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Abstract: Air pollution has emerged as a global problem in recent years. Particularly, particulate
matter (PM2.5) with a diameter of less than 2.5 µm can move through the air and transfer dangerous
compounds to the lungs through human breathing, thereby creating major health issues. This re-
search proposes a large-scale, low-cost solution for detecting air pollution by combining hyperspectral
imaging (HSI) technology and deep learning techniques. By modeling the visible-light HSI technol-
ogy of the aerial camera, the image acquired by the drone camera is endowed with hyperspectral
information. Two methods are used for the classification of the images. That is, 3D Convolutional
Neural Network Auto Encoder and principal components analysis (PCA) are paired with VGG-16
(Visual Geometry Group) to find the optical properties of air pollution. The images are classified into
good, moderate, and severe based on the concentration of PM2.5 particles in the images. The results
suggest that the PCA + VGG-16 has the highest average classification accuracy of 85.93%.

Keywords: hyperspectral imaging technology; air pollution; PM2.5; deep neural network; 3D
convolutional neural network; auto encoding

1. Introduction

Many contemporary studies proved that air pollution caused many different diseases
in human beings [1–3]. Air pollution has been a predominant cause of cardiovascular and
respiratory diseases, and sometimes even the malfunctioning of the lungs [4–6]. In the past,
most studies inferred that particulate matter 2.5 (PM2.5) has a direct effect on the mortality
rate. The diameter of PM2.5 is less than 2.5 µm; therefore, it can penetrate through the
lungs and completely enter the blood vessels, spreading through the human body [7–9].
Therefore, knowing the concentration of PM2.5 in the environment is a necessity to take
basic precautions.

Most of the current state-of-the-art methods use spot testing methods to extract the air
from the surroundings to check for the gases present in it. In previous studies, open-path
Fourier-transform infrared (OP-FTIR) spectroscopy has been extensively used by various
authors to detect suspended particles in the atmosphere [10–14]. Chang et al. [15] combined
OP-FTIR with principal component analysis (PCA) to determine the source of the volatile
organic compounds (VOCs) in an industrial complex. However, the level of the signal-to-
noise ratio in most of the OP/FTIR systems is very low because of the poor collimation
ability, thereby affecting the results [16]. Ebner et al. [17] proposed another method. They
used a quantum cascade laser (QCL) open-path system, which overcame the disadvantages
of OP-FTIR. Yin et al. [18] also utilized QCL to measure the parts per billion value (ppb) of
SO2 in the mid-IR range. Zheng et al. [19] designed a tunable laser adsorption spectroscope
using QCL to determine the amount of NO. However, the QC lasers are expensive and,
therefore, not a popular option for detecting air pollution. In recent years, machine learning
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and deep learning models have been used to detect air pollution. One such study by Ma
et al. used six different models based on the MLR, kNN, SVR, RT, RF and BPNN algorithms
individually to find out the PM2.5 concentration. However, the real measurement data
required to validate the correctness of the retrieval findings at a resolution of 30 m are
missing from the equipment [20]. Another study by Zhang et al. used CNN to predict and
forecast the hourly PM 2.5 concentration [21]. Although the model increased the prediction
performance, the study did not consider the effect of regulatory policy for air control.

One method which could overcome the aforementioned disadvantages is hyperspec-
tral imaging (HSI) engineering. Apart from the various applications of HSI, it has also
been used to detect air pollution in recent years [22–27]. Chan et al. [28] set up multi-axis,
differential optical absorption spectroscopy to verify the measurements of the oxygen mea-
surement instruments of NO2 and HCHO over Nanjing. Jeon et al. [29] used hyperspectral
sensors to estimate the concentrations of NO2 coming out of the air pollutants from the
industry. However, most methods have used sensors and other instruments, which are
expensive and require heavy instruments. Most hyperspectral applications have remained
only at the laboratory level [30].

Therefore, this study combines HSI technology and deep learning techniques to pro-
pose a large-scale, low-cost air pollution detection method. Three models have been
developed: 3D Convolutional Neural Network Auto Encoder, principal components anal-
ysis (PCA), and the Red, Green, Blue (RGB) images, which are, respectively, proposed
and combined with VGG-16 (Visual Geometry Group) to classify the images into three
categories: good, moderate, and severe, based on the concentration of PM2.5. Finally, the
accuracy of each of the methods was compared to determine the optimal model.

2. Materials and Methods
2.1. Dataset

As no suitable PM2.5 image dataset exists, this study created a dataset using an aerial
camera DJI MAVIC MINI from 9:00 a.m. to 5:00 p.m. every day at an interval of an hour.
The images were taken at the height of 100 m on the Innovation Building of National Chung
Cheng University at an angle of 90◦. The images have been scaled to make the input image
match the input size of the first layer of VGG-16 to 224 × 224 in pixels. The data from
PM2.5 of the Environmental Protection Agency’s Pakzi Monitoring Station were used as a
reference to classify the images into three categories: good, moderate, and severe, according
to the severity of air pollution. The total number of images in the dataset was 3340 images.
In this study, the data were divided into training, validation, and test sets according to the
ratio of 6:2:2, respectively.

