeLU, which is quite different from standard activation
functions.

3.1. Rectified Activation Functions
3.1.1. ReLU

ReLU [50], illustrated in Figure 1, is defined as:

yi = f (xi) =

{
0, | xi < 0

xi, | xi ≥ 0.
(1)

The gradient of ReLU is

dyi
dxi

= f ′(xi) =

{
0, | xi < 0
1, | xi ≥ 0.

(2)
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3.1.2. Leaky ReLU

In contrast to ReLU, Leaky ReLU [53] has no point with a null gradient. Leaky ReLU,
illustrated in Figure 2, is defined as:

yi = f (xi) =

{
axi, | xi < 0
xi, | xi ≥ 0,

(3)

where a (set to 0.01 here) is a small real number.
The gradient of Leaky ReLU is:

dyi
dxi

= f ′(xi) =

{
a, | xi < 0
1, | xi ≥ 0.

(4)
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3.1.3. PReLU

Parametric ReLU (PreLU) [56] is identical to Leaky ReLU except that the parameter ac
(different for every channel of the input) is learnable. PReLU is defined as:

yi = f (xi) =

{
acxi, |xi < 0

xi, |xi ≥ 0,
(5)

where ac is a real number.
The gradients of PReLU are:

dyi
dxi

= f ′(xi) =

{
ac, |xi < 0
1, |xi ≥ 0,

(6)

dyi
dac

=

{
xi, |xi < 0
0, |xi ≥ 0.

(7)

Slopes on the left-hand sides are all initialized to 0.

3.2. Exponential Activation Functions
3.2.1. ELU

Exponential Linear Unit (ELU) [54] is differentiable and, as is the case with Leaky
ReLU, the gradient is always positive and bounded from below by −a. ELU, illustrated in
Figure 3, is defined as:

yi = f (xi) =

{
a(exp(xi)− 1), | xi < 0

xi, | xi ≥ 0,
(8)

where a (set to 1 here) is a real number.
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The gradient of Leaky ELU is:

dyi
dxi

= f ′(xi) =

{
a exp(xi), | xi < 0

1, | xi ≥ 0.
(9)
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3.2.2. PDELU

Piecewise linear Parametric Deformable Exponential Linear Unit (PDELU) [66] is
designed to have zero mean, which speeds up the training process. PDELU is defined as

yi = f (xi) =

{
xi xi > 0

αi·
(
[1 + (1− t)xi]

1
1−t − 1

)
xi ≤ 0

(10)

where [x]+ = max(x, 0). The f (xi) function takes values in the (−α, ∞) range; its slope
in the negative part is controlled by means of the αi parameters (i runs over the input
channels) that are jointly learned by the loss function. The parameter t controls the degree
of deformation of the exponential function. If 0 < t < 1, then f (xi) decays to 0 faster than
the exponential.

3.3. Logistic Sigmoid and Tanh-Based AFs
3.3.1. Swish

Swish [60] is designed using reinforcement learning to learn to efficiently sum, multi-
ply, and compose different functions that are used as building blocks. The best function is

y = f (x) = x·sigmoid(βx) =
x

1 + e−βx (11)

where β acts as a constant or a learnable parameter that is evaluated during training. When
β = 1, as in this study, Swish is equivalent to the Sigmoid-weighted Linear Unit (SiLU),
proposed for reinforcement learning. As β→ ∞ , Swish assumes the shape of a ReLU
function. Unlike ReLU, however, Swish is smooth and nonmonotonic, as demonstrated
in [60]; this is a peculiar aspect of this activation function. In practice, a value of β = 1 is a
good starting point, from which performance can be further improved by training such
a parameter.

3.3.2. Mish

Mish [65] is defined as

y = f (x) = x·tanh(so f tplus(αx)) = x·tanh(ln(1 + eαx)), (12)

where α is a learnable parameter.
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3.3.3. TanELU (New)

TanELU is an activation function presented here that is simply the weighted sum of
tanh and ReLU:

yi = ReLU(xi) + aitanh(xi), (13)

where ai is a learnable parameter.

3.4. Learning/Adaptive Activation Functions
3.4.1. SReLU

S-shaped ReLU (SReLU) [63] is composed of three piecewise linear functions expressed
by four learnable parameters (tl , tr, al , and ar initialized as al = 0, tl = 0, tr = maxInput, a
hyperparameter). This rather large set of parameters gives SReLU its high representational
power. SReLU, illustrated in Figure 4, is defined as:

yi = f (xi) =


tl + al

(
xi − tl

)
, | xi ≤ tl

xi, | tl < xi < tr

tr + ar(xi − tr), | xi ≥ tr.

, (14)

where ac is a real number.
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The gradients of SeLU are:

dyi
dxi

= f ′(xi) =


al , | xi ≤ tl

1, | tl < xi < tr

ar, | xi ≥ tr
, (15)

dyi

dal =

{
xi − tl , | xi ≤ tl

0, | xi > tl ,
(16)

dyi

dtl =

{
1− al , | xi ≤ tl

0, | xi > tl ,
(17)

dyi
dar =

{
xi − tr, | xi ≥ tr

0, | xi < tr,
(18)

dyi
dtr =

{
1− ar, | xi ≥ tr

0, | xi < tr.
(19)

Here, we use al = 0.5, ar = 0.2, tl = −2, tr = 1.5.
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3.4.2. APLU

Adaptive Piecewise Linear Unit (APLU) [57] is a linear piecewise function that can
approximate any continuous function on a compact set. The gradient of APLU is the sum
of the gradients of ReLU and of the functions contained in the sum. APLU is defined as:

yi = ReLU(xi) + ∑n
c=1 acmin(0,−xi + bc), (20)

where ac and bc are real numbers that are different for each channel of the input.
With respect to the parameters ac and bc, the gradients of APLU are:

d f (x, a)
dac

=

{
−x + bc, |x < bc

0, |x ≥ bc
, (21)

d f (x, a)
dbc

=

{
ac, |x < bc
0, |x ≥ bc.

(22)

The values for ac are initialized here to zero, with points randomly initialized. The
0.001 L2-penalty is added to the norm of the ac values. This addition requires that another
term Lreg be included in the loss function:

Lreg = ∑n
c=1|ac|2. (23)

Furthermore, a relative learning rate is added: maxInput multiplied by the smallest
value used for the rest of the network. If λ is the global learning rate, then the learning rate
λ∗ of the parameters ac would be

λ∗ = λ/maxInput. (24)

3.4.3. MeLU

The mathematical basis of the Mexican ReLU (MeLU) [61] activation function can be de-
scribed as follows. Given the real numbers a and λ and letting φa, λ(x) = max(λ− |x− a|, 0)
be a so-called Mexican hat type of function, then when |x− a| > λ, the function φa, λ(x) is
null but increases with a derivative of 1 and a between a−λ and decreases with a derivative
of −1 between a and a + λ.

