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Abstract

Low umbilical artery pH is a marker for neonatal acidosis and is associated with an increased 

risk for neonatal complications. The phase-rectified signal averaging (PRSA) features have 

demonstrated superior discriminatory or diagnostic ability and good interpretability in many 

biomedical applications including fetal heart rate analysis. However, the performance of PRSA 

method is sensitive to values of the selected parameters which are usually either chosen based 

on a grid search or empirically in the literature. In this paper, we examine PRSA method 

through the lens of dynamical systems theory and reveal the intrinsic connection between state 

space reconstruction and PRSA. From this perspective, we then introduce a new feature that 

can better characterize dynamical systems comparing with PRSA. Our experimental results on 

an open-access intrapartum Cardiotocography database demonstrate that the proposed feature 

outperforms state-of-the-art PRSA features in pH-based fetal heart rate analysis.
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1. INTRODUCTION

The most well-accepted method for monitoring fetal well-being during labor is using 

Cardiotocography (CTG) where both fetal heart rate (FHR) and uterine activity are 

simultaneously recorded [1]. Although various clinical guidelines are available [2], the 

evaluation of FHR recordings by obstetricians suffers from high inter- and intra-variability 

[3]. In the computerized analysis of FHR, the gold standard for labeling FHR recordings is 

using the pH values of umbilical cord blood at birth, as low umbilical artery pH is a marker 

for neonatal acidosis and is associated with an increased risk for neonatal complications 

[4], and a typical choice of threshold is pH ⩽ 7.05. Although advanced machine learning 

methods, e.g., deep learning, are able to perform end-to-end learning and learn the features 

from data automatically, such learned features and embeddings often lack interpretability. 

On the other hand, despite the good interpretability of conventional FHR features such as 

heart rate variability features, they are usually not well correlated with the pH value [5] and 

have limited discriminatory ability, which is often measured by the area under the receiver 

operating characteristic curve (AUC-ROC).
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The phase-rectified signal averaging (PRSA) method was first proposed in [6, 7] for 

assessing deceleration-related and acceleration-related modulations of heart rate using 

electrocardiogram (ECG) recordings. PRSA is robust to noise and capable of detecting 

quasi-periodic oscillations in nonstationary signals [8]. Therefore it has been applied to a 

variety of biomedical applications including pH-based FHR analysis [9, 10], and it has been 

found to have superior discriminatory capability. However, the performance of PRSA is 

sensitive to the choice of parameters which are generally selected empirically or using a grid 

search. Furthermore, even for the same task, there is no consensus on appropriate values of 

its parameters.

In dynamical system modeling, each state of a studied system is represented by a (state) 

vector within its state space where all the possible states are represented. Another powerful 

concept is the attractor of a system, which is a collection of states toward which a system 

tends to evolve. In reality, the attractor manifold and the mathematical description of a 

dynamical system are often latent, and one can only obtain some noisy, partial observations 

generated by the underlying system. Estimating or reconstructing an attractor manifold, i.e., 

state space reconstruction (SSR), is of great importance in characterizing the dynamical 

system and has been well studied in the literature [11]. Unlike the parameters in PRSA, 

well-established methods are available for selecting the parameters for SSR.

This work reveals, for the first time, the inherent connection between the PRSA and the 

SSR framework. To be more specific, PRSA is virtually characterizing the underlying 

dynamical system by averaging state vectors sampled from the reconstructed attractor 

manifold. This intrinsic connection is illustrated using the well-known Lorenz system. From 

this viewpoint, we propose a new feature, named average state distance (ASD) that is able 

to characterize the system in a natural manner by directly working with the reconstructed 

attractor manifold. In our experiments on an open access intrapartum CTG database, ASD 

outperformed state-of-the-art PRSA features in pH-based FHR analysis and achieved better 

diagnostic ability in detecting neonatal acidosis.

2. BACKGROUND

2.1. Phase-Rectified Signal Averaging

The main idea of PRSA method is to quantify the average acceleration capacity (AC) and 

deceleration capacity (DC) of the signal. The method comprises three steps. The first step is 

the anchor point selection, where the AC anchor points (corresponding to increase events) 

and the DC anchor points (corresponding to decrease events) are identified. Specifically, let 

x[i] denote the ith sample in the time series xt, i = 1, …, N, and x[i] is an AC anchor point if

1
T ∑

j = 0

T − 1
x[i + j] > 1

T ∑
j = 1

T
x[i − j], (1)

and it is a DC anchor point if
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1
T ∑

j = 0

T − 1
x[i + j] < 1

T ∑
j = 1

T
x[i − j], (2)

where T is a parameter for anchor points selection, and T ≪ N. Note that, in our 

experiments, we adopted the definition of anchor points from [6] because, instead of 

converting FHR signal to RR series [10], which is the time elapsed between successive 

heartbeats, we directly worked with FHR signals.

