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Abstract: Plant essential oils (EOs) are gaining interest as biopesticides for crop protection. EOs
have been recognized as important ingredients of plant protection products including insecticidal,
acaricidal, fungicidal, and nematicidal agents. Considering the growing importance of EOs as active
ingredients, the domestication and cultivation of Medicinal and Aromatic Plants (MAPs) to produce
chemically stable EOs contributes to species conservation, provides the sustainability of production,
and decreases the variations in the active ingredients. In addition to these direct effects on plant pests
and diseases, EOs can induce plant defenses (priming effects) resulting in better protection. This
aspect is of relevance considering that the EU framework aims to achieve the sustainable use of new
plant protection products (PPPs), and since 2020, the use of contaminant PPPs has been prohibited.
In this paper, we review the most updated information on the direct plant protection effects of EOs,
focusing on their modes of action against insects, fungi, and nematodes, as well as the information
available on EOs with plant defense priming effects.
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1. Introduction to Essential Oils

Essential oils (EOs) are volatile extracts obtained mostly from aromatic and medicinal
plants [1]. Lamiaceae is the most important EO-producing plant family and includes
about 6900–7200 species belonging to 236 genera distributed all over the world, with the
Mediterranean and temperate regions predominating [1]. EOs are an important source of
biologically active compounds that have antibacterial, insecticidal, fungicidal, nematicidal,
herbicidal, antioxidant, and anti-inflammatory activities [2–4].

Essential oils are mostly composed of volatile terpenes [2], are usually comprised of 20
to 60 substances, and are characterized in many cases by up to three major components in a
relatively high concentration, while other compounds are present in trace amounts [2–5].
EO components can be grouped into two main groups and four chemical classes (Figure 1):

• Terpene hydrocarbons, comprising monoterpenes (representing 80% of the EO’s com-
position) and sesquiterpenes [6,7].

• Oxygenated compounds, composed mostly of alcohols, phenols, aldehydes, and esters.
The aromatic and oxygenated compounds are less abundant than terpenes in EO [5–8].

Humans have long used medicinal and aromatic plants (MAPs) to produce EOs,
mainly as flavors and fragrances based on the traditional use of aromatic plants as culi-
nary herbs and spices [9]. More recently, their use has expanded to include use in human
medicine, as phyto-pharmaceuticals, and in aromatherapy [8]. Many of these volatile
substances not only have physiological functions but also have multiple ecological func-
tions [10]. They can act as internal messengers, as defenses against herbivores, or as
volatiles that also attract pollinating insects to their host.
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Figure 1. Main chemical classes and selected components found in essential oils.

Lately, the interest in essential oils has focused on their bioactivity acting as biocontrol
agents, used at low concentrations against pests and disease-causing organisms, and thus
their potential use as alternatives to synthetic chemical pesticides for crop protection
and pest control means. This expansion of the potential uses of the EOs has intensified
academic and industrial research on the biological activities of these plant compounds [11].
Biocontrol is a widely used concept that has recently gained interest in the impartial control
of plant pests [12]. With the increasing recognition of integrated pest management [13],
the use of environmental-friendly biopesticides is an excellent alternative to synthetic
and contaminant chemicals and molecules [14]. They are biodegradable products with
low environmental toxicity and contribute to achieving more sustainable agricultural
production methods that meet consumer and societal expectations [15]. The EU framework
aims to achieve sustainable use of plant protection products by promoting integrated
pest management (Sustainable use of plant protection products—Publications Office of
the EU, 2020). In this context, numerous results have described the strong biopesticidal
potential of EOs due to their antifungal [16,17], insecticidal [9], or nematicidal activities [18].
However, their direct use as biopesticides has associated problems such as phytotoxicity,
which has long been considered a major obstacle to their development into biopesticides
(insecticides, fungicides, etc.), their potential impact on the organoleptic quality of the
resulting food, and the quantities needed [9]. Additionally, EOs suffer a loss of efficiency
when used directly in the field, mainly due to their volatile nature and susceptibility to
degradation [17]. Therefore, further research is needed to improve the practical applications
of EOs in biocontrol.

This review presents updated information on Eos’ sustainable production and their
direct/indirect plant protection effects.

2. Cultivation and Domestication of MAPs to Produce EOs

The chemical composition of essential oils varies significantly from one region to
another [19] and within the same territory depending on the different environmental
conditions [20]. The phenological plant phase plays an important role in EO yield and
varies with the plant species. EOs from MAPs are usually extracted from plants collected
during the flowering period, before the seeds germinate, which may cause a reduction in
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the regeneration of these plants. Therefore, high yield efficiencies are difficult to obtain,
highlighting the importance of the domestication of MAPs [21,22].

