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Abstract: Due to abdominal infection, excessive wound exudation, and intestinal fistula formation,
the treatment of full-thickness abdominal wall defects has become a difficult challenge for clinic
doctors. This clinical problem cannot be resolved with existing biomaterials. To facilitate the repair
of the abdominal wall, we developed a novel wound dressing with directional biofluid transport.
We used electrospinning to spin a trilayer dressing consisting of hydrolyzed poly-acrylonitrile
(HPAN)/Curcumin (CUR), polyurethane (PU), and polycaprolactone (PCL). In vitro results show
that the three-layer wound dressing is biocompatible, capable of directional transport of excessive
wound exudation, preventing reverse penetration, and monitoring the pH of the wound. Furthermore,
in vivo results show the trilayer wound dressing improves the wound microenvironment, reduces
inflammatory factors, promotes angiogenesis, and accelerates abdominal wall repair. Thus, we
believe that the novel trilayer electrospinning dressing could facilitate abdominal wall defect repair.

Keywords: electrospinning; membrane; abdominal wall defect; pH monitoring; directional biofluid
transport; wound healing

1. Introduction

Full-thickness abdominal wall defect is accompanied by numerous complications,
including intra-abdominal infection, intestinal fistula, and water-electrolyte imbalance,
making wound protection and repair a challenging problem for clinicians [1–3]. Due to
enormous tension and infection, the wound surface cannot be directly reconstructed [4].
Typically, commercial polypropylene (PP) mesh is used to temporarily close the abdominal
wall. Meanwhile, Excessive wound exudate leads to bacterial proliferation and disturbance
of the wound microenvironment. Negative pressure wound therapy (NPWT) is employed
to reduce excess exudate [5,6]. However, PP mesh is susceptible to foreign body reaction,
leading to the development of intestinal fistula due to rubbing of the intestinal surface and
lack of biological functions, and the polyurethane sponge of the negative suction device
also easily induces intestinal fistula [7]. Additionally, the pH of a wound can indicate the
presence of an infection. The normal pH range for skin is 5–7, which is weakly acidic.
Following an injury, the pH value of the normal skin is rendered alkaline. Subsequently,
the pH value decreases and becomes acidic following an infection [8,9]. Therefore, it is
imperative to create a novel dressing with a pH monitoring property to protect the exposed
bowels and pump excess exudate to speed up abdominal wall repair.

Electrospun membranes are widely used in biological dressings, drug delivery, tissue
engineering scaffolds, etc., due to their excellent air permeability, biocompatibility, and
mechanical properties [10–15]. The traditional hydrophilic electrospun dressing can absorb
exudate, but the exudate remains on the wound surface [16]. Accordingly, directional water
transport electrospinning fiber membranes have developed rapidly in recent years, which
are composed of a non-wetting nanofiber membrane [17–21]. Owing to the difference in

Nanomaterials 2022, 12, 2802. https://doi.org/10.3390/nano12162802 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12162802
https://doi.org/10.3390/nano12162802
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://doi.org/10.3390/nano12162802
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12162802?type=check_update&version=2


Nanomaterials 2022, 12, 2802 2 of 12

wettability of the fiber membrane, the directional water transport electrospinning fiber
membrane can transport water from the hydrophobic layer to the hydrophilic layer and
is widely used in cleaning, biomedicine, textile, and other fields [22–27]. However, most
composite membranes are bilayer structures, and their weak water transport prevents
reverse osmosis capacity, limiting their applications [28]. Hence, a trilayer electrospinning
membrane with enhanced water pumping and prevention of osmosis in reverse capabilities
is anticipated in protecting abdominal wall defect open wounds and expediting abdominal
wall repair.

The biocompatible wound dressing offering directional biofluid transport was com-
posed of a hydrolyzed polyacrylonitrile (HPAN)/curcumin (CUR), polyurethane (PU),
and polycaprolactone (PCL) electrospinning membrane (Scheme 1). HPAN/CUR electro-
spun membranes were utilized as the surface layer for transporting wound exudate and
monitoring wound pH. The hydrolysis of PAN yields, whose hydrophilicity is enhanced
by the conversion of a large number of cyano groups to carboxyl groups in an alkaline
environment [23,29]. Curcumin (CUR) exhibits different colors at varying pH levels and
has been widely utilized as a pH indicator [30–35]. Additionally, polyurethane (PU) was
selected as the second layer to absorb water and promote its migration to the surface layer.
Moreover, hydrophobic polycaprolactone (PCL) was chosen as the inner layer to prevent
water reflux. The in vitro tests demonstrated low immediate cytotoxicity and excellent
hemocompatibility, whereas the animal studies demonstrated that the dressing effectively
promoted abdominal wall repair by draining excess exudate, improving the wound mi-
croenvironment, reducing wound inflammation, and accelerating angiogenesis. Therefore,
we believe that this trilayer electrospinning dressing is promising for the treatment of
abdominal wall defects.