Considering the above, MeLU is defined as

yi = MeLU(xi) = PReLUc0(xi) + ∑k−1
j=1 cj φaj ,λj(xi), (25)

where k is the number of learnable parameters for each channel, cj are the learnable
parameters, and c0 is the vector of parameters in PReLU.

The parameter k (k = 4 or 8 here) has one value for PReLU and k − 1 values for
the coefficients in the sum of the Mexican hat functions. The real numbers aj and λj
are fixed (see Table 1) and are chosen recursively. The value of maxInput is set to 256.
The first Mexican hat function has its maximum at 2·maxInput and is equal to zero in
0 and 4·maxInput. The next two functions are chosen to be zero outside the interval
[0, 2·maxInput] and [2·maxInput, 4·maxInput], with the requirement being they have their
maximum in maxInput and 3·maxInput.

Table 1. Fixed parameters of MeLU with maxInput = 256 (these are the same values as in [61]).

J 1 2 3 4 5 6 7

aj 512 256 768 128 384 640 896
λj 512 256 256 128 128 128 128

The Mexican hat functions on which MeLU is based are continuous and piecewise
differentiable. Mexican hat functions are also a Hilbert basis on a compact set with the
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L2 norm. As a result, MeLU can approximate every function in L2([0, 1024]) as k goes
to infinity.

When the ci learnable parameters are set to zero, MeLU is identical to ReLU. Thus,
MeLU can easily replace networks pre-trained with ReLU. This is not to say, of course,
that MeLU cannot replace the activation functions of networks trained with Leaky ReLU
and PReLU. In this study, all ci are initialized to zero, so start off as ReLU, with all its
attendant properties.

MeLU’s hyperparameter ranges from zero to infinity, producing many desirable
properties. The gradient is rarely flat, and saturation does not occur in any direction. As
the size of the hyperparameter approaches infinity, it can approximate every continuous
function on a compact set. Finally, the modification of any given parameter only changes the
activation on a small interval and only when needed, making optimization relatively simple.

3.4.4. GaLU

Piecewise linear odd functions, composed of many linear pieces, do a better job in
approximating nonlinear functions compared to ReLU [70]. For this reason, Gaussian ReLU
(GaLU) [68], based on Gaussian types of functions, aims to add more linear pieces with
respect to MeLU. Since GaLU extends MeLU, GaLU retains all the favorable properties
discussed in Section 3.4.3.

Letting φg
a, λ(x) = max(λ− |x− a|, 0)+min (|x− a− 2λ| − λ, 0) be a Gaussian type

of function, where a and λ are real numbers, GaLU is defined, similarly to MeLU, as

yi = GaLU(xi) = PReLUc0(xi) + ∑k−1
j=1 cj φg

aj ,λj(xi). (26)

In this work, k = 2 parameters for what will be called in the experimental section
Small GaLU and k = 4 for GaLU proper.

Like MeLU, GaLU has the same set of fixed parameters. A comparison of values for
the fixed parameters with maxInput = 1 is provided in Table 2.

Table 2. Comparison of the fixed parameters of GaLU and MeLU with maxInput = 1.

J 1 2 3 4 5 6 7

MELU
aj 2.00 1.00 3.00 0.50 1.50 2.50 3.50
λj 2.00 1.00 1.00 0.50 0.50 0.50 0.50

GALU
aj 1.00 0.50 2.50 0.25 1.25 2.25 3.25
λj 1.00 0.50 0.50 0.25 0.25 0.25 0.25

3.4.5. SRS

Soft Root Sign (SRS) [67] is defined as

y = f (x) =
x

x
α + e−

x
β

, (27)

where α and β are nonnegative learnable parameters. The output has zero means if the
input is a standard normal.

3.4.6. Soft Learnable

It is defined as

y = f (x) =

{
x, |x > 0

α·ln
(

1+eβx

2

)
, |x ≤ 0,

(28)

where α and β are nonnegative trainable parameters that enable SRS to adaptively adjust
its output to provide a zero-mean property for enhanced generalization and training
speed. SRS also has two more advantages over the commonly used ReLU function: (i) it
has nonzero derivative in the negative portion of the function, and (ii) bounded output,
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i.e., the function takes values in the range
[

αβ
β−αe , α), which is in turn controlled by the α

and β parameters
We used two different versions of this activation, depending on whether the parameter

β is fixed (labeled here as Soft Learnable) or not (labeled here as Soft Learnable2).

3.4.7. Splash

Splash [64] is another modification of APLU that makes the function symmetric. In
the definition of APLU, let ai and bi be the learnable parameters leading to APLUai ,bi

(x).
Then, Splash is defined as

Splasha+i ,a−i ,bi
(x) = APLUa+i ,bi

(x) + APLUa−i ,bi
(−x). (29)

This equation’s hinges are symmetric with respect to the origin. The authors in [65]
claim that this network is more robust against adversarial attacks.

3.4.8. 2D MeLU (New)

The 2D Mexican ReLU (2D MeLU) is a novel activation function presented here that is
not defined component-wise; instead, every output neuron depends on two input neurons.
If a layer has N neurons (or channels), its output is defined as

yi = PReLUc0(xi) + PReLUc0(xi+1) + ∑k−1
u,v=1 cj φau,v ,λmax(u,v)(xi,xi+1), (30)

where φaj ,λj(xi,xi+1) = max
(
λj − |(xi, xi+1)− au,v|, 0

)
.

The parameter au,v is a two-dimensional vector whose entries are the same as those
used in MeLU. In other words, au,v = (au, av) as defined in Table 1. Likewise, λmax(u,v) is
defined as it is for MeLU in Table 1.

3.4.9. MeLU + GaLU (New)

MeLU + GaLU is an activation function presented here that is, as its name suggests,
the weighted sum of MeLU and GaLU:

yi = (1− ai)MeLU(xi) + ai GaLU(xi), (31)

where ai is a learnable parameter.

3.4.10. Symmetric MeLU (New)

Symmetric MeLU is the equivalent of MeLU, but it is symmetric like Splash. Symmetric
MeLU is defined as

yi = MeLU(xi) + MeLU(−xi), (32)

where the coefficients of the two MeLUs are the same. In other words, the k coefficients of
MeLU(xi) are the same as MeLU(−xi).

3.4.11. Symmetric GaLU (New)

Symmetric GaLU is the equivalent of symmetric MeLU but uses GaLU instead of
MeLU. Symmetric GaLU is defined as

yi = GaLU(xi) + GaLU(−xi), (33)

where the coefficients of the two GaLUs are the same. In other words, the k coefficients of
GaLU(xi) are the same as GaLU(−xi).

