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Abstract: Synthesizing micro-/nano-sized pharmaceutical compounds with an appropriate size
distribution is a method often followed to enhance drug delivery and reduce side effects. Supercriti-
cal CO2 (carbon dioxide) is a well-known solvent utilized in the pharmaceutical synthesis process.
Reliable knowledge of a drug’s solubility in supercritical CO2 is necessary for feasible study, model-
ing, design, optimization, and control of such a process. Therefore, the current study constructs a
stacked/ensemble model by combining three up-to-date machine learning tools (i.e., extra tree, gradi-
ent boosting, and random forest) to predict the solubility of twelve anticancer drugs in supercritical
CO2. An experimental databank comprising 311 phase equilibrium samples was gathered from the
literature and applied to design the proposed stacked model. This model estimates the solubility of
anticancer drugs in supercritical CO2 as a function of solute and solvent properties and operating
conditions. Several statistical indices, including average absolute relative deviation (AARD = 8.62%),
mean absolute error (MAE = 2.86 × 10−6), relative absolute error (RAE = 2.42%), mean squared error
(MSE = 1.26 × 10−10), and regression coefficient (R2 = 0.99809) were used to validate the performance
of the constructed model. The statistical, sensitivity, and trend analyses confirmed that the suggested
stacked model demonstrates excellent performance for correlating and predicting the solubility of
anticancer drugs in supercritical CO2.

Keywords: artificial intelligence technique; ensemble model; anticancer solid drugs; solubility;
supercritical CO2

1. Introduction

The low solubility of solid pharmaceutical substances in the aqueous-based media of
the human body is often resolved by utilizing a higher dosage of drugs [1,2]. This increase
in the dosage usually increases the cost of pharmacological treatment [3], decreases the
drug’s therapeutic efficiency, and produces several side effects [2,4]. To overcome these
critical limitations/drawbacks, synthesizing either micro- or nano-sized pharmaceutical
substances with a uniform size distribution has been suggested by researchers [2,5]. Some
researchers also used the ionically crosslinked complex [6] and self-indicating cellulose-
based [7] gels to improver drug delivery. Therefore, a practical process must be established
to synthesize pharmaceutical substances with these morphological characteristics.

Supercritical CO2, which is a well-known solvent in the chemical [8], petroleum [9],
polymer [10], energy [11], and food [12] industries, has also been successfully engaged
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in medical [13] and biomedical [14] engineering. The solubilities of stomach statin [15],
malaria [16], Coronavirus [16], anti-inflammatory [17], antifungal [18], anti-hypertension [19],
anticonvulsant [5,20], antibiotic [21], anti-prostatic tumor [5], antidiabetic [22], antiepilep-
tic [23], and anti-cancer [24] drugs in supercritical CO2 have been experimentally mea-
sured/analyzed. These experimental investigations have often monitored the effect of
temperature and pressure on the drug dissolution in supercritical CO2. Cancer is among
the most deadly diseases known to humanity [25,26], but the solubility of anticancer drugs
in supercritical CO2 is often low and ranges from 10−7 to 10−3 mole fraction. The litera-
ture has stated that measuring this low-scale property is expensive, time-consuming, and
difficult [27].

Therefore, some researchers have utilized equations of state to simulate solid drug solu-
bility in supercritical CO2 [28,29]. This technique relies on the solid drugs’ physio-chemical
and critical properties to calculate their solubility in supercritical CO2 [2]. Unfortunately,
equations of state not only require complex mathematical operations, but the required
drug’s characteristics are also often unavailable [2].

Several empirical/semiempirical correlations have also been recommended to estimate
the solubility of solid drugs in supercritical CO2 [30–33]. Although these correlations are
easy to use and only require temperature, pressure, and solvent density to calculate the
drug solubility value, they are often applicable for a specific system under predefined
operating conditions [13]. Therefore, these methods cannot be applied to monitor the
solubility of drugs in supercritical CO2 in a wide range of domains [13].