Scheme 1. (A) Fabricating trilayer electrospinning dressing and (B) demonstration of transportation
of wound exudate to promote abdominal defect wound healing.
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2. Materials and Methods
2.1. Materials

Polycaprolactone (Mn 60,000–65,000, PCL) and Polyacrylonitrile (Mw 150,000, PAN)
were purchased from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China). Polyurethane
(PU) was purchased from Huafon Co. Ltd. (Zhejiang, China). 2,2,2-Trifluoroethanol, N,
N-Dimethylformamide (DMF), Chitosan (CS), and Curcumin (CUR) were purchased from
Aladdin Reagent Co., Ltd. (Shanghai, China). Mouse L929 cells were purchased from
Procell Co., Ltd. (Taiwan, China). DMEM and Live/Dead viability assay kit (KGAF001)
for animal cells was purchased from Keygen Biotechnology Co., Ltd. (Jiangsu, China). All
male SD rats (200 g) were provided by Jinling Hospital. The rats unrestrictedly obtained
food and water and were treated with the “Guidelines for the Care and Use of Laboratory
Animals”. All of the experiments and animal were approved by the Animal Investigation
Ethics Committee of Jinling Hospital.

2.2. Preparation of Electrospun Membranes

PCL was dissolved in 2,2,2-Trifluoroethanol to produce a 10 wt.% PCL solution, and
the solution was stirred at 26 ◦C for 6 h. The dissolution of PU solids in DMF solution
yielded a 15 wt.% PU solution. PAN and CUR were dissolved in a DMF solution to 15 wt.%
PAN and 8% CUR. The PCL solution was used to electrospun with a 24 G needle at 15 kV,
using an electrospinning device (JNS-MS-05-ME01, Nanjing Janus New-Materials Co.,
Ltd. (Jiangsu, China) at 15 kV. The distance between the collectors and the needle tip was
15 cm. Subsequently, the PU and PAN/CUR spinning solution were sequentially used to
carry out electrospinning, as previously described. The fiber membrane was then soaked
in an alkali solution for 5 min to convert PAN to HPAN. The fiber membrane was then
soaked in deionized water to remove the alkali solution and vacuum-dried to remove any
residual solvent.

2.3. Morphology of Electrospun Membranes

The morphology of PCL, PU, and HPAN/CUR were characterized using scanning
electron microscopy (SEM, Regulus8100, Hitachi Co., Ltd., Japan). Prior to the imaging,
the fibrous membranes were coated with gold and the samples were examined at an
accelerating voltage of 20 kV. Additionally, Image J software was used for image analysis
to determine the diameters of fibers and porosities of electrospinning.

2.4. Water Contact Angle of Electrospun Membranes

Briefly, a 3 µL water was dropped on the membrane’s top face, and the CA val-
ues at various times were measured by WCA meter (OCA20, Dataphysics Co., Ltd.,
Filderstadt, Germany).

2.5. pH Indicator Test of Fibrous Membranes

200 µL PBS solutions with different pH values were dropped on the HPAN/CUR
nanofibers. The color of the HPAN/CUR nanofibers treated at different pH and the CUR
solution at different pH were subsequently photographed. The photographs were then
analyzed using Adobe Photoshop. Additionally, we measured the absorbance of CUR
solution using a UV spectrophotometer.