In the second step, known as phase rectifying or signal averaging step, for each anchor point, 

a window of length 2L is constructed by taking L consecutive samples before the anchor 

point and L − 1 consecutive samples after the anchor points. Then the PRSA curves for AC 

and DC, denoted as xAC and xDC, respectively, are obtained by aligning and averaging all 

windows that are framed around the corresponding type of anchor points,

x[k] = 1
M ∑

m = 1

M
x im + k , (3)

where M is the total number of windows associated with a specific type of anchor points, 

AC or DC, and k = −L, −L +1, …, 0, …, L − 2, L − 1 is the shift from the position of anchor 

point im in the mth window.

In the third step, named capacity calculation step, the AC and DC are computed by

AC = 1
2s ∑

i = L + 1

L + s
xAC[i] − 1

2s ∑
i = L

L − s + 1
xAC[i],

DC = 1
2s ∑

i = L + 1

L + s
xDC[i] − 1

2s ∑
i = L

L − s + 1
xDC[i],

(4)

where s is a parameter for summarizing the phase-rectified curves.

2.2. The State-of-the-art of PRSA in FHR Analysis

The PRSA method has demonstrated superior performance and great potential for 

surveillance of intrauterine growth restriction and intrapartum FHR analysis [12]. In [9], 

the authors adopted the PRSA feature DC for pH-based FHR classification using the 

last 30 minutes tracings and achieved AUC-ROC of 0.665 on a large private database 

that contains 7568 Oxford deliveries. Recently, a new PRSA feature named deceleration 

reserve (DR), as a combination of DC and AC, was proposed in [10] where DR achieved 

AUC-ROC of 0.65 for pH-base FHR classification using the last one hour tracings on an 

open access intrapartum CTG database. We also adopted the same open access intrapartum 

CTG database in our experiments. Despite the similar performance, the parameters used in 

[9] and [10] are quite different. In [9], T = 5 and L = 45 (s was not reported) were selected 

after a grid search, whereas in [10], T = 1, L = 50, and s = 2 were set empirically. From 

a theoretical perspective, in [7], the connection between the PRSA method and wavelet 
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analysis was established. In [10], the authors studied the PRSA method for stationary 

stochastic Gaussian processes and showed AC = −DC under such assumption.

3. MODEL DESCRIPTION

3.1. State Space Reconstruction

The Takens’ theorem, proposed by Floris Takens in [13], provides theoretical guarantees that 

one can actually reconstruct the state space using a single observation variable of the system, 

when some mild conditions are satisfied. Conventionally, a reconstructed attractor manifold 

is called a shadow manifold.

Theorem 1 (Takens’ theorem)—Let ℳ be a compact manifold of (integer) dimension d. 
Then for generic pairs (ϕ, y), where

• ϕ:ℳ ℳis a C2-diffeomorphism of ℳ in itself,

• y:ℳ ℝ is a C2-differentiable function, the map Φ(ϕ, y):ℳ ℝ2d + 1 given by

Φ(ϕ, y)(x): = y(x), y(ϕ(x)), y ϕ2(x) , …, y ϕ2d(x)

is an embedding of ℳ in ℝ2d + 1.

In practice, a simple and popular choice of ϕ is delay-coordinate map or delay embedding. 

Specifically, for a time series xt of length N, the diffeomorphic shadow manifold 

reconstructed from xt with delay embedding with properly selected parameters E and τ 
(defined below) is denoted as Mx: = mx[n] n = 1 + τ(E − 1)

N , where

mx[n] = [x[n], x[n − τ], …, x[n − (E − 1)τ]] (5)

is the E-dimensional (state) vector on Mx corresponding to the nth observation in xt, i.e., 

x[n].