3.4.12. Flexible MeLU (New)

Flexible MeLU is a modification of MeLU where the peaks of the Mexican function are
also learnable. This feature makes it more similar to APLU since its points of nondifferen-
tiability are also learnable. Compared to MeLU, APLU has more hyperparameters.
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4. Building CNN Ensembles

One of the objectives of this study is to use several methods for combining the two
CNNs with the different activation functions discussed above. Two methods are in need of
discussion: Sequential Forward Floating Selection (SFFS) [71] and the stochastic method
for combining CNNs introduced in [47].

4.1. Sequential Forward Floating Selection (SFFS)

A popular method for selecting an optimal set of descriptors, SFFS [71], has been
adapted for selecting the best performing/independent classifiers to be added to the
ensemble. In applying the SFFS method, each model to be included in the final ensemble
is selected by adding, at each step, the model which provides the highest increment in
performance compared to the existing subset of models. Then, a backtracking step is
performed to exclude the worst model from the actual ensemble.

This method for combining CNNs is labeled Selection in the experimental section.
Since SFFS requires a training phase, we perform a leave-one-out data set selection to select
the best-suited models.

4.2. Stochastic Method (Stoc)

The stochastic approach [47] involves randomly substituting all the activations in a
CNN architecture with a new one selected from a pool of potential candidates. Random
selection is repeated many times to generate a set of networks that will be fused together.
The candidate activation functions within a pool differ depending on the CNN architecture.
Some activation functions appear to perform poorly and some quite well on a given CNN,
with quite a large variance. The activation functions included in the pools for each of
the CNNs tested here are provided in Table 3. The CNN ensembles randomly built from
these pools varied in size, as is noted in the experimental section, which investigates the
different ensembles. Ensemble decisions are combined by sum rule, where the softmax
probabilities of a sample given by all the networks are averaged, and the new score is
used for classification. The stochastic method of combining CNNs is labeled Stoc in the
experimental section.

Table 3. Description of the data sets: xCV means a x fold cross-validation; Tr-Te means that training
and test set are split by the authors of that data set.

Short Name Full Name #Classes #Samples Protocol Image Type

CH CHO 5 327 5CV hamster ovary cells
HE 2D HeLa 10 862 5CV subcellular location
RN RNAi data set 200 5CV fly cells
MA Muscle aging 4 237 5CV muscles
TB Terminal Bulb Aging 7 970 5CV terminal bulbs
LY Lymphoma 3 375 5CV malignant lymphoma
LG Liver Gender 2 265 5CV liver tissue
LA Liver Aging 4 529 5CV liver tissue
CO Colorectal Cancer 8 5000 10CV histological images

BGR Breast grading carcinoma 3 300 5CV histological images
LAR Laryngeal data set 4 1320 Tr-Te laryngeal tissues

HP Immunohistochemistry images from the
human protein atlas 7 353 Tr-Te reproductive tissues

RT 2D 3T3 Randomly CD-Tagged Cell Clones 10 304 10CV CD-tagged cell clones
LO Locate Endogenous 10 502 5CV subcellular location
TR Locate Transfected 11 553 5CV subcellular location

It should be noted that there is no risk of overfitting in the proposed ensemble. The
replacement is randomly performed; we did not choose any ad hoc data sets. Overfitting
could occur if we chose the Activation Functions (AFs) ad hoc data sets. The aim of this
work is to propose an ensemble based on stochastic selection of AFs in order to avoid
any risk of overfitting. The disadvantage of our approach is the increased computation
time needed to generate the ensembles. As a final note, since 2D MeLU, Splash, and SRS
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obtain low performance when run with MI = 255 using VGG16, we ran those tests on
only a few data sets; those AFs that demonstrate poor performance were cut to reduce
computational time.

5. Experimental Results
5.1. Biomedical Data Sets

There are no fixed definitions of small/midsize data sets that would apply to all fields
in data mining. Whether a data set is considered large or small is relative to the task and
the publication date of the research. As many deep learning algorithms require large data
sets to avoid overfitting, the expectation today is to produce extremely large data sets. We
claim that if the data set contains fewer than 1000 images, then it is small, and if the number
of images is between 1001 and 10,000, we say that it is midsize.

Each of the activation functions detailed in Section 3 is tested on the CNNs using the
following fifteen publicly available biomedical data sets:

1. CH (CHO data set [72]): this is a data set containing 327 fluorescence microscopy
images of Chinese hamster ovary cells divided into five classes: antigiantin, Hoechst
33,258 (DNA), antilamp2, antinop4, and antitubulin.

2. HE (2D HeLa data set [72]): this is a balanced data set containing 862 fluorescence mi-
croscopy images of HeLa cells stained with various organelle-specific fluorescent dyes.
The images are divided into ten classes of organelles: DNA (Nuclei); ER (Endoplas-
mic reticulum); Giantin, (cis/medial Golgi); GPP130 (cis Golgi); Lamp2 (Lysosomes);
Nucleolin (Nucleoli); Actin, TfR (Endosomes); Mitochondria; and Tubulin.

3. RN (RNAi data set [73]): this is a data set of 200 fluorescence microscopy images of
fly cells (D. melanogaster) divided into ten classes. Each class contains 1024 ×1024
TIFF images of phenotypes produced from one of ten knock-down genes, the IDs of
which form the class labels.

4. MA (C. elegans Muscle Age data set [73]): this data set is for classifying the age of
a nematode given twenty-five images of C. elegans muscles collected at four ages
representing the classes.

5. TB (Terminal Bulb Aging data set [73]): this is the companion data set to MA and
contains 970 images of C. elegans terminal bulbs collected at seven ages representing
the classes.

6. LY (Lymphoma data set [73]): this data set contains 375 images of malignant lym-
phoma representative of three types: Chronic Lymphocytic Leukemia (CLL), Follicular
Lymphoma (FL), and Mantle Cell Lymphoma (MCL).

7. LG (Liver Gender Caloric Restriction (CR) data set [73]): this data set contains 265 images
of liver tissue sections from six-month-old male and female mice on a CR diet; the
two classes represent the gender of the mice.

8. LA (Liver Aging Ad libitum data set [73]): this data set contains 529 images of liver
tissue sections from female mice on an ad libitum diet divided into four classes
representing the age of the mice.

9. CO (Colorectal Cancer [74]): this is a Zenodo data set (record: 53169#.WaXjW8hJaUm)
of 5000 histological images (150 x 150 pixels each) of human colorectal cancer divided
into eight classes.

10. BGR (Breast Grading Carcinoma [75]): this is a Zenodo data set (record: 834910#.Wp1bQ-
jOWUl) that contains 300 annotated histological images of twenty-one patients with inva-
sive ductal carcinoma of the breast representing three classes/grades 1–3.