2.6. Draining Ability and Prevention of Water Reversed Penetration

The ink was utilized as an exudate to test the biofluid draining capability of electro-
spun membranes in the abdominal wall defect wound. To test the draining ability of the
hydrophobic bilayer and trilayer electrospun membranes, 200 µL of blue ink was dropped
onto the hydrophobic surfaces and photographs were taken at different times. On the
hydrophilic of bilayer electrospun membranes and trilayer electrospun membranes, 200 L
of blue ink was dropped to test the prevention of water reversed penetration, and the
residual ink on the bottom paper was photographed.
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2.7. Cytotoxicity Test and Hemolysis Test

For the cytotoxicity test, the blank group (no added materials) was used as the control
group, and the PCL, bilayer (PCL/PU), and trilayer were used as three experimental groups.
These different samples were soaked in DMEM for 24 h after being UV sterilized. The L929
cells were subsequently treated with a leaching solution [20]. Additionally, the CCK-8 kit
was used to determine the viability of L929 cells. A Live-Dead Staining Kit was utilized to
stain the seeded cells after 24 h and 48 h. Those photographs were then photographed by a
fluorescence microscope.

The hemolysis test was used to evaluate the blood compatibility of the electrospun
film. Red blood cells were obtained by centrifuging the whole blood at 1000 rpm for 8 min
at 4 ◦C and washing it using a normal saline solution. Various 1 mg samples were soaked in
normal saline solutions containing 5% blood cells. DI water was used as a positive control
and the normal saline solution was used as a negative control. After 2 h, the solutions were
centrifuged to collect the supernatant, and the absorption was measured at 540 nm. The
hemolysis rates were computed using the following equation:

Hemolysis rate (%) = (OD sample/OD positive group) × 100%

2.8. In Vivo Full Abdominal Wall Defect Study

To test the effect of electrospun membrane on abdominal defects, 9 SD rats (200–250 g)
were used. We incised a hole (diameter: 2 cm) in the full-thickness abdominal wall of
anesthetized rats. The control group was administered commercially available polypropy-
lene mesh, while the experimental group was administered the bilayer and the trilayer
electrospun membrane. We removed the dressing on day 7. Abdominal wall defects in rats
were photographed on days 0, 5, and 14. On the 14th day, the new granulation tissue of
the abdominal wall was collected for subsequent experiments. The wound healing process
was simulated using one photograph of a representative animal wound in each group. The
testing wound pH value was analyzed by color photograph and the actual pH value of the
wound was tested with pH precision test paper on days 0, 1, 2, and 3.

2.9. Histology, Immunohistochemistry, and Immunofluorescence Staining

Tissue samples were dehydrated, paraffin-embedded, and microtome-sliced. For HE
staining, hematoxylin-eosin was used. For immunohistochemical staining of IL-6 and
TNF-α, IL-6 antibody (Abcam, ab9324) and anti-TNF-α antibody were employed (Abcam,
ab109322). Anti-CD31 antibody (Abcam, ab64543) was used as the primary antibody to
label blood vessels for immunofluorescence staining.

2.10. q-PCR

Tissue samples were soaked in Trizol to extract RNA. The mRNA was subsequently
quantified using quantitative real-time PCR. The primers in q-PCR are listed in Supplemen-
tal Information Table S1.

2.11. Statistical Analyses

We used either a one-way ANOVA, two-way ANOVA test and t-test to analyze statis-
tical differences. Quantitative data were indicated as mean ± standard deviation (SD). Ad-
ditionally, differences at p < 0.05 (* < 0.05, ** < 0.01, *** < 0.001) were considered significant.