It can be seen that SSR and PRSA are inherently connected. The first step in PRSA, i.e., 

selecting anchor points, in a time series xt can be seen as irregularly sampling the shadow 

manifold Mx reconstructed with E = 2L and τ = 1. The second step in PRSA, i.e., the phase 

rectifying or signal averaging step, can be seen as calculating the averaged AC and DC 

system state vectors denoted as mxAC ∈ ℝ2L and mxDC ∈ ℝ2L, respectively. Finally, capacity 

calculation step of PRSA is essentially characterizing shadow manifold by summarizing the 

system state vectors mxAC and mxDC.

The delay embedding dimension E is usually determined with false-nearest-neighbors 

(FNN) algorithm by examining how the number of neighbors (of a point along a signal 

trajectory) changes as a function of embedding dimension [14]. FNN selects E as the 

smallest embedding dimension that minimizes the number of false neighbors. The delay τ 
is a free parameter, and in theory, its value can be arbitrarily selected. However, in reality, 
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since time series are of finite length, the choice of τ also affects the SSR quality. If τ is 

small, the dimensions in the shadow manifold will be highly correlated, whereas if τ is too 

large, dynamical information may be missed. In practice, τ is often selected to be the delay 

that achieves the first local minimum of the average mutual information (AMI) [15] or cross 

correlation between the original time series and its delayed version. In this work, we utilized 

delay embedding for SSR, where E and τ were selected using FNN [14] and AMI-based 

method [15], respectively.

3.2. State Vector Clustering

In PRSA, the anchor points are selected with criteria (specified by the value of T) on a 

given time series xt. In the literature, T is often selected to be relatively small, e.g., T = 

1, for capturing oscillations. As a result, the majority of observations in xt are either AC 

or DC anchor points. Since there is an one-to-one mapping from x[n] to mx[n], PRSA 

essentially assigns majority of system states to have either AC or DC status. Despite efforts 

for theoretical analysis of PRSA, selecting an appropriate T (especially jointly with L and 

s) for a specific task and dataset remains challenging. Besides, anchor points that are of the 

same type are not necessarily having similar system states. Therefore, instead of designing 

and optimizing the AC or DC anchor points selection criteria for different tasks and datasets, 

we directly work with state space using shadow manifold Mx and cluster the state vectors 

in Mx (i.e., rows of Mx) into two classes so that the similarity in state space is properly 

preserved. Essentially, Mx is partitioned into Mx
cluster1 ∈ ℝN1 × E (denotes the collection of 

states vectors in cluster 1) and Mx
cluster2 ∈ ℝN2 × E (denotes the collection of states vectors 

in cluster 2). In this work, we adopted K-mean clustering [16] with euclidean distance 

as distance measure for its simplicity, although more sophisticated clustering methods can 

readily be applied.

3.3. Average State Distance

The average state vector of cluster 1 denoted as mxcluster1 ∈ ℝE, can be constructed by 

the mean value of each column in Mx
cluster 1 . Similarly, mxcluster 2 ∈ ℝE is calculated by 

averaging each column of Mx
cluster 2. Finally, we define the average state distance (ASD) 

of xt as in (6) to characterize Mx, which is the Euclidean distance between mxcluster 1 and 

mxcluster 2,

ASD xt = mxcluster 1 − mxcluster 2 . (6)

4. EXPERIMENTS AND RESULTS

4.1. Simulated Data: Lorenz System

To demonstrate the intrinsic connection between PRSA method and SSR, we adopted the 

well-studied Lorenz system [17], described by
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dx/dt = σ(y − x),
dy/dt = x(ρ − z) − y,
dz/dt = xy − βz .

(7)

A Lorenz attractor ℳ of length N = 921 was simulated with (7) using a classic set of 

parameter values σ = 10, ρ = 8
3 , and β = 28. We assumed only xt was observed.

We implemented the anchor point selection of PRSA method on xt (with T = 5 and L 
= 20) and K-mean clustering on shadow manifold Mx (reconstructed with τ = 1 and E 
= 40), respectively. We set E = 40 and L = 20 so that the window length in PRSA and 

SSR are the same. Since the observation xt is tested one by one in anchor point selection, 

τ = 1 was used to match with this behavior of PRSA. Since a high dimensional shadow 

manifold Mx ∈ ℝ882 × 40 cannot be plotted directly, it was visualized with Gaussian process 

latent variable model (GPLVM), which is capable of visualizing high dimensional data 

using nonlinear dimensionality reduction [18]. Specifically, Mx was compressed or reduced 

to Mx
GP ∈ ℝ882 × 3 and the nonlinear mapping between Mx and Mx

GP was governed by a 

Gaussian process (GP). More details for GPLVM can be found in [18].