2.2. HSI Algorithm

HSI has been recently used in many industries including agriculture [31], astron-
omy [32], military [33], biosensors [34–36], remote sensing [37], dental imaging [38], en-
vironment monitoring [39], satellite photography [40], cancer detection [27,41], forestry
monitoring [42], food security [43], natural resources surveying [44], vegetation observa-
tion [45], and geological mapping [46]. The visible-light hyperspectral imaging (VIS-HSI)
developed in this study uses an aerial camera (DJI MAVIC MINI) image to convert the
image into a hyperspectral image in the visible wavelength range of 380–780 nm and up
to a spectral resolution of 1 nm. The relationship matrix between the camera and the
spectrometer has to be found to construct the VIS-HSI algorithm, as shown in Figure 1.

The camera (DJI MAVIC MINI) and the spectrometer (Ocean Optics, QE65000) must
be given multiple common targets as analysis benchmarks, which will greatly improve the
accuracy. Thus, the standard 24-color checker (x-rite classic, 24-color checker) was selected
as the target because it contains the most important and all the common colors. As the
camera may be affected by inaccurate white balance, the standard 24-color card must be
passed through the camera and the spectrometer to obtain 24-color patch images (sRGB,
8bit) and 24-color images, respectively. The 24-color patch image and 24-color patch reflec-
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tion spectrum data are converted to CIE 1931 XYZ color space (refer to Supplementary S1
for individual conversion formulas). In the camera part, the image (JPEG, 8bit) is stored
according to the sRGB color-space specification. Before converting the image from the
sRGB color gamut space to the XYZ color gamut space, the respective R, G, and B values
(0–255) must be converted to a smaller scale range (0–1). Using the gamma function, the
sRGB value is converted into a linear RGB value, and finally, through the conversion matrix,
the linear RGB value is converted into the standard in the XYZ color gamut space. In the
spectrometer part, to convert the reflection spectrum data (380–780 nm, 1 nm) to the XYZ
color gamut space, the XYZ color matching functions and the light-source spectrum S(λ)
are required. Brightness is calculated from the Y value of the XYZ color gamut space as
both values are proportional. The brightness value is normalized between 0 and 100 to
obtain the luminance ratio k, and finally, the reflection spectrum data are converted to the
XYZ value (XYZSpectrum).
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The variable matrix V is obtained by analyzing the factors that may cause errors
in the camera, such as the nonlinear response of the camera, the dark current of the
camera, inaccurate color separation of the color filter, and color shift. Regression analysis
is performed on V to obtain the correction coefficient matrix C used to correct the errors
from the camera, as shown in Equation (1). The average root-mean-square error (RMSE) of
the data of XYZCorrect and XYZSpectrum was found to be only 0.5355. Once the calibration
process is completed, the obtained XYZCorrect and the reflection spectrum data of the 24 color
patches (RSpectrum) measured by the spectrometer are compared. The objective is to obtain
the conversion matrix M by finding the important principal components of RSpectrum
through PCA and multiple regression analysis, as shown in Equation (2). In the multivariate
regression analysis of XYZCorrect and Score, the variable VColor is selected because it has
listed all possible combinations of X, Y, and Z. The transformation matrix M is obtained
through Equation (3), and XYZCorrect is used to calculate the analog spectrum (SSpectrum)
through Equation (4).

[C] =
[
XYZSpectrum

]
× pinv([V]), (1)

[XYZCorrect] = [C]× [V], (2)

[M] = [Score]× pinv([VColor]), (3)

[SSpectrum]380∼780 nm = [EV][M][VColor]. (4)
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Finally, the obtained analog spectrum of 24 color blocks (SSpectrum) is compared with the
reflection spectrum of 24 color blocks (RSpectrum). The RMSE of each color block is calculated,
and the average error is 0.0532. The difference between SSpectrum and RSpectrum can also
be represented by the color difference. The VIS-HSI algorithm can be established through
the above process and can simulate the reflection spectrum of the RGB values captured by
the camera.

2.3. Three-Dimensional-Convolution Auto Encoder

The hyperspectral image converted from the original RGB image can be represented
as X, where X = h × w × b, b is the number of input channels, and h × w is the size of
the input image. The first layer L1 receives the input image X, whereas the last layer
LN is the output layer. The intermediate layers include seven convolutional layers, three
pooling layers, and one fully connected layer. In the proposed model, 3D-CNN is used for
compression because, unlike 2D-CNN, using the spatial convolution kernel can learn both
spatial and spectral features. After training, the compressed data will be used as the input
layer of VGG-16 to continue training. The problem of data sparsity in high dimensions is
solved using feature-dimension reduction or band selection of frequency bands. This study
uses PCA. The dimensionality reduction method of the 3D convolutional autoencoder
(3D-CAE) preprocesses the data to reduce the number of frequency bands and finally sends
the dimensionally reduced images to VGG-16 for training. The input data can be expressed
as (n, X), where n is the number of samples. The dimensions of the spectral features are
reduced, and the data are organized in the form of (n × h × w × b) to perform PCA. The
whole methodology developed in this study is shown in Figure 2.
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3. Results and Discussion