MAPs are sometimes collected without proper control resulting in loss of habitat. This
puts pressure on wild populations of medicinal plants, whose disappearance has acceler-
ated especially in developing countries such as India, China, Nepal, Kenya, Tanzania, and
Uganda [23]. Therefore, with the increasing demand for standardized homogeneous raw
material in industrial societies, wild MAP species have been domesticated and systemati-
cally cultivated for production [24]. Additionally, wild plants useful for humans are being
cultivated for conservation as Crop Wild Relatives (CWRs) [25].

Plant domestication offers several advantages over wild harvest for essential oil pro-
duction. It helps to avoid admixture and adulteration through reliable botanical identifica-
tion, provides better control over harvested quantities, and facilitates the selection of geno-
types with desirable characteristics, especially quality [24]. Additionally, domestication
controls the influence on the history of the plant material and postharvest handling [22–27].
The key initial steps are MAPs’ exact botanical identification and the detailed description
of the growing area. Likewise, it is necessary to carry out a phytochemical evaluation of
the initially collected plant material to identify the chemotypes [28]. The domestication
process could affect the chemical composition of MAPs and consequently affect their bio-
logical activities. For this reason, understanding the influence of domestication is critical
to conducting the cultivation of MAP species [29]. The numerous examples of successful
MAP domestication include Origanum L. sp. [29–32], Lippia L. sp. [33], Hyptis suaveolens (L.)
Poit. [34], Tagetes lucida Cav. [35], Artemisia absinthium L. [36] Lavandula luisieri (Rozeira)
Rivas Mart. [37], Mentha L. sp. [38], and Satureja montana L. [22].

Additional problems to be considered in MAP crop production are contamination
with heavy metals, the damage from pests and diseases, and pesticide residues. Therefore,
quality assurance measures are needed to ensure that plants are produced with care so that
negative impacts during the wild collection, cultivation, processing, and storage can be
limited. The guidelines for good agricultural practices and standards for Sustainable Wild
Collection have been established [26,39], including a grazing plan for the conservation of
habitats where useful wild species grow [40].

3. EOs in Plant Protection: Direct Effects
3.1. Antifungal Activity

Phytopathogenic fungi are responsible for nearly 30% of all crop diseases and may
have a high impact on crops, affecting them during cultivation, postharvest, or storage [17].
There is evidence of EOs’ effects on fungal cells [41–46], cell wall alterations [47,48], or gene
expression modifications, thus diminishing the fungal virulence [46,49,50].

The effects of EOs against a wide range of fungal species have been extensively studied
in vitro but not their mechanisms of action. A recent review on the potential of EOs for the
biocontrol of phytopathogens pointed out different mechanisms regarding their antifungal
properties [17]. The inhibition of the fungi cell wall formation, by a Cinnamomum zeylanicum
essential oil has been reported to exert antifungal activity in Candida albicans. This essential
oil triggered cell cycle arrest by disrupting beta-tubulin distribution, leading to mitotic
spindle defects, ultimately compromising the cell membrane, and allowing the leakage
of cellular components [51]. Citral, an EO component, inhibited ergosterol biosynthesis
in Penicillium italicum by affecting the expression of the ERG6 gene responsible for the
synthesis of ergosterol in pathogens [52,53]. The decrease in ergosterol synthesis affected
the fungal mitochondria by inhibiting the mitochondrial electron transport. An onion
EO, caused the depolarization of mitochondrial membranes by lowering the membrane
potential, affecting the ionic Ca++ circuit and ion channels, and the proton pump and ATP
pool, decreasing the pH gradient [54]. A decrease in energy metabolism may lead to a
slowdown in transcription and translation, consistent with slower ribosome biogenesis
and faster RNA degradation [46]. Melaleuca cajuputi EO reduced the MIC value (the lowest
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concentration of drug showing no visible growth) of fluconazole and the expression of
MDR1, a gene encoding drug efflux pumps in Candida albicans [55].

3.2. Nematicidal Activity

Plant-parasitic nematodes are the most destructive group of plant pathogens world-
wide, and their control is extremely challenging [56]. Thus, in the last decade, much effort
has been focused on the study of the nematicidal activity of EOs and their constituents as
potential sources of commercial products for the management of the root-knot nematodes,
Meloidogyne spp., one of the most economically damaging genera on horticultural and
field crops.