The connection between PRSA and SSR is illustrated in Fig. 1. For the PRSA method (Fig. 

1a), the anchor points in xt were selected first, and then for each anchor point, we colored 

its corresponding state vector in shadow manifold based on its type (AC or DC). In contrast, 

for our method (Fig. 1b), we directly applied clustering of the state vectors in the shadow 

manifold, and then colored the observations in xt based on the clustering results of their 

corresponding state vectors. It can be seen that selecting the anchor points in xt is essentially 

(irregularly) sampling and clustering the state vectors in Mx. By directly working with state 

vectors in the shadow manifold, the similarity of states can be better preserved, which is 

often of better interpretability. For example, in Fig. 1b, the state vectors on the left lobe were 

assigned to one class and the ones on the right lobe were assigned to the other class.

4.2. Real Data: Open Access Intrapartum CTG Database

In this section, we adopted the same open access intrapartum CTG database [19] that was 

used in [10], and compared the performance of ASD and state-of-the-art PRSA features 

in [9] and [10]. This database contains 552 recordings as well as the corresponding pH 

values of umbilical cord blood at birth. Both FHR and UA signals were sampled at 4Hz. We 

used the same labeling approach as in [9] and [10], where the positive cases are the FHR 

recordings associated with pH ⩽ 7.05.

In our experiments, similar to [9], the last 30 minutes of FHR recordings were used. Since 

RR series were employed in [10], we computed PRSA features on both FHR recordings and 

RR series (in milliseconds). For benchmarking purposes, we extracted AC and DC using the 

parameters mentioned in [9, 10], and additionally computed DR proposed in [10]. Similar to 

[9,10], AUC-ROC was used as a performance metric. The performance of the PRSA features 

is summarized in Table 1. Note that, the parameter s was not specified in [9], so a grid search 

was performed for s and the highest AUC-ROC score and the corresponding s are reported.
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To properly account for the randomness introduced by K-mean clustering (as it initializes 

centroids randomly), we repeated the experiment of ASD on the open access intrapartum 

CTG database 100 times. The histogram of AUC-ROC of ASD over 100 runs and some 

statistics are shown in Fig. 2. The result clearly shows that ASD outperformed the state-of-

the-art PRSA features summarized in Table 1 and demonstrated better diagnostic ability for 

neonatal acidosis; the mean and median of AUC-ROC of ASD are both around 0.705, and 

the standard deviation is only around 0.01.

5. CONCLUSIONS

In this work, we generalize PRSA method by casting it in the SSR framework and show 

that the PRSA method is essentially sampling shadow manifold and summarizing certain 

states vectors. Then we propose a new feature, named ASD, that is able to summarize the 

shadow manifold more naturally. Our results show that ASD is of superior diagnostic ability 

for neonatal acidosis compared to state-of-the-art PRSA features. Further, the proposed 

approach can be readily applied for signal analysis in other fields. Natural signals are 

generated by low dimensional systems [20], and the proposed method can be combined 

with a dimensionality reduction method when high dimensional shadow manifolds are 

encountered.
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Fig. 1: Comparison between PRSA and proposed approach using simulated data.
(a) DC and AC anchor points selected in xt with T = 5 and L = 20 (top) and their 

corresponding states vectors in shadow manifold (bottom) where the state vectors were 

colored based on the type of their corresponding anchor points selected using PRSA.

(b) Different from PRSA, in our method, we first applied K-mean clustering of state vectors 

in the shadow manifold and colored them based on which cluster they belong to (bottom). 

Then the observations in xt were colored based on the clustering results (top).
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Fig. 2: 
Histogram of AUC-ROC of ASD over 100 runs on the open access intrapartum CTG 

database.
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Table 1:

Summary of performance of PRSA features

AUC-ROC

FHR RR series (in ms)

T = 5, L = 45 [9]

AC s = 45 0.5963 s = 2 0.4872

DC s = 2 0.4732 s = 45 0.6066

DR s = 2 0.4827 s = 40 0.5661

T = 1, L = 50, s = 2 [10]

AC 0.5325 0.4901

DC 0.4787 0.5054

DR 0.5069 0.4932
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