Recently, artificial intelligence models have been considered to estimate drug dis-
solution in supercritical CO2 as a function of operating conditions and solvent prop-
erty [16,27,34,35]. The quantitative structure–property relationships [27], artificial neural
networks [36,37], adaptive neuro-fuzzy inference systems [13,34], and support vector
machines [37,38] have been applied to predict both drug and drug-like substances in
supercritical CO2.

The stacked/ensemble models that are often constructed by systematically combining
several previously designed machine learning (ML) models have found great popularity
in different fields of science and technology [39–41]. This up-to-date modeling scenario
has not previously been utilized to estimate anticancer drug solubility in supercritical CO2.
Therefore, the current research combines the extra tree (ET), gradient boosting (GB), and
random forest (RF) models to construct a reliable stacked model for estimating anticancer
drug solubility in supercritical CO2. The suggested stacked approach can monitor the
solubility of twelve anticancer drugs in supercritical carbon dioxide in a broad range of
operating conditions. We can claim that the proposed model in this study is straightforward,
easy to use, generalized, and has no applicable range limitation. Moreover, such an
approach is essential for designing pharmaceutical processes using supercritical CO2.

2. Anticancer Drugs’ Solubility in Supercritical Carbon Dioxide

Laboratory investigations, empirical or semiempirical correlations, and machine learn-
ing models are often employed to measure or estimate the solubility of a specific solid
drug in supercritical CO2 versus equilibrium pressure/temperature and solvent density.
Since this study aims to design a single model for simultaneously estimating the solubility
of twelve anticancer drugs in supercritical CO2, it is also necessary to include the solute
property in the model development phase. Therefore, the machine learning models have
been applied to extract the relationship defined by Equation (1).

ycal
drug = ML

(
Mdrug, Teq, Peq, ρCO2

)
(1)

It can be said that the machine learning methods are responsible for deducing the
inherent relationship between the solubility (ycal

drug) and drug molecular weight (Mdrug),
equilibrium temperature (Teq) and pressure (Peq), and solvent density (ρCO2 ).
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Table 1 introduces the experimental data gathered from the literature to develop the
machine learning models. Moreover, Table 2 reports the molecular weight of the considered
anticancer drugs and their chemical structure.

Table 1. Experimental data reported in the literature for the solubility of anticancer drugs in super-
critical CO2.

Anticancer Drug
Pressure Temperature CO2 Density Drug Solubility

No. of Data Ref.
bar ◦C kg/m3 Mole Fraction

Sunitinib malate 120–270 35–65 388–914 5.00 × 10−6–8.56 × 10−5 24 [23]

Busulfan 120–400 35–65 383–971 3.27 × 10−5–8.65 × 10−4 32 [24]

Tamsulosin 120–270 35–65 384–914 1.80 × 10−7–1.01 × 10−5 24 [28]

Azathioprine 120–270 35–65 388–914 2.70 × 10−6–1.83 × 10−5 24 [42]

Paclitaxel 100–275 35–55 654–915 1.20 × 10−6–6.20 × 10−6 21 [43]

5-Fluorouracil 125–250 35–55 541–901 3.80 × 10−6–1.46 × 10−5 18 [43]

Thymidine 100–300 35–55 325–928 1.20 × 10−6–8.00 × 10−6 25 [43]

Capecitabine 152–354 35–75 477–955 2.70 × 10−6–1.59 × 10−4 35 [44]

Decitabine 120–400 35–65 383–971 2.84 × 10−5–1.07 × 10−3 32 [45]

Letrozole 120–360 45–75 319–922 1.60 × 10−6–8.51 × 10−5 20 [46]

Sorafenib tosylate 120–270 35–65 388–914 6.80 × 10−7–1.26 × 10−5 24 [47]

Tamoxifen 120–400 35–65 383–971 1.88 × 10−5–9.89 × 10−4 32 [48]

Table 2. Molecular weights and chemical structures of the investigated anticancer drugs.