11. LAR (Laryngeal data set [76]): this is a Zenodo data set (record: 1003200#.WdeQc-
nBx0nQ) containing 1320 images of thirty-three healthy and early-stage cancerous
laryngeal tissues representative of four tissue classes.

12. HP (set of immunohistochemistry images from the Human Protein Atlas [77]): this is a
Zenodo data set (record: 3875786#.XthkoDozY2w) of 353 images of fourteen proteins
in nine normal reproductive tissues belonging to seven subcellular locations. The
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data set in [77] is partitioned into two folds, one for training (177 images) and one for
testing (176 images).

13. RT (2D 3T3 Randomly CD-Tagged Images: Set 3 [78]): this collection of 304 2D 3T3
randomly CD-tagged images was created by randomly generating CD-tagged cell
clones and imaging them by automated microscopy. The images are divided into ten
classes. As in [78], the proteins are put into ten folds so that images in the training
and testing sets never come from the same protein.

14. LO (Locate Endogenous data set [79]): this fairly balanced data set contains 502 images
of endogenous cells divided into ten classes: Actin-cytoskeleton, Endosomes, ER,
Golgi, Lysosomes, Microtubule, Mitochondria, Nucleus, Peroxisomes, and PM. This
data set is archived at https://integbio.jp/dbcatalog/en/record/nbdc00296 (accessed
on 9 August 2022).

15. TR (Locate Transfected data [79]): this is a companion data set to LO. TR contains
553 images divided into the set same ten classes as LO but with the additional class of
Cytoplasm for a total of eleven classes.

Data sets 1–8 can be downloaded at https://ome.grc.nia.nih.gov/iicbu2008/ (accessed
on 9 August 2022), data sets 9–12 can be found on Zenodo at https://zenodo.org/record/
(accessed on 9 August 2022) by concatenating the data set’s Zenodo record number provided
in the descriptions above to this URL. Data set 13 is available at http://murphylab.web.
cmu.edu/data/#RandTagAL (accessed on 9 August 2022), and data sets 14 and 15 are
available on request. Unless otherwise noted, the five-fold cross-validation protocol is
applied (see Table 3 for details), and the Wilcoxon signed-rank test [80] is the measure used
to validate experiments.

5.2. Experimental Results

Reported in Tables 4 and 5 is the performance (accuracy) of the different activation
functions on the CNN topologies VGG16 and ResNet50, each trained with a batch size (BS)
of 30 and a learning rate (LR) of 0.0001 for 20 epochs (the last fully connected layer has an
LR 20 times larger than the rest of the layers (i.e., 0.002)), except the stochastic architectures
that are trained for 30 epochs (because of slower convergence). The reason for selecting
these settings was to reduce computation time. Images were augmented with random
reflections on both axes and two independent random rescales of both axes by two factors
uniformly sampled in [1,2] (using MATLAB data augmentation procedures). The objective
was to rescale both the vertical and horizontal proportions of the new image. For each
stochastic approach, a set of 15 networks was built and combined by sum rule. We trained
the models using MATLAB 2019b; however, the pre-trained architectures of newer versions
perform better.

https://integbio.jp/dbcatalog/en/record/nbdc00296
https://ome.grc.nia.nih.gov/iicbu2008/
https://zenodo.org/record/
http://murphylab.web.cmu.edu/data/#RandTagAL
http://murphylab.web.cmu.edu/data/#RandTagAL
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Table 4. Performance (accuracy) of activation function obtained using ResNet50.

Activation CH HE LO TR RN TB LY MA LG LA CO BG LAR RT HP Avg

ResNet50
MaxInput = 1

MeLU (k = 8) 92.92 86.40 91.80 82.91 25.50 56.29 67.47 76.25 91.00 82.48 94.82 89.67 88.79 68.36 48.86 76.23

Leaky ReLU 89.23 87.09 92.80 84.18 34.00 57.11 70.93 79.17 93.67 82.48 95.66 90.33 87.27 69.72 45.45 77.27

ELU 90.15 86.74 94.00 85.82 48.00 60.82 65.33 85.00 96.00 90.10 95.14 89.33 89.92 73.50 40.91 79.38

MeLU (k = 4) 91.08 85.35 92.80 84.91 27.50 55.36 68.53 77.08 90.00 79.43 95.34 89.33 87.20 72.24 51.14 76.48

PReLU 92.00 85.35 91.40 81.64 33.50 57.11 68.80 76.25 88.33 82.10 95.68 88.67 89.55 71.20 44.89 76.43

SReLU 91.38 85.58 92.60 83.27 30.00 55.88 69.33 75.00 88.00 82.10 95.66 89.00 89.47 69.98 42.61 75.99

APLU 92.31 87.09 93.20 80.91 25.00 54.12 67.20 76.67 93.00 82.67 95.46 90.33 88.86 71.65 48.30 76.45

ReLU 93.54 89.88 95.60 90.00 55.00 58.45 77.87 90.00 93.00 85.14 94.92 88.67 87.05 69.77 48.86 81.18

Small GaLU 92.31 87.91 93.20 91.09 52.00 60.00 72.53 90.00 95.33 87.43 95.38 87.67 88.79 67.57 44.32 80.36

GaLU 92.92 88.37 92.20 90.36 41.50 57.84 73.60 89.17 92.67 88.76 94.90 90.33 90.00 72.98 48.86 80.29

Flexible MeLU 91.69 88.49 93.00 91.64 38.50 60.31 73.33 88.33 95.67 87.62 94.72 89.67 86.67 67.35 44.32 79.42

TanELU 93.54 86.16 90.60 90.91 40.00 58.56 69.60 86.25 95.33 83.05 94.80 87.67 86.89 73.95 43.18 78.69

2D MeLU 91.69 87.67 93.00 91.64 48.00 60.41 72.00 91.67 96.00 88.38 95.42 89.00 87.58 70.53 42.61 80.37

MeLU + GaLU 93.23 88.02 93.40 92.91 54.50 59.18 72.53 89.58 95.33 86.29 95.34 88.64 88.64 69.29 43.18 80.67

Splash 93.54 87.56 93.80 90.00 47.50 55.98 72.00 82.92 94.33 84.19 95.02 86.00 87.12 75.70 42.61 79.21

Symmetric GaLU 93.85 84.19 92.80 89.45 47.50 58.66 72.80 87.08 95.33 82.67 94.44 87.33 87.80 71.52 52.84 79.88

Symmetric MeLU 92.62 86.63 92.40 89.27 50.00 60.62 72.27 85.42 95.00 85.14 94.72 90.00 87.58 66.71 50.57 79.93

Soft Learnable v2 93.93 87.33 93.60 92.55 46.00 60.31 69.07 89.58 94.67 86.10 95.00 89.67 87.05 73.72 54.55 80.87