Many EOs extracted from different botanical families have been analyzed in vitro for
nematicidal activity mainly against Meloidogyne spp. [18]. Among EO-producing plants,
some families such as Lamiaceae, Asteraceae, Myrtaceae, Rutaceae, Lauraceae, and Poaceae
have been widely studied. Especially the EOs from MAPs of the genera Artemisia, Cym-
pogon, Lavandula, Mentha, Origanum, Ocimum, Satureja, Thymus, and aromatic trees of the
genera Citrus, Eucalyptus, and Eugenia, whose nematicidal effects on root-knot nematodes
(M arenaria, M. chitwoodi, M. hapla, M. incognita, and M. javanica), have been widely re-
ported [18,57–64].

The mode of action of EOs and their constituents is of practical importance for nema-
tode control because it may provide useful information on the most appropriate formulation
and delivery means. The neurotoxic effects on nematodes of EO components have been
reported, involving several mechanisms, particularly through GABA, octopamine synapses,
and acetylcholinesterase inhibition [18]. Recently, active EOs have been investigated to cor-
relate their mechanism of action for target-specific binding affinities toward the nematode
proteins. Molecular modeling and in silico studies suggest a higher binding capacity of
geraniol, b-terpineol, citronellal, l-limonene, g-terpinene, α-bulnesene, and α-guaiene to
the selected target proteins (ODR1 and ODR3 odorant response genes) and AChE [65,66].
The insight into the biochemical ligand–target protein interactions could be helpful in
the selection of biomolecules and essential oils for the development of practically viable
bionematicidal products [65].

3.3. Insecticidal Activity

The insecticidal action of EOs has been an area of intensive research lately. According
to recent bibliometric analyses, more papers have been published in recent years on this
group of natural insecticidal materials than on any other type of chemical class of plant-
derived natural products [11,67].

The toxic and sublethal behavioral effects observed in insects and related arthropods
can be attributed to the mono- and sesquiterpenoids present in essential oils [9,68]. Low
molecular weight terpenoids can inhibit acetylcholineesterase (AChE) enzyme activity in
laboratory bioassays, but such bioactivity seldom appears to correlate with toxicity in vivo
in target insect species [69]. Recently, a decrease in AChE activity was observed following
the exposure of Alphitobius diapering to EO of Illicium verum and correlated with the loss of
refuge-seeking capacity and loss of locomotor capacity [70]. The inhibition of the catalytic
activity of AChE, glutathione S-transferase (GST), and catalase (CAT) in Tribolium castaneum
has been reported for the EOs from Piper nigrum and Rosmarinus officinalis. Citrus sinensis,
P. aduncum, and Zanthoxylum monophyllum inhibited the GST activity and L. angustifolia,
C. sempervirens, and Eucalyptus spp. inhibited the CAT activity [71]. Octopamine receptors
have been identified as a target for some of these terpenoids [72–74]. Other targets in the
insect nervous system include GABA-gated chloride channels [75,76] and the nicotinic
acetylcholine receptor [77].

Plant EOs are often complex mixtures of terpenoids, and their bioactivity can be the
result of the synergy among constituents [68]. The synergy among the major constituents of
rosemary (R. officinalis) and lemongrass (C. citratus) EOs resulted from increased penetration
of toxicants through the insect’s integument [78–81]. A fumigant experiment against
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T. castaneum with a total of 23 EOs showed that the highest fumigant potential for EOs
correlated with a greater diversity in their composition [71]. Furthermore, mixtures in the
oil composition can reduce the development of resistance [82] and behavioral habituation
to deterrents [83,84].

The toxic effects of EOs can upregulate physiologically important proteins and en-
zymes in insects. M. arvensis EO caused high contact toxicity in Sitophilus granarius adults
and induced dramatic physiological changes in the exposed insects revealed by quantitative
proteomics analysis. Most of the differentially expressed proteins (DEPs) were upregulated
and related to the development and functioning of the muscular and nervous systems,
cellular respiration, protein synthesis, and detoxification [85]. In insecticide-resistant in-
sects, EOs can synergize insecticide toxicity by inhibiting detoxification enzymes. Topical
bioassays with the binary mixtures of deltamethrin and individual EOs or their major
constituents on the deltamethrin-resistant and -susceptible bed bugs (Cimex lectularius)
caused a significant increase in their mortality through the inhibition of the P450 activity
by EO constituents in resistant bed bugs [86].