Anticancer Drug Molecular Weight Molecular Structure

5-Fluorouracil 130
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Table 2. Cont.

Anticancer Drug Molecular Weight Molecular Structure
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It should be mentioned that each row of Table 1 is actually a summary of multiple data
instances, and that pressure, temperature, and CO2 density are input features. Moreover,
an additional input feature is the molecular weight of drugs from Table 2, and the target
feature to predict is anti-cancer drug solubility in supercritical CO2.

3. Methods

This study first develops three different ML regressors (i.e., extra tree, gradient boost-
ing, and random forest) to monitor the equilibrium behavior of anticancer drug– supercriti-
cal CO2 systems. It then develops a stacked model using the three previously developed
models as a base learner and linear regression as a meta learner.

3.1. Extra Tree

Geurts et al. [49] originally derived the extra tree regression (ETR) approach from the
random forest (RF) algorithm [50]. According to the conventional top-down technique, the
ETR develops a group of unpruned decisions (or regression trees) [49]. The ETR and RF
models have two main differences. First, ETR utilizes whole cutting points and divides
nodes by the random choice among these points. Second, it cultivates the trees utilizing the
whole-learning samples to reduce bias as much as possible [49]. ETR controls the splitting
process helping two parameters, namely, k and nmin. The former is the number of randomly
chosen features in the node, and the latter represents the minimum sample size expected
to separate nodes. In addition, k and nmin determine the strength of both the selection of
attributes and the average output noise, respectively. These parameters have a key role in
improving the ETR accuracy and decreasing the possibility of overfitting [50].

3.2. Gradient Boosting

The gradient boost model (GB) is an ensemble regressor used to enhance accuracy of
function approximation, according to the boosting process [51]. This scenario gradually
reduces observed error by sequentially combining several weak learners. This study
employs the decision tree as a weak learner. Although the performance of GB-based
models depends on the loss function, the logarithm of loss function is often applied to
handle regression problems. Furthermore, adaptive components and weak learners are the
key parameters of GB-based models. If a gradient boosting model has 300 n estimators,
it means that 300 decision trees (weak learners) have been coupled under the boosting
process, and each tree is limited to 300 max depth.
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3.3. Random Forest

To perform a regression problem by the random forest (RF) method, the bootstrapping
and bagging stages should be followed. The first stage generates a group of decision trees
by the growth of each distinct tree that uses a random training dataset sample. The second
stage breaks down the decision tree nodes after achieving the ensemble, where several
random subdivisions of training samples are chosen during the initial bagging process.
The decision-making is performed by choosing the best subdivision and its value [52].
In summary, the RF model can be viewed as a group of decision trees, in which G(x, θr) is
the Gth predicting tree and θ shows a uniform independent distribution vector assigned
before the tree growth [53]. The Breiman equation (i.e., Equation (2)) is used to construct
the forest (i.e., an ensemble of trees) by combining and averaging the whole trees [53].

G(x, θ1, . . . . . . θr) =
1
R

R

∑
r=1

G(x, θr) (2)

3.4. Stacked Model

The study proposed a stacking-based approach and compared the performance with
conventional ML regressors. This approach consists of a two-step learner such as base-
learner and meta-learner. The three best-performing ML regression models were selected
as base-learner models in the stacking model and linear regression was used as a meta-
learner model (M f ) in the second phase of the stacking model and eventually produced
the final prediction. Figure 1 shows the architecture of the proposed stacking model, which
combined p numbers of best-performing regression models M1, . . . . . . , Mp using an input
dataset A, with features (xi) and corresponding label (yi). In the first step, p numbers of
base-level ML regression models produced the predictions ŷ1, . . . . . . , ŷm. The predictions
of the base learners were fed into the meta learner model (M f ) for the final prediction.
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Figure 1. The general architecture of the stacked approach.