Soft Learnable 94.15 87.44 93.40 90.36 47.00 59.18 67.73 88.33 95.00 85.52 95.52 89.33 88.26 72.04 46.59 79.99

PDELU 94.15 87.21 92.00 91.64 51.50 56.70 70.93 89.58 96.33 86.67 95.08 89.67 88.18 72.76 46.59 80.59

Mish 95.08 87.56 93.20 91.82 45.00 58.45 69.07 86.67 95.33 86.67 95.48 90.00 88.41 53.41 34.09 78.01

SRS 93.23 88.84 93.40 91.09 51.50 60.10 69.87 88.75 95.00 86.48 95.72 88.33 89.47 54.06 48.86 79.64

Swish Learnable 93.54 87.91 94.40 91.64 48.00 59.28 69.33 88.75 95.33 83.24 96.10 90.00 89.32 41.15 39.77 77.85

Swish 94.15 88.02 94.20 90.73 48.50 59.90 70.13 89.17 92.67 86.10 95.66 87.67 87.65 65.05 32.39 78.79

ENS 95.38 89.53 97.00 89.82 59.00 62.78 76.53 86.67 96.00 91.43 96.60 91.00 89.92 74.00 50.00 83.04

ENS_G 93.54 90.70 97.20 92.73 56.00 63.92 77.60 90.83 96.33 91.43 96.42 90.00 90.00 73.76 50.00 83.36

ALL 97.23 91.16 97.20 95.27 58.00 65.15 76.80 92.92 98.00 90.10 96.58 90.00 90.38 74.67 53.98 84.49

ResNet50
MaxInput =

255

MeLU (k = 8) 94.46 89.30 94.20 92.18 54.00 61.86 75.73 89.17 97.00 88.57 95.60 87.67 88.71 72.09 52.27 82.18

MeLU (k = 4) 92.92 90.23 95.00 91.82 57.00 59.79 78.40 87.50 97.33 85.14 95.72 89.33 88.26 66.20 48.30 81.52

SReLU 92.31 89.42 93.00 90.73 56.50 59.69 73.33 91.67 98.33 88.95 95.52 89.67 87.88 68.94 48.30 81.61

APLU 95.08 89.19 93.60 90.73 47.50 56.91 75.20 89.17 97.33 87.05 95.68 89.67 89.47 71.44 51.14 81.27

Small GaLU 93.54 87.79 95.60 89.82 55.00 63.09 76.00 90.42 95.00 85.33 95.08 89.67 89.77 72.14 45.45 81.58

GaLU 92.92 87.21 92.00 91.27 47.50 60.10 74.13 87.92 96.00 86.86 95.56 89.33 87.73 70.26 44.32 80.20

Flexible MeLU 92.62 87.09 91.60 91.09 48.50 57.01 69.60 86.67 95.00 87.81 95.26 89.00 88.11 70.83 46.59 79.78

2D MeLU 95.08 90.23 93.00 91.45 54.00 57.42 69.60 90.42 96.00 87.43 91.84 87.67 90.76 73.44 54.55 81.52

MeLU + GaLU 93.23 87.33 92.20 90.91 54.00 58.66 73.87 89.58 95.33 88.76 95.42 86.33 86.74 70.91 48.86 80.92

Splash 96.00 87.67 92.80 93.82 50.50 60.62 78.13 89.58 96.67 87.81 95.18 90.33 91.36 68.81 51.70 82.06

Symmetric GaLU 92.00 85.58 91.20 89.64 43.50 57.94 70.93 79.58 91.33 85.14 95.34 87.33 85.98 69.37 47.16 78.13

Symmetric MeLU 92.92 88.37 93.40 92.00 44.00 58.56 69.60 91.67 93.33 84.00 94.94 87.33 88.79 70.30 44.89 79.60

ENS 93.85 91.28 96.20 93.27 59.00 63.30 77.60 91.67 98.00 87.43 96.30 89.00 89.17 71.11 50.00 83.14

ENS_G 95.08 91.28 96.20 94.18 63.00 64.85 78.67 92.50 97.67 87.62 96.54 89.67 89.77 71.36 51.14 83.96

ALL 96.00 91.16 96.60 94.55 60.50 64.74 77.60 92.92 97.67 89.52 96.62 89.33 90.68 74.37 52.27 84.30

eENS 94.77 91.40 97.00 92.91 60.00 64.74 77.87 88.75 98.00 90.10 96.50 90.00 89.77 73.23 50.57 83.70

eENS_G 95.08 91.28 96.80 93.45 62.50 65.26 78.93 91.67 96.67 90.48 96.60 89.33 89.85 73.60 50.00 84.10

eALL 96.92 91.28 97.20 95.45 60.50 64.64 77.87 93.75 97.67 90.10 96.58 89.67 90.68 74.37 52.27 84.59

15ReLU 95.40 91.10 96.20 95.01 58.50 64.80 76.00 92.90 97.30 89.30 96.30 90.00 90.04 73.00 50.57 83.76
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Table 4. Cont.

Activation CH HE LO TR RN TB LY MA LG LA CO BG LAR RT HP Avg

Selection 96.62 91.40 97.00 95.09 60.00 64.85 77.87 93.75 98.00 90.29 96.78 90.00 90.98 74.04 54.55 84.74

Stoc_1 97.81 91.51 96.66 95.87 60.04 65.83 80.02 92.96 99.09 91.24 96.61 90.77 91.03 74.20 50.57 84.95

Stoc_2 98.82 93.42 97.87 96.48 65.58 66.92 85.65 92.94 99.77 94.33 96.63 91.36 92.34 76.83 54.55 86.89

Stoc_3 99.43 93.93 98.04 96.06 64.55 66.41 83.24 90.04 96.04 93.93 96.72 92.05 91.34 75.89 51.70 85.95

Stoc_4 98.77 92.09 97.40 96.55 63.00 67.01 81.87 93.33 100 93.52 96.72 93.00 92.27 76.38 51.70 86.24

The performance (accuracy) of the following ensembles is reported in Tables 4 and 5:

• ENS: sum rule of {MeLU (k = 8), Leaky ReLU, ELU, MeLU (k = 4), PReLU, SReLU,
APLU, ReLU} (if maxInput = 1) or {MeLU (k = 8), MeLU (k = 4), SReLU, APLU,
ReLU} (if maxInput = 255);

• eENS: sum rule of the methods that belong to ENS considering both maxInput = 1
and maxInput = 255;

• ENS_G: as in ENS but Small GaLU and GaLU are added, and in both cases maxInput = 1
or maxInput = 255;

• eENS_G: sum rule of the methods that belong to ENS_G but considering maxInput = 1
and maxInput = 255;

• ALL: sum rule among all the methods reported in Table 4 with maxInput = 1 or
maxInput = 255. Notice that when the methods with maxInput = 255 are combined,
standard ReLU is also added to the fusion. Due to computation time, some activation
functions are not combined with VGG16 and so are not considered;