This study uses PCA in machine learning and the 3D-CAE model in deep learning for
feature dimensionality reduction. The results of the study show that only three principal
components are used to represent 99.87% of the data, retaining most of the information
from the original data. The 3D-CAE model proposed in this study can jointly learn 2D
spatial features and 1D spectral features from HSI data, and the compressed hyperspectral
images. Such images can greatly reduce the data size and avoid the problem of insufficient
memory space. The loss function and the accuracy of the results show that the loss has



Sensors 2022, 22, 6231 5 of 9

gradually converged when the fourth epoch is trained. The epoch refers to the process
in which complete data pass through the neural network once and return once. As the
epoch increases, the number of weight updates in the neural network will also increase (see
Supplementary S1 for the training accuracy of all three models). The classification results
will classify the images into three categories: good, moderate, and severe, according to the
severity of air pollution.

A total of four indicators were used to judge the performance of the three models.
Precision, also known as the positive predicted value, represents the number of truly
positive cases out of all the predicted positive cases as shown in Equation (5). Recall rate,
also known as sensitivity, represents the amount of predicted positive cases out of all the
positive cases as shown in Equation (6). The F1 score is the harmonic mean of precision
and recall. This value is high on an imbalanced dataset as shown in Equation (7), while
accuracy of the predicted model can be calculated by dividing the total correct prediction
and the total dataset as shown in Equation (8).

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1-score =
2 × Recall × Precision

Recall + Precision
(7)

Accuracy =
TP + TN

TP + FP + FN + TN
(8)

Figure 3 represents the confusion matrix of the three methods. The confusion matrix
shows 210 good, 168 moderate, and 149 severe fully classified correctly in the RGB image. In
the PCA + VGG16 method, 240 good, 155 moderate, and 179 severe were correctly classified,
whereas 246 good, 22 moderate, and 1 severe were classified correctly in 3D-CAE images.
Table 1 shows the accuracy of every method. The F1-score of moderate is lower because this
category was more difficult to judge. The results show that the PCA + VGG-16 model has
the best classification accuracy, followed by RGB + VGG-16, and finally 3D-CAE + VGG-16,
as shown in Table 2. The 3D-CAE + VGG-16 has poor results because the compressed
features do not necessarily have the optical properties of PM2.5.

The main practical applicability of this study lies in its future scope, where a smart
phone with a camera can be endowed with hyperspectral imaging technology. A mobile
application can be developed, which could actually let the user know about the concentra-
tion of PM2.5 particulates in a specific image. In this method, the detection of air pollution
in the atmosphere can be mobilized, thereby reducing the number of apparatuses required
and the complexity of measurement. This method can also be extended to measure the
PM10 concentration in the environment.
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Table 1. Shows the Precision, Recall and F1 score of all the three models.

RGB Precision Recall F1 Score

Good 96.33% 73.68% 83.50%
Moderate 57.34% 96.55% 71.95%

Severe 94.90% 71.29% 81.42%

PCA Precision Recall F1 Score

Good 94.12% 83.04% 88.24%
Moderate 74.52% 84.24% 79.08%

Severe 87.32% 91.79% 89.50%

3D-CAE Precision Recall F1 Score

Good 42.41% 86.32% 56.88%
Moderate 26.54% 12.64% 17.12%

Severe 20.00% 0.48% 0.93%
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Table 2. Classification accuracy of the three methods proposed in the study.

Method Classification Accuracy (%)

PCA 85.93
RGB 78.89

3D-CAE 40.27

4. Conclusions

In this study, new VIS-HSI technology has been combined with artificial intelligence
to estimate PM2.5 concentration in the images captured from the drone. Three algorithms
have been developed. Through the dimensionality reduction methods of PCA, 3D-CAE,
and VGG-16 neural network, the images are divided into three categories based on the
PM2.5 concentration. In terms of experimental accuracy, PCA dimensionality reduction
is the most effective, followed by the RGB method, and finally the 3D-CAE method. The
accuracy of the methods can be improved by increasing the dataset that contains PM2.5
concentrations or fine-tuning the models. By integrating band selection with the CNN
model, the accuracy of the prediction models can be improved significantly. Other weather
features, such as wind speed, humidity, and temperature, can be considered to predict air
pollution. Apart from PM2.5 concentrations, the prediction models can also be designed to
predict PM10 concentrations. In the future, the same technology can be integrated with the
cameras of the smartphone to detect real-time air pollution on the spot.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22166231/s1, Figure S1. Confusion matrix after training all three
models. Figure S2. convergence of loss and accuracy during training of the three models. Figure S3.
The difference between the reflectance of the original 24 color blocks and the simulated color. Figure
S4. The difference between the measured 24 color blocks and the simulated 24 color blocks using the
developed HSI algorithm. Figure S5. Cumulative explained variance vs. the number of Principal
components. Table S1. Classification Training Results of all the three modes. Table S2. Definitions of
the terms in Confusion Matrix.
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