Algorithm 1 provides a step-by-step procedure to explain the construction of the
stacked model.

It should be mentioned that the predictions of the level 0 model (base learner) are used
as input to the level 1 model (meta learner). Moreover, the same set of training instances in
the level 1 model (meta learner) and level 0 model are used (just with different features,
obtained from base model predictions).
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Algorithm 1. The algorithm used for developing the stacked model

Input: training data A = {xi, yi}
m
i=1

Output: a stacking regressor Mf
1: Step 1: perform the training of the base-level regressors
2: for t = 1 to T do
3: Train ht based on database of A
4: end for
5: Step 2: design new database of predictions
6: for i = 1 to m do
7: Ah = {xi

′, yi}, where xi
′ = {h1(xi), . . . . . . , hT(xi)}

8: end for
9: Step 3: perform the training of the meta-regressor
10: perform the training of Mf based on Ah
11: return Mf

3.5. Performance Analysis

This study evaluates and compares the accuracy of the base and stacked machine
learning scenarios using the AARD% (Equation (3)), R2 (Equation (4)), MAE (Equation (5)),
RAE% (Equation (6)), and MSE (Equation (7)) indexes [54–56]. These indices quantify the
deviation between the experimental solubility values (yexp

drug) and the calculated solubility

data by the machine learning models (ycal
drug).

AARD% =
N

∑
n=1

100×
(∣∣∣yexp

drug − ycal
drug

∣∣∣/yexp
drug

)
n

/N (3)

R2 = 1−
N

∑
n=1

(
yexp

drug − ycal
drug

)2

n
/

N

∑
n=1

(
yexp

drug
− yave

drug

)2

n
(4)

MAE =
N

∑
n=1

(∣∣∣yexp
drug − ycal

drug

∣∣∣)
n

/N (5)

RAE% = 100 ×
N

∑
n=1

(∣∣∣yexp
drug − ycal

drug

∣∣∣)
n
/

N

∑
n=1

(∣∣∣yexp
drug − yave

drug

∣∣∣)
n

(6)

MSE =
N

∑
n=1

(
yexp

drug − ycal
drug

)2

n
/N (7)

The above statistical criteria also require the average value of drug solubilities (yave
drug)

and the number of data (N). Equation (8) defines the average value of drug solubilities in
supercritical CO2.

yave
drug

=
N

∑
n=1

(
yexp

drug

)
n

/N (8)

Moreover, several graphical techniques (cross-plot, histogram, kernel density estima-
tion, and Bland-Altman) and trend analyses have been applied to check the performance of
the most accurate machine learning approach (i.e., the stacked model).

4. Results and Discussion
4.1. Developing Base Machine Models

The anticancer drug–supercritical CO2 phase equilibrium measurements (311 datasets)
were randomly divided into internal and external groups (4:1 ratio). The five-fold cross-
validation utilized the earlier group (i.e., 248 data samples) for the training and validation
phases of the base learner machines. On the other hand, the remaining 63 data samples
were engaged in the testing phase of the trained base-learner machines.
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In this study, we leverage the hyperparameter optimization framework Optuna [57] as
follows. First, the corresponding parameter spaces for the Scikit-Learn implementations of
the RF, ETR, and GB models were identified. Then, the objective function (OF) was defined
as the MSE. Lastly, a pipeline was applied to minimize the OF over a predefined maximum
iteration on multiple cores (i.e., 300). Some of the RF and ETR hyperparameters, including
the number of trees in the forest (i.e., number of estimators) were adjusted. We checked
80–150 trees in the forest and the best accuracy was obtained with 110 trees for the RF and
100 trees for ETR. Furthermore, upon checking different accuracy criteria (i.e., squared
error, absolute error, and Poisson), squared error shows the best performance for both ETR
and RF algorithms. In addition, the GB model [51] was tuned by the learning rate, ranging
from 0.0 to 1 with a step size of 0.1. The results show that the learning rate = 0.2 produced
the best performance. The model was also tuned with diverse loss functions (i.e., squared
error, absolute error, Huber, and quantile). It was found that absolute error provided the
model with the best performance. All reported results in this study were obtained by using
the optimized models.