• eALL: sum rule among all the methods, both with maxInput = 1 and maxInput = 255.
Due to computation time, some activation functions are not combined with VGG16
and thus are not considered in an ensemble;

• 15ReLU: ensemble obtained by the fusion of 15 ReLU models. Each network is different
because of the stochasticity of the training process;

• Selection: ensemble selected using SFFS (see Section 3.1);
• Stoc_1: MeLU(k = 8), Leaky ReLU, ELU, MeLU(k = 4), PReLU, SReLU, APLU, GaLU,

sGaLU. A maxInput = 255 has been used in the stochastic approach (see Section 3.2);
• Stoc_2: the same nine functions of Stoc_1 and an additional set of seven activation

functions: ReLU, Soft Learnable, PDeLU, learnableMish, SRS, Swish Learnable, and
Swish. A maxInput = 255 has been used;

• Stoc_3: same as Stoc_2 but excluding all the activation functions proposed in [46,47,61]
(i.e., MeLU, GaLU, and sGaLU);

• Stoc_4: the ensemble detailed in Section 4.

The most relevant results reported in Table 4 on ResNet50 can be summarized as follows:

• ensemble methods outperform stand-alone networks. This result confirms previous
research showing that changing activation functions is a viable method for creating
ensembles of networks. Note how well 15ReLU outperforms (p-value of 0.01) the
stand-alone ReLU;

• among the stand-alone ResNet50 networks, ReLU is not the best activation function.
The two activations that reach the highest performance on ResNet50 are MeLU (k = 8)
with maxInput = 255 and Splash with maxInput = 255. According to the Wilcoxon
signed rank test, MeLU (k = 8) with maxInput = 255 outperforms ReLU with a
p-value of 0.1. There is no statistical difference between MeLU (k = 8) and Splash
(with maxInput = 255 for both);

• according to the Wilcoxon signed rank test, Stoc_4 and Stoc_2 are similar in perfor-
mance, and both outperform the other stochastic approach with a p-value of 0.1;

• Stoc_4 outperforms eALL, 15ReLU, and Selection with a p-value of 0.1. Selection
outperforms 15ReLU with p-value of 0.01, but Selection’s performance is similar
to eALL.
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Table 5. Activation performance (accuracy) on VGG16.

ACTIVATION CH HE LO TR RN TB LY MA LG LA CO BG LAR RT HP AVG

VGG16
MAXINPUT = 1

MeLU (k = 8) 99.69 92.09 98.00 92.91 59.00 60.93 78.67 87.92 86.67 93.14 95.20 89.67 90.53 73.73 42.61 82.71

Leaky ReLU 99.08 91.98 98.00 93.45 66.50 61.13 80.00 92.08 86.67 91.81 95.62 91.33 88.94 74.86 38.07 83.30

ELU 98.77 93.95 97.00 92.36 56.00 59.69 81.60 90.83 78.33 85.90 95.78 93.00 90.45 71.55 40.91 81.74

MeLU (k = 4) 99.38 91.16 97.60 92.73 64.50 62.37 81.07 89.58 86.00 89.71 95.82 89.67 93.18 75.20 42.61 83.37

PReLU 99.08 90.47 97.80 94.55 64.00 60.00 81.33 92.92 78.33 91.05 95.80 92.67 90.38 73.74 35.23 82.49

SReLU 99.08 91.16 97.00 93.64 65.50 60.62 82.67 90.00 79.33 93.33 96.10 94.00 92.58 76.80 45.45 83.81

APLU 99.08 92.33 97.60 91.82 63.50 62.27 77.33 90.00 82.00 92.38 96.00 91.33 90.98 76.58 34.66 82.52

ReLU 99.69 93.60 98.20 93.27 69.50 61.44 80.80 85.00 85.33 88.57 95.50 93.00 91.44 73.68 40.34 83.29

Small GaLU 98.46 91.63 97.80 91.35 64.50 59.79 80.53 89.58 77.33 92.76 95.70 91.67 91.97 72.63 44.32 82.66

GaLU 98.46 94.07 97.40 92.36 65.00 59.07 81.07 92.08 75.67 93.71 95.68 88.67 91.74 75.81 39.20 82.66

Flexible MeLU 97.54 94.19 96.60 94.91 59.00 62.68 77.07 90.00 89.00 91.81 95.94 92.67 89.92 72.15 38.64 82.80

TanELU 97.85 93.14 97.00 92.36 61.00 61.44 72.80 89.17 77.33 91.62 95.28 89.67 90.23 72.84 43.75 81.69

2D MeLU 97.85 93.72 97.20 92.73 61.00 61.34 81.60 91.25 92.33 94.48 95.86 89.67 92.35 71.91 38.64 83.46

MeLU + GaLU 98.15 93.72 98.20 93.64 60.00 60.82 77.60 92.08 81.00 93.14 95.54 92.33 89.47 75.60 47.16 83.23

Splash 97.85 92.79 97.80 92.18 58.50 62.06 75.73 88.33 83.67 85.90 95.02 91.67 90.15 74.29 42.05 81.86

Symmetric GaLU 99.08 92.79 97.20 92.91 60.50 60.00 78.93 88.33 79.33 91.62 95.52 92.67 91.67 73.91 40.34 82.32

Symmetric MeLU 98.46 92.91 96.60 92.18 56.50 59.69 74.93 90.00 85.00 87.05 94.76 90.33 90.68 72.87 41.48 81.56

Soft Learnable v2 95.69 87.91 94.60 93.45 34.50 55.57 50.67 77.50 64.67 29.71 94.08 67.67 92.35 68.96 35.80 69.54

Soft Learnable 98.15 92.91 97.00 91.82 47.50 54.33 62.13 86.67 95.67 65.90 95.04 84.33 90.38 71.08 40.34 78.21

PDELU 98.77 93.60 96.40 92.18 59.00 58.25 76.80 87.92 87.67 89.33 95.36 90.33 91.74 75.24 42.05 82.30

Mish 96.31 90.70 94.60 93.64 18.50 46.80 54.13 66.67 73.67 56.38 93.88 80.00 82.73 73.89 44.32 71.08

SRS 71.08 59.19 45.00 51.64 29.50 31.44 57.60 61.25 61.00 45.33 86.88 57.00 67.50 39.74 19.32 52.23

Swish Learnable 97.54 91.86 97.00 93.64 43.50 54.64 66.67 87.08 81.00 79.43 94.46 81.00 85.23 70.02 35.23 77.22

Swish 98.77 92.56 96.80 93.64 63.50 58.97 80.80 90.00 89.00 93.14 94.68 93.33 91.74 75.24 39.77 83.46