4. EOs in Plant Protection: Priming Effects

Several articles have been published characterizing molecular plant responses to inor-
ganic and organic chemicals, plant elicitors, and pathogen or disease-associated molecular
patterns (PAMPs and DAMPs respectively). However, a lower number of studies have
been conducted to study the contribution of essential oils to combat phytopathogens at the
transcriptomic and / or metabolomic level [16]. EOs can act as priming molecules both in
biotic and abiotic plant stress responses [87] and are an effective and sustainable tool to
control seed-borne diseases [88–90]. The metabolomic approach has been used recently for
the characterization of metabolic pathways affected by plant priming [87].

The priming effects of some EOs improving plant tolerance to biotic stress have been
described (Table 1).

Table 1. List of essential oils with reported priming effects.

Phytopathogen Plant Essential Oil Primed Plant Crop Reference

Botrytis cinerea
Satureja hortensis Thymus

capitatus
T. vulgaris,

Apple, Tomato [90,91]

Colletotrichum
acutatum

Cinnamomum verum, Citronella sp.
Cymbopogon citratus Ocimum

basilicum
T. vulgaris,

Chili, Mango,
Strawberry [41,92,93]

C. gloeosporioides

C. verum
S. hortensis
T. vulgaris

Zingiber officinale

Avocado, Mango,
Papaya, Pepper fruit [42,94–96]

C. musae T. vulgaris Bananas [97]

C. nymphaeae Allium sativum Anethum
graveolens Rosmarinus officinalis Strawberry [43,98]

Fusarium wilt T. capitatus Tomato [91]
F. solani C. citratus Bean [99]

Mycosphaerella fijiensis Melaleuca alternifolia Bananas [49]
Phakopsora pachyrhizi Mentha piperita Soybean [100]

Plasmopara viticola T. vulgaris
Origanum vulgare Grapevine [101]

Avocado fruit exposed to thyme essential oil had higher antioxidant enzyme activities
(SOD, POD, and CAT) than the untreated control fruit [94]. Thyme essential oil was
evaluated in its capacity to protect tomato seedlings by the accumulation of peroxidases,
which are the first line of defense against ROS [91]. Based on gene expression results, it is
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postulated that one mechanism by which thyme effectively controls grey mold disease in
apple fruit is by inducing the PR -8 gene [90].

Mint volatiles triggered conserved signaling pathways in soybean plants and pro-
moted histone modifications of defense genes, including TI and PR1 [100]. The vapor
of O. vulgare EO triggered a multilayered immune system in grapevine. The analysis of
gene expression revealed a complex activation of hormonal interactions involving JA, ET,
and SA biosynthesis and their signaling cascades [101]. Allium sativum and R. officinalis
EOs preserved the quality parameters in treated strawberry fruits against Colletotrichum
nymphaeae due to an increase in their phenolic content and the activity of defense-related
enzymes such as peroxidase [98].

Recently, the direct and indirect plant protection effects of A. absinthium essential
oil on tomato seedlings against Fusarium oxysporum have been demonstrated. The EO
exhibited an in vitro antifungal effect. In addition, tomato seedlings germinated from seeds
pretreated with the EO were protected against the fungus. The EO treatment increased
callose deposition and the production of reactive oxygen species (ROS) on seed surfaces
and primed a durable defense. The metabolomic analysis of the EO-treated seedlings
showed an induction of vanillic acid, coumarin, lycopene, and oleamide in the presence
of the pathogen. RNA-seq analysis suggests that AEO treatment could induce de novo
epigenetic changes in tomato, modulating the speed and extent of its immune response
to F. oxyxporum. The EO-seed coating could be a new strategy to prime durable tomato
resistance, compatible with other environmentally friendly biopesticides [102].

5. Conclusions and Perspectives

Essential oils are active against plant pests and diseases (fungi, insects, nematodes,
etc.), have synergistic effects that lower the risk of resistance development, and therefore
are considered ingredients for the development of new biopesticides. However, problems
with biomass availability, chemical stability, formulation, and phytotoxicity among others
are the major obstacles to their development as biopesticides. Plant domestication and
cultivation can partially solve the problems related to chemical stability (chemotypes) and
biomass availability, while new formulations can be used to overcome the volatility and
stability problems.

Recently, the indirect effects (priming) of EOs on plants have been demonstrated,
opening new application opportunities. Most priming studies have been carried out
with EO-treated plants and fungal pathogens. Recently, a new application method (seed
coating with EO) has shown priming effects in tomato seedlings against a fungal pathogen
(F. oxysporum) involving metabolic and epigenetic changes in the plant. This application
required low amounts of EO and had long-term effects, opening new opportunities for the
development of EO-based biopesticides. However, more research is needed to determine
the specificity of the plant response to the EO composition and the biotic stress.
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