Table 3 introduces the uncertainty level observed in predictions of the base learner
machines. The numerical values of five statistical indices are reported for the internal
and external groups, as well as their combination. This table confirms that the deviation
between the experimental solubility measurements and the associated predictions by the
base-learner machines was relatively high. The extra tree model prediction accuracy was
better than two other developed regression machines.

Table 3. Prediction accuracy of the base leaner machines.

Base Learner Model Subgroup AARD% MAE RAE% MSE R2

Extra tree
Internal 11.52 9.21 × 10−6 7.71 1.19 × 10−9 0.98283
External 37.44 2.58 × 10−5 22.85 2.36 × 10−9 0.95534
All data 16.77 1.26 × 10−5 10.63 1.43 × 10−9 0.97838

Gradient boosting
Internal 21.04 1.57 × 10−5 13.13 1.40 × 10−9 0.97898
External 43.07 2.48 × 10−5 21.99 1.97 × 10−9 0.95756
All data 25.50 1.75 × 10−5 14.82 1.52 × 10−9 0.97560

Random forest
Internal 20.27 1.50 × 10−5 12.53 1.54 × 10−9 0.98354
External 44.29 2.51 × 10−5 22.20 2.51 × 10−9 0.94926
All data 25.14 1.70 × 10−5 14.38 1.73 × 10−9 0.97844

4.2. Designing the Stacked Model

As mentioned before, it is possible to build a stacked model by combining the pre-
vious three base learner machines utilizing the flowchart presented in Figure 1. Table 4
summarizes the prediction accuracy of the built stacked model in the cross-validation and
testing phases and for all available datasets.

Table 4. Prediction accuracy of the stacked model.

AI Scenario Subgroup AARD% MAE RAE% MSE R2

Stacked model
Internal 9.46 3.18 × 10−11 2.66 1.51 × 10−20 0.99791
External 5.35 1.62 × 10−11 1.44 2.66 × 10−21 0.99946
All data 8.62 2.86 × 10−6 2.42 1.26 × 10−10 0.99809

It can be concluded that the stacked model provides acceptable prediction accuracy for
calculating the phase equilibrium behavior of the anticancer drug–supercritical CO2 binary
system. The constructed stacked model estimated 311 data samples of anticancer drug solu-
bilities in supercritical CO2 with excellent accuracy, i.e., AARD = 8.62%, MAE = 2.86 × 10−6,
RAE = 2.42%, MSE = 1.26 × 10−10, and R2 = 0.99809. These values of the statistical indexes
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for predicting the ultra-low ranges of anticancer drug solubility in supercritical CO2 (10−7 to
10−3 mole fraction based on Table 1) are sufficient for designing pharmaceutical processes.

4.3. Comparison with the Other Modeling Scenarios

The literature has estimated solubilities of Decitabine [36] and Busulfan [38] in super-
critical CO2 using adaptive neuro-fuzzy inference systems and support vector machines,
respectively. These models have been developed to estimate the solubility of a single drug
or two drugs in supercritical CO2, while our stacked model covers 12 different anti-cancer
drugs. Table 5 shows that the accuracy of the stacked model is comparable or even better
than the previously developed intelligent techniques.

Table 5. Prediction accuracy of the stacked model.