ENS 99.38 93.84 98.40 95.64 68.00 65.67 85.07 92.08 85.00 96.38 96.74 94.33 92.65 75.55 44.89 85.57

ENS_G 99.69 94.65 99.00 95.45 72.00 64.95 86.93 92.50 83.33 97.14 96.72 94.67 92.65 75.56 45.45 86.07

ALL 99.69 95.35 98.80 95.45 72.00 66.80 84.00 94.17 85.67 97.14 96.66 95.00 93.18 75.85 48.30 86.53

VGG16
MAXINPUT = 255

MeLU (k = 8) 99.69 92.09 97.40 93.09 59.50 60.82 80.53 88.75 80.33 88.57 95.94 90.33 88.33 73.01 47.73 82.40

MeLU (k = 4) 99.38 91.98 98.60 92.55 66.50 59.59 84.53 91.67 88.00 94.86 95.46 93.00 93.03 72.21 38.64 84.00

SReLU 98.77 93.14 97.00 92.18 65.00 62.47 77.60 89.58 76.00 96.00 95.84 94.33 89.85 74.04 42.61 82.96

APLU 98.77 92.91 97.40 93.09 63.00 57.32 82.67 90.42 77.00 90.67 94.90 93.00 91.21 75.65 36.36 82.29

Small GaLU 99.38 92.91 97.00 92.73 50.50 62.16 78.40 90.42 73.00 94.48 95.32 92.00 90.98 73.61 42.61 81.70

GaLU 98.77 92.91 97.60 93.09 66.50 59.48 83.47 90.83 95.00 85.52 95.96 91.67 93.41 75.45 38.64 83.88

Flexible MeLU 99.08 95.00 97.20 93.45 62.00 55.98 76.80 89.17 83.00 88.57 95.64 91.33 91.29 73.00 37.50 81.93

MeLU + GaLU 98.46 94.42 96.80 92.00 54.50 60.82 79.73 90.83 78.67 93.33 96.26 89.67 91.14 74.79 40.34 82.11

Symmetric GaLU 97.85 92.21 97.40 93.64 58.00 58.14 73.87 91.67 79.33 91.43 95.18 90.33 89.55 74.47 34.09 81.14

Symmetric MeLU 98.46 92.33 96.80 92.18 56.50 61.24 75.47 89.17 82.00 88.00 95.32 92.67 88.86 74.27 38.07 81.42

ENS 99.38 93.84 98.80 95.27 68.50 64.23 84.53 92.50 81.33 96.57 96.66 95.00 92.20 75.27 43.75 85.18

ENS_G 99.38 94.88 98.80 95.64 70.50 65.88 85.87 93.75 81.67 96.38 96.70 95.67 92.80 75.26 44.32 85.83

ALL 99.69 95.47 98.40 95.45 70.00 63.92 83.73 94.17 82.67 96.38 96.60 95.00 92.73 75.78 45.45 85.69

EENS 99.38 94.07 98.80 95.64 69.00 65.88 85.87 93.33 82.67 96.57 96.88 95.33 92.50 74.99 43.18 85.60

EENS_G 99.69 94.65 99.00 95.27 70.50 65.57 86.93 92.92 83.33 97.71 96.82 95.00 92.42 76.09 44.32 86.01

EALL 99.69 95.70 98.80 95.45 71.50 65.98 83.73 94.58 85.67 96.38 96.70 95.00 92.50 75.42 47.16 86.28

15RELU 99.08 95.35 98.60 94.91 64.50 64.64 79.20 95.00 83.00 92.76 96.38 94.00 92.42 74.34 50.57 84.98

SELECTION 99.69 95.26 98.60 94.91 71.00 64.85 86.67 94.58 84.67 95.24 96.72 94.33 93.56 75.48 47.16 86.18

STOC_4 99.69 96.05 98.60 95.27 74.50 67.53 83.47 95.00 84.00 95.62 96.78 92.67 93.48 74.87 51.70 86.61
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Examining Figure 5, which illustrates the average rank of the different methods used
in Table 4, with ensembles in dark blue and stand-alone in light blue, it is clear that:

(a) there is not a clear winner among the different AFs;
(b) ensembles work better with respect to stand-alone approaches;
(c) the methods named Sto_x work better with respect to other ensembles.
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The most relevant results reported in Table 5 on VGG16 can be summarized as follows:

• again, the ensemble methods outperform the stand-alone CNNs. As was the case
with ResNet50, 15ReLU strongly outperforms (p-value of 0.01) the stand-alone CNNs
with ReLU;

• among the stand-alone VGG16 networks, ReLU is not the best activation function. The
two activations that reach the highest performance on V6616 are MeLU (k = 4) with
maxInput = 255 and GaLU with maxInput = 255. According to the Wilcoxon signed
rank test, there is no statistical difference between ReLU, MeLU (k = 4), MI = 255,
and GaLU, MI = 255;

• interestingly, ALL with maxInput = 1 outperforms eALL with p-value of 0.05;
• Stoc_4 outperforms 15ReLU with p-value of 0.01, but the performance of Stoc_4 is

similar to eALL, ALL (maxInput = 1), and Selection.

Considering both ResNet50 and Vgg16, the best AF is MeLU (k = 8), MI = 255. It out-
performs ReLU with a p-value 0.1 in ResNet and a p-value of 0.16 in VGG16. Interestingly,
the best average AF is a learnable one that works even on small/midsize data sets.

Figure 6 provides a graph reporting the average rank of different AFs and ensembles
for VGG16. As with ResNet50 (see Figure 5), it is clear that ensembles of AFs outperform
the baseline 15ReLU and stand-alone networks. With VGG16, the performance of Stoc_4 is
similar to eALL and Selection.
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To further substantiate the power of different AFs in ensembles with small to midsize
data sets, in Table 6, we show a further batch of tests comparing 15ReLU and the ensem-
bles built by varying the activation functions to the performance of five different CNN
topologies, each trained with a batch size (BS) of 30 and a learning rate (LR) of 0.001 for
20 epochs (the last fully connected layer has an LR 20 times larger than the rest of the layers
(i.e., 0.02)) using Matlab2021b. Note that these parameters are slightly different from those
of the previous tests. We did not run tests using VGG16 due to computational issues.

Table 6. Ensemble performance (accuracy) on a set of different topologies (due to the high computa-
tional time for CO we have run only 4 Sto_4 Densenet201).