3. Results and Discussions
3.1. Characterization of Electrospinning Membrane

Using an electrospinning machine and a layer-by-layer assembly technique, we elec-
trospun this dressing. All electrospinning membranes in Figure 1A have a uniform fiber
thickness, a smooth surface, and a random directional distribution. Additionally, the PU
membranes have the thinnest fiber diameters compared to other groups, whereas the PCL
membranes have the thickest fiber diameters. The pore sizes of the three membranes are
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also similar, ranging from a few microns to tens of microns. The three-layer structure can
also be observed in the cross-sectional SEM image (Figure 1B). As shown in Figure 1C–E,
the diameters of HPAN/CUR, PU and PCL fibers were 1228.0 ± 231.5, 462.7 ± 119.8,
and 1930.0 ± 447.1 nm, respectively. The porosities of HPAN/CUR, PU, and PCL were
43.4 ± 3.2%, 56.7 ± 7.0%, and 55.0 ± 6.9%, respectively (Figure 1F), indicating that water
can be directionally transported through the fiber membrane pores. The dressing must be
sufficiently flexible to conform to irregular wound surfaces. Accordingly, the electrospun
dressing can be easily bent and folded into multiple angles, demonstrating a high degree
of flexibility (Figure 1G). Water directional transport depends on the difference between
the hydrophilicity and hydrophobicity of fiber membranes; therefore, we measured the
water contact angle of each fiber membrane. In Figure 2A, the water contact angle of
PCL is 123.3 ± 2.1◦ in 1 s. The water contact angle of PCL does not change much over
time and is 103.0 ± 0.5◦ at 240 s. This suggests that PCL possesses certain hydrophobic
properties and can serve as the bottom layer to prevent reverse osmosis of exudate. PU
is more hydrophilic than PCL, with a water contact angle of 101.7 ± 0.9◦ at 1 s. As PU
has been modified, it undergoes significant changes when exposed to water, becoming
81.0 ± 0.5◦ after 60 s and 14.2 ± 0.7◦ after 240 s. This property of the material enables the
PU membrane to function as an intermediate transition layer. Even with the addition of a
small amount of hydrophobic cur, HPAN/CUR remains hydrophilic because the hydrolysis
of PAN generates a large number of carboxyl groups. Accordingly, the water contact angle
of HPAN/CUR is 64.7 ± 0.9◦, 46.6 ± 0.2◦, 39.5 ± 0.3◦, and 26.5 ± 0.3◦ at 1, 2, 3, and 4 s,
respectively. The water droplets are quickly absorbed at the drop of 8 s, which adequately
demonstrates the excellent water absorption capacity of HPAN/CUR.

Figure 1. (A) SEM images of HPAN/CUR, PU, and PCL. (B) SEM images of Cross section.
(C–E) The distribution of fiber diameter HPAN/CUR, PU, and PCL. (F) The Porosity of PCL, PU, and
HPAN/CUR. (n = 3, ns = no significance) (G) The photographs of dressing with different degrees of
twisting. Scale bars are 1 cm in G.
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Figure 2. (A,B) The photos and values of water contact angle of PCL, PU, HPAN/CUR in different
time points. (C) Absorbance of 8% curcumin solution at different pH values. (D) Color photos and
LAB values of 8% curcumin solution at different pH values. (E) Color photos and LAB values of
trilayer dressing at different pH values. (LAB: The values of the three channels L, A, and B represent
the color of the picture).

3.2. pH Response of Electrospinning Membrane

Curcumin is an FDA-approved natural pigment that exhibits different colors at dif-
ferent pH levels. We evaluated 8% CUR solutions absorbance with varying pH values
(Figure 2C). Accordingly, the UV-Vis spectrum shows different absorption peaks at pH
5.5, 6.5–7.5, and 8.5. Subsequently, image color for the L, A, and B channels of the CUR
solutions and trilayer electrospun membrane were analyzed at pH 5.5, 6.5, 7.5, and 8.5. The
color and LAB values are distinct at pH 5.5, 6.5, 7.5, and 8.5, indicating that the trilayer
electrospun membrane could serve a pH indicator in the wound healing process. As pH
increased, the color of the 8% CUR solution transformed from the pale yellow to the orange.
However, in an acidic environment, the color of the solution hardly changes, but when it
becomes alkaline, the color changes from yellow to orange (Figure 2D,E).