Drug Model R2 Reference

Decitabine
Adaptive neuro-fuzzy inference systems 0.99663 [36]
Stacked model 0.99508 This work

Busulfan
Support vector machines 0.98327 [38]
Stacked model 0.99054 This work

This stage suggests a simple correlation based on the partial least-squares regres-
sion (PLS-R) to linearly relate the anticancer drug solubility in supercritical CO2 to the
independent variables (Equation (9)).

yPLS−R
drug =

(
−1.66 × Mdrug + 2.62 × ρCO2 + 21.16× Teq + 9.62× Peq − 9397

)
× 10−7 (9)

The accuracy of the stacked model (AARD = 8.62%, MSE = 1.26× 10−10 and R2 = 0.99809)
is considerably better than the results obtained by the PLS-R (AARD >> 100%, MSE = 1.90× 10−8

and R2 = 0.39307).

4.4. Evaluating the Performance of the Stacked Model Using Graphical Analyses

This section utilizes several graphical analyses to visually inspect the stacked model’s
performance for predicting anticancer drug solubility in supercritical CO2.

Figure 2 depicts the calculated solubility values by the stacked model versus their
corresponding experimentally measured values. The diagonal line shows those situations
where predicted solubilities precisely coincided with their experimental counterparts
(i.e., laboratory experiments equal prediction). The accumulation of both internal and
external symbols in the vicinity of the diagonal line proved that the proposed stacked
model successfully learned the equilibrium behavior of anticancer drug–supercritical
CO2 systems.

Numerical values of the relative error (RE), average (REave), and standard deviation (SD)
have traditionally been used to evaluate the accuracy of a built model. Equations (10)–(12)
present the mathematical expressions of the RE, REave, and SD, respectively.

RE =
(

yexp
drug − ycal

drug

)
n

n = 1, 2, . . . , N (10)

REave =
N

∑
n=1

REn/N (11)

SD =

(
N

∑
n=1

(REn − REave)2/N

)0.5

(12)

The histogram of the observed relative errors illustrated in Figure 3 justifies that
the major part of the solubility data (248 samples) was estimated with a relative error
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equal to zero. Moreover, the relative errors’ average and standard deviation values were
−8.2194 × 10−7 and 1.12 × 10−5 mole fractions, respectively.
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The kernel density estimation (KDE) graphs of the experimental and calculated solubil-
ity values for the internal and external groups are exhibited in Figure 4. The two graphs in
the figure show that only a little deviation exists between the experimental and calculated
KDEs of the external groups. This deviation is observable in the 2 × 10−9 < magnitude
< 4 × 10−9 of Figure 4b.
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Figure 4. The kernel density estimation graphs for (a) internal and (b) external groups.

Figure 5a,b depict the Bland-Altman plots for the internal and external anticancer
drug solubility data. These figures have two horizontal dashed lines associated with the
upper and lower LoA (95% limit of agreement). Equations (13) and (14) define the upper
and lower LoAs indices, respectively [58].

Upper LoA = +1.96 × SD + REave (13)

Lower LoA = −1.96 × SD + REave (14)

The lower and upper LoAs in Figure 5a were −2.52 × 10−10 and 2.28 × 10−10, whereas
Figure 5b had lower and upper LoAs of −9.51 × 10−11 and 1.07 × 10−10, respectively.

Figure 5a,b demonstrated that only 9 out of 248 internal data points (3.63%) and 3 out
of 63 external data points (4.76%) were located outside the feasible domains.
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Figure 5. The Bland-Altman plots for (a) internal and (b) external groups.

4.5. Trend Analyses

This section investigates the effect of equilibrium temperature/pressure and anticancer
drug type on the system behavior from experimental and modeling perspectives.

The profile of Capecitabine solubility in supercritical CO2 versus equilibrium pressure
for five temperature levels was plotted in Figure 6. It can be seen that increasing the
equilibrium pressure continuously improved the Capecitabine solubility in the applied
supercritical solvent. It can also be concluded that the pressure effect on the solid drug
solubility was linear at low temperature and became nonlinear at high temperature.
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Figure 6. Monitoring the effect of pressure on the anticancer drug (Capecitabine) solubility in
supercritical CO2 from the laboratory and modeling perspectives.