EfficientNetB0 CH HE LO TR RN TB LY MA LG LA CO BG LAR RT HP Avg

ReLU 94.46 91.28 94.80 92.18 68.50 62.58 88.80 92.50 97.33 96.76 95.04 90.67 87.35 71.21 52.27 85.05
15Reit 96.00 92.09 95.40 93.82 74.00 65.98 89.07 93.33 97.00 98.29 95.60 90.00 88.94 71.61 61.36 86.83

MobileNetV2 CH HE LO TR RN TB LY MA LG LA CO BG LAR RT HP Avg

ReLU 98.15 92.91 97.40 92.91 69.00 64.54 76.00 91.67 96.67 96.76 94.54 89.00 90.23 69.53 50.57 84.65
15ReLU 99.08 95.23 98.80 95.64 75.00 70.41 80.27 95.42 98.00 97.71 95.46 90.67 91.52 69.24 55.11 87.17
Stoc_4 99.08 95.35 99.20 98.36 84.00 76.91 87.20 94.58 100 99.62 95.50 94.00 95.08 77.02 63.64 90.63

DarkNet53 CH HE LO TR RN TB LY MA LG LA CO BG LAR RT HP Avg

ReLU 98.77 93.60 98.00 95.82 71.00 67.84 81.33 71.25 98.00 96.95 92.02 91.67 91.44 67.12 53.98 84.58
15Leaky 99.69 95.12 99.20 99.45 89.00 77.94 91.73 89.17 100 99.81 95.56 93.00 93.56 76.02 61.93 90.74
Stoc_4 99.69 95.93 98.80 98.80 88.00 77.73 96.00 88.33 100 99.81 95.28 91.00 92.12 74.33 67.05 90.86

ResNet50 CH HE LO TR RN TB LY MA LG LA CO BG LAR RT HP Avg

ReLU 97.54 94.19 98.40 95.82 74.50 65.15 80.00 92.08 98.00 96.76 96.26 89.67 91.44 77.21 55.68 86.84
15ReLU 99.08 95.70 99.20 97.27 79.00 69.38 84.27 95.42 97.33 98.10 97.00 91.00 93.79 77.15 59.66 88.89
Stoc_4 99.69 95.47 99.20 98.00 85.00 75.26 91.47 95.00 99.00 99.62 97.02 93.00 94.85 75.18 62.50 90.68

DenseNet201 CH HE LO TR RN TB LY MA LG LA CO BG LAR RT HP Avg

ReLU 98.73 95.29 98.37 96.92 71.40 66.80 82.20 91.31 98.22 98.12 95.88 91.69 93.96 49.92 54.70 85.56
15ReLU 99.38 96.40 98.40 98.55 79.00 71.24 86.40 94.58 99.67 99.24 97.84 95.33 96.14 77.57 61.36 90.07
Stoc_4 99.69 94.88 99.20 99.27 84.00 76.29 93.87 96.67 100 100 97.84 93.00 95.38 77.67 69.89 91.84
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The tested CNNs are the following:

• EfficientNetB0 [81]: this CNN does not have ReLU layers, so we only compare the
stand-alone CNN with the ensemble labeled 15Reit (15 reiterations of the training).

• MobileNetV2 [82].
• DarkNet53, [83]: this deep network uses LeakyReLU with no ReLU layers; the fusion

of 15 standard DarkNet53 models is labeled 15Leaky.
• DenseNet201 [84].
• ResNet50.

As in the previous tests, training images were augmented with random reflections
on both axes and two independent random rescales of both axes by two factors uniformly
sampled in [1,2] (using MATLAB data augmentation procedures). The objective was to
rescale both the vertical and horizontal proportions of the new image.

The most relevant results reported in Table 6 can be summarized as follows:

• the ensembles strongly outperform (p-value 0.01) the stand-alone CNN in each topology;
• in MobileNetV2, DenseNet201, and ResNet50, Stoc_4 outperforms 15ReLU (p-value 0.05);
• DarkNet53 behaved differently: on this network, 15Leaky and Stoc_4 obtained

similar performance.

In Table 7, we report the performance on a few data sets obtained by ResNet50,
choosing the optimal values of BS and LR for ReLU. Even with BS and LR optimized for
ReLU, the performance of Sto_4 is higher than that obtained by ReLU and 15ReLU.

Table 7. Performance (accuracy) with optimized BS and LR.

ResNet50

CH HE MA LAR

ReLU 98.15 95.93 95.83 94.77
15ReLU 99.08 96.28 97.08 95.91

Sto_4 99.69 96.40 97.50 96.74

In Table 8, we report some computation time tests.

Table 8. Inference time of a batch size of 100 images.

GPU Year GPU Single ResNet50 Ensemble 15
ResNet50

GTX 1080 2016 0.36 s 5.58 s
Titan Xp 2017 0.31 s 4.12 s

Titan RTX 2018 0.22 s 2.71 s
Titan V100 2018 0.20 s 2.42 s

The hardware improvements reduce the inference time; there are several applications
where it is not a problem to classify 100 images in just a few seconds.

In Table 9, we report the four best AFs for each topology with both MI = 1 and MI = 255.

Table 9. The four best AFs are reported (TopXr means X-th position in the rank among the AFs).

Topology MI Top1r Top2r Top3r Top4r

ResNet50 1 MeLU + GaLU SRS PDELU Soft Learnable v2
ResNet50 255 MeLU (k = 8) Splash MeLU (k = 4) 2D MeLU
VGG16 1 SReLU MeLU + GaLU MeLU (k = 4) ReLU
VGG16 255 GaLU MeLU (k = 4) SReLU APLU

If we consider the two larger data sets, CO and LAR, the best AF is always a learnable one:

• CO—ResNet: the best is Swish Learnable;
• LAR—ResNet: the best is 2D MeLU;
• CO—VGG16: the best is MeLU + GaLU;
• LAR—VGG16: the best is MeLU (k = 4).

It is clear that some of the best AFs are proposed here.
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6. Conclusions

The goal of this study was to evaluate some state-of-the-art deep learning techniques
on medical images and data. Towards this aim, we evaluated the performance of CNN
ensembles created by replacing the ReLU layers with activations from a large set of acti-
vation functions, including six new activation functions introduced here for the first time
(2D Mexican ReLU, TanELU, MeLU + GaLU, Symmetric MeLU, Symmetric GaLU, and
Flexible MeLU). Tests were run on two different networks: VGG16 and ResNet50, across
fifteen challenging image data sets representing various tasks. Several methods for making
ensembles were also explored.

Experiments demonstrate that an ensemble of multiple CNNs that differ only in their
activation functions outperforms the results of single CNNs. Experiments also show that,
among the single architectures, there is no clear winner.

More studies need to investigate the performance gains offered by our approach on
even more data sets. It would be of value, for instance, to examine whether the boosts in
performance our system achieved on the type of data tested in this work would transfer to
other types of medical data, such as Computer Tomography (CT) and Magnetic Resonance
Imaging (MRI), as well as image/tumor segmentation. Studies such as the one presented
here are difficult, however, because investigating CNNs requires enormous computational
resources. Nonetheless, such studies are necessary to increase the capacity of deep learners
to classify medical images and data accurately.
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