3.3. Directional Water Transport Capability and Reverse Permeation Prevention

To test the water transport ability of the dressing, 200 µL of blue ink was deposited on
the hydrophobic side. As evident in Figure 3A, both the bilayer and trilayer electrospun
membranes have the capacity to pump water, with the trilayer membrane having a greater
capacity than the bilayer membrane. Additionally, the blue ink was absorbed rapidly
and absorbed completely in 240 s in the trilayer electrospinning membrane group, while
the complete absorption of the blue ink in the bilayer group required 300 s (Figure 3C).
Moreover, we dropped ink on the hydrophilic side of the trilayer membrane, which re-
vealed that the water was quickly absorbed by the HPAN/CUR within a few seconds.
Additionally, no liquid was observed on the bottom of the paper, indicating that the PU
layer made it difficult for the water to reach the PCL membrane. However, water infil-
tration was slow on the bilayer membrane, and blue ink appeared at the bottom after
long-term infiltration, which could be attributed to the absence of a buffer layer, resulting
in the water droplets directly contacting the PCL membrane after absorption and diffusion
(Figure 3B). We also calculated the wetting area in Figure 3D, which demonstrated that
the wetting area of the bilayer membrane is greater than that of the trilayer membrane.
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The potential mechanism for the directional transport of water by the electrospun film is
presented in Figure 3E. As evident from the figure, a hydrophobic force is generated by the
hydrophobic properties of the membrane, whereas a hydrostatic force is generated by the
water’s gravitational pull. The capillary force can be used via the Young–Laplace equation
(Laplace-pressure = 4γ*cosθ/Dpore), where γ, θ, and Dpore represent the surface tension,
water contact angle, and the pore size, respectively [28]. This capillary force is directly
proportional to the pore size of the film and inversely proportional to the water contact
angle of the film. However, in practical applications, we have observed that the pore size
has a negligible effect and that the water contact angle plays the most important role. When
water droplets drip from the hydrophobic side, they are initially exposed to the hydropho-
bic effect of the PCL membrane and hydrostatic pressure. The water droplets then pass
through the hydrophobic layer by the capillary force of PU and then transfer to the lowest
layer by the capillary force of HPAN. Conversely, when a water droplet drips from the
hydrophilic side, capillary force causes it to spread to both sides. Subsequently, when water
droplets reach the hydrophobic layer, the capillary force and hydrophobic force of the upper
layer are greater than the hydrostatic force, preventing them from penetrating downward.

Figure 3. (A) Water contact angle (WCA) and images of bilayer and trilayer in hydrophobic side
after dropping water. (B) Images and the penetrating area of bilayer and trilayer in hydrophilic side
after dropping water. (C) WCA of bilayer and trilayer. (D) Penetrating area in hydrophilic side after
dropping water. (n = 3, mean ± SD, ** p < 0.01) (E) The mechanism of the directional water pump
form different side.

3.4. Biocompatibility of the Trilayer Electrospinning Membrane

Because a wound dressing is in direct contact with the wound surface, it must have
good biocompatibility. The biocompatibility of the trilayer membrane was determined
through cytotoxicity and hemocompatibility tests. Figure 4A,B demonstrates that the
number of dead cells is small in both the 24 h and 48 h groups, with the 48h group containing
more dead cells than the 24 h group. Additionally, the live-dead staining confirmed the good
biocompatibility of the PCL, bilayer, and trilayer membranes. Concurrently, we utilized
CCK8 kit to determine cell viability (Figure 4C). At 24 h, the cell viability of all groups are
greater than 90%, but decreased as the number of membrane layers increased. Similar to
the results of the fluorescence photographs, the cell viability at 48 h was greater than that
at 24 h, but the overall mortality rate was greater than 80%. Additionally, we evaluated
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blood compatibility, which revealed that the hemolysis rate of the fibrous membrane was
less than 5%. This suggests that none of the membranes will cause hemolysis and have the
potential for use as a biocompatible material (Figure 4D).

Figure 4. (A) The Live/Dead staining of control, PCL, bilayer, and trilayer on 24 h. (B) The Live/Dead
staining of control, PCL, bilayer, and trilayer on 48 h. (C) Cell viability of control, PCL, bilayer, and
trilayer on 24 h and 48 h (n = 3, ns = not significance. * p < 0.05, **** p < 0.0001 compared with control
group, mean ± SD). (D) Hemolysis ratio of control, negative, PCL, bilayer, and trilayer (n = 3). Scale
bars are 100 µm in (A,B).

3.5. In Vivo Experiments

We also examined the effect of the electrospun membrane dressing on wounds using a
rat model of full-thickness abdominal wall defect. We created a circular full-thickness defect
(diameter: 2 cm) in the abdominal wall of rats, inserted PP mesh, bilayer electrospinning
membrane, and trilayer electrospinning membrane into the defect, and took photographs
on the fifth and fourteenth days to determine the wound area (Figure 5A–C). On the fifth
day, the wounds in the PP mesh group were red, swollen, whitish, and full of exudations,
whereas the wounds in the other two groups of dressings had no exudations and the
wound area of the three-layer film was smaller than that of the double-layer film. It reflects
the function of the electrospinning dressing to absorb the exudate, and the drainage effect
of the trilayer is superior to that of the bilayer. At day 14, the wound area caused by the
trilayer membrane was minimal and demonstrated the ability to promote abdominal wall
repair. The pH of a wound is frequently associated with infection, and abdominal wall
defects are frequently accompanied by abdominal infection; therefore, monitoring the pH
of a wound can indicate abdominal infection. We measured the pH level of the wound
and compared the color of the surface of the dressing (Figure 5D). On the first day of the
wound, the pH was observed to decrease before increasing continuously. Further, the pH
value indicated by the dressing was very close to the actual pH value, thus, it can be used
as an indicator to monitor the wound infection.
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Figure 5. (A) Representative photograph of wounds on days 0, 5, and 14. (B) The typic abdominal
wall healing photograph simulated by image software (Green: 0day, Bule: 5day, Yellow: 14day).
(C) Abdominal wall healing rate of days 0, 5, and 14 (n = 3). (D) The wound pH value of testing
and real on days 0, 1, 2, and 3. Scale bars are 1 cm in (A) (n = 3). (** p < 0.01, *** p < 0.001, ns = not
significance, mean ± SD).