An excellent agreement between the laboratory-measured equilibrium data and the
stacked model predictions is easily deduced from this figure. Indeed, the stacked model
was trained so well that it precisely anticipated the effect of pressure/temperature change,
linear/nonlinear behavior of the system, and all individual data points.

Figure 7 exhibits the dependency of Decitabine solubility in supercritical CO2 on
the temperature at eight pressure levels. This figure shows that the temperature had
two different impacts on the solid drug solubility at low and high equilibrium pressures.
Indeed, increasing the temperature at low pressures decreased Decitabine solubility in
the supercritical CO2. On the other hand, increasing the temperature at high equilibrium
pressures gradually intensified the Decitabine solubility in supercritical CO2.
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Figure 7. The experimental and modeling profiles of the effect of temperature on the solubility of the
anticancer drug Decitabine in supercritical CO2.
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The complete agreement between experimental solubility data and their associated
stacked model predictions can also be justified in this figure. The stacked model correctly
predicts the solubility–temperature profiles and accurately estimates all single data points.

Since the analyzed anticancer drugs have different compositions and chemical struc-
tures, their solubility is also influenced by drug type. The effect of anticancer type on the
average solubility value is shown in Figure 8. As expected, the anticancer drugs show
different dissolution tendencies in supercritical CO2. Decitabine, Busulfan, and Tamox-
ifen have the highest dissolution ability in the applied supercritical solvent. In contrast,
Paclitaxel, Sorafenib tosylate, Thymidine, and Tamsulosin show the lowest tendency for
dissolving in the considered solvent.
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Figure 8. Average values of the solubility in supercritical CO2 of the studied anticancer drugs
achieved from experimental data and modeling results.

This figure also compares the average solubility values obtained by the experimental
measurement and modeling analysis (i.e., stacked model). It is clear that the observed and
calculated average solubility values are equal to up to four to five decimal places.

4.6. Importance of Independent Variables

As the last analysis, the Pearson technique [58] was applied to monitor the relative im-
portance of each individual independent anticancer on the drug’s solubility in supercritical
CO2. This technique presents a value ranging from −1 to +1 to clarify the direction and
importance of the relationship between each pair of dependent and independent variables.
Table 6 summarizes the results of this analysis.

Table 6. Dependency of anticancer drug solubility in supercritical CO2 on the independent variables.

Information
Dependent–Independent Pairs

ydrug−Mdrug ydrug− ρCO2 ydrug−Teq ydrug−Peq

Pearson coefficient −0.248 0.295 0.204 0.617

Direction of relationship Indirect Direct Direct Direct

Importance Third Second Fourth First

5. Conclusions

The current research study applied the novel stacked model to precisely monitor phase
equilibria of twelve anticancer drug–supercritical CO2 systems. The proposed stacked
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model was constructed by systematically combining extra tree, gradient boosting, and ran-
dom forest machine learning models (known as base learners). Performance analyses of the
based leaner models and the stacked model confirmed that the latter has the best accuracy
in the cross-validation and testing phases. The designed stacked model showed excellent
accuracy for predicting 311 experimentally-measured data samples (i.e., AARD = 8.62%,
MAE = 2.86 × 10−6, RAE = 2.42%, MSE = 1.26 × 10−10, and R2 = 0.99809). This stacked
model performance is far better than those results obtained by the base-learner model
(i.e., extra tree, gradient boosting, random forest), machine learning approaches suggested
in the literature (support-vector machines and Adaptive neuro-fuzzy inference systems),
and partial least-squares regression (PLS-R). Moreover, the graphical accuracy monitor-
ing techniques (cross-plot, histogram, kernel density estimation, and Bland-Altman) and
trend inspections (solubility–pressure and solubility–temperature profiles) confirmed the
reliability of the stacked model predictions. Finally, the experimental data and modeling
results revealed that Decitabine and Thymidine have the highest and lowest tendency for
dissolving in supercritical CO2, respectively.
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