To further investigate the effect of dressing, we performed a pathological analysis of
the newly formed granulation tissue. In Figure 6A, the group treated with a trilayer dressing
had the greatest thickness of abdominal wall granulation tissue, and the intestinal serosa
layer remained intact, demonstrating the ability to promote abdominal wall healing and to
protect the exposed intestinal surface. In the PP group, bilayer group, and trilayer group,
the granulation tissue was 1.1 ± 0.1, 1.7 ± 0.1, and 2.3 ± 0.2 mm thick, respectively. We also
detected the inflammatory factors IL-6 and TNF-α to determine the level of inflammation
in the wound. The PP group had the highest level of inflammation, whereas the trilayer
dressing group had the lowest level of inflammation, indicating that the dressing can
drain excess exudate and reduce the level of inflammation. Due to the reduction of
inflammation, the wound healing process could rapidly change from an inflammatory
phase to a granulation phase, which stimulates angiogenesis and further accelerates wound
healing. As anticipated, the trilayer dressing had the highest amount of angiogenesis.
The densities of the blood vessels in the PP group, bilayer group, and trilayer group are
42.3 ± 2.5, 95.0 ± 13.2, and 120.0 ± 10.0/mm2, respectively (Figure 6C). The level of
inflammatory factors and growth factors could reflect the situation of tissue growth [36,37].
We determined the mRNA levels of pro-inflammatory (IL-6, TNF-α) and pro-healing (IL-4,
IL-10, TGF-β, PDGF). In Figure 6D, the expression levels of inflammation-related mRNA
in the PP mesh group were higher than those in the trilayer dressing group, whereas the
expression levels of healing-related mRNA were lower. Thus, the results successfully
demonstrate the dressing’s ability to reduce inflammation and to promote wound repair.
Although good curative effects have been observed in animal experiments, due to the
limitations of faster healing in animal models and certain differences between humans,
more clinical experiments should be conducted to explore the real curative effects. In
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addition, rats are highly resistant to infection and further studies could add antibacterial
components to increase the functional versatility of the dressing.

Figure 6. (A) H&E-stained, immunohistochemistry of IL-6, immunohistochemistry of TNF-α, and
immunofluorescence of CD31. (B) Quantitative analysis of granulation tissue thickness. (C) Quantita-
tive analysis of blood vessel density. (D) mRNA expression of IL-6, TNF-α, IL-4, IL-10, TGF-β, and
PDGF. (n = 3, mean ± SD, * p < 0.05, ** p < 0.01, *** p < 0.001).

4. Conclusions

We designed a trilayer electrospinning dressing with directional water transport for
abdominal wall defect wound healing. The electrospun dressing demonstrated superior
mechanical properties, high flexibility, and stability. Additionally, the excellent directional
pumping capability of the electrospun trilayer dressing was verified and its ability to
prevent reverse osmosis was confirmed. In addition, it also demonstrated a precise pH
monitoring function. Moreover, the cytotoxicity and hemocompatibility of the dressing
were validated from the results of the in vitro experiments. Additionally, the dressing was
found to drain excess exudate, improve the wound microenvironment, reduce wound
inflammation, accelerate angiogenesis, and promote abdominal wall repair in the animal
studies conducted. Thus, the novel dressing designed based on clinical requirements has
great potential, and we believe it can be utilized in abdominal wall defects.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12162802/s1. Table S1: The primer sequences of mRNA.

https://www.mdpi.com/article/10.3390/nano12162802/s1
https://www.mdpi.com/article/10.3390/nano12162802/s1
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