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AKI is a common clinical problem with significant
morbidity, mortality, and associated healthcare bur-
den. AKI is caused by a wide range of etiologies, has
no current treatment, and increases the risk of devel-
oping CKD. Despite the high mortality rate and inci-
dence, no effective therapies to treat AKI have been
successfully developed. The current mainstays of clin-
ical management—supportive care and dialysis—
inadequately address the complexities of AKI and the
AKI to CKD transition. The kidney contains numerous
cell types and microenvironments, all of which
respond differently to injury. Proximal tubule epithe-
lial cells are often a main site of damage, particularly
in ischemia-induced AKI. Other kidney compart-
ments, including endothelial cells of the vasculature,
immune cells, podocytes, and interstitial cells, are also
involved in the pathogenesis of AKI. Novel therapies
that consider all compartments of the kidney and the
homeostasis that exists among them are therefore of
great interest. Endogenous agents and signaling path-
ways in the kidney hold great potential to inform tar-
geted therapeutic approaches and many, including
Kr€uppel-like factors (KLFs), have been the subject of
preclinical studies. These, like most endogenous
agents, have broad and pleiotropic influences on kid-
ney function at baseline and injury. Understanding
their molecular regulation in a cell- and injury state-
specific manner will improve the development of
novel, targeted therapeutics for AKI.

KLFs have emerged in recent decades as critical fac-
tors in maintaining kidney homeostasis and influenc-
ing injury response. KLFs are a family of zinc-finger
transcription factors involved in fundamental pro-
cesses, including cellular cycling and differentiation,
metabolism, and cell morphology. Of the 18 KLFs
identified to date, several are found in the kidney. As
reviewed by Mallipatu et al. (1), KLFs display cell-
specific expression patterns throughout the kidney
and serve diverse functions in maintaining homeosta-
sis. For example, KLF6 and KLF15 influence TGF-b
signaling and kidney fibrosis. Based on experiments
in KLF11 knockout mice, KLF11 mitigates the severity
of fibrosis in the unilateral ureteral obstruction model
of CKD by inhibiting SMAD3-dependent TGF-b sig-
nal transduction (2). KLF2, KLF4, and KLF11 are
expressed in kidney endothelial cells at baseline.

Expression of KLF2 and KLF4 modulates antithrom-
botic and anti-inflammatory processes. It has been
shown that expression of KLF2 and KLF4 is regulated
in part by laminar shear stress in both blood vascula-
ture (1) and lymphatic endothelial cells (3). Within
these endothelial populations, KLFs also influence
NF-kB-dependent expression of cell adhesion mole-
cules. Unlike KLF2 and KLF4, endothelial-specific
KLF11 had not been studied in the context of the kid-
ney until recently.
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Figure 1. | The proposed role of KLF11 in kidney endothelial
cells. Endothelial cells exhibit cytoplasmic and nuclear KLF11
distribution in basal conditions. Ischemia-reperfusion-induced
AKI increases translocation of KLF11 to the nucleus where it acts
as a transcription factor, mediating the expression of both mal-
adaptive and protective factors. Pleiotropic IL-6 influences both
maladaptive and protective pathways downstream; in ischemic
AKI, however, IL-6 is generally associated with an unfavorable
functional phenotype. ET-1, endothelin-1; D2, dopamine recep-
tor 2; PPARg, peroxisome proliferator-activated receptor gamma.
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In this issue of Kidney360, Nath et al. (4) identify KLF11 as
a novel protective factor with potential for therapeutic tar-
geting in ischemic AKI. To investigate the role of KLF11 in
kidney function during AKI, male KLF11 knockout and
wild-type control mice were subjected to 22 minutes of bilat-
eral ischemia-reperfusion injury (BIRI). Kidney function and
response to AKI were evaluated using several parameters.
Elevated serum creatinine and BUN on the day following
injury revealed that KLF11 knockout mice are more sensi-
tive to BIRI than wild-type counterparts. Histologic evalua-
tion revealed more extensive and widespread tubular
damage in the absence of KLF11. Additionally, knockout
mice exhibited more diffuse vascular congestion and exag-
gerated induction of endothelin-1 and IL-6. The authors
postulate the nephroprotective effects of KLF11 may be
attributable to the role of KLF11 in regulating endothelial
function. The proposed mechanisms of endothelial KLF11
signaling are depicted visually in Figure 1. These findings
were predicated on previous in vitro experiments and stud-
ies that have investigated the role of KLF11 signaling in

endothelial function in response to various insults in tissues
outside the kidney as summarized in Table 1.
The attention to endothelial-specific KLF11 signaling in

this study is significant because there is a clear link
between endothelial changes that occur following AKI and
functional response to injury; yet, modulation of the kidney
endothelial systems remains a largely untapped area of
therapeutic intervention. The blood and lymphatic vascular
endothelial systems work in concert to maintain perfusion
and fluid balance, and regulate immune cell trafficking and
debris clearance. Both systems respond dynamically to
injury. Peritubular blood capillaries undergo a maladaptive
process of rarefaction, decrease in density, and become
leaky (15–19). Kidney lymphatics, on the other hand,
exhibit protective expansion in several animal models of
AKI and patients with CKD (20,21). Perturbed hemody-
namics and an imbalance between these two systems
results in edema in the kidney, which can itself compress
vasculature—exacerbating ischemia, impairing complete
recovery, and potentially contributing to the AKI to CKD

Table 1. Summary of key studies of KLF11 in endothelial cell populations

Endothelial Population/Cell Type of
Interest Key Finding References

Human corneal endothelial cell line KLF11 transcripts are expressed in an established
corneal endothelial cell line

Chiambaretta, 2004 (5)

Bovine and porcine aortic endothelial
cells, ECV304 cell line

KLF11 modulates cholesterol-dependent gene
expression through repression of caveolin-1
promoter activity

Cao, 2005 (6)

HUVECs, murine aorta (intravital),
BAECs

In response to TNF-a, KLF11 regulates leukocyte
recruitment through modulation of adhesion
molecule expression and interactions with NF-kB

Fan, 20012 (7)

Human microvascular endothelial cell
line-1

Finofibrate increases PPARa-mediated KLF11
expression and binding of KLF11 to ET-1
promoter and subsequent downregulation of TGF-
b-stimulated ET-1 expression

Glineur, 2013 (8)

Murine cerebral vascular endothelial
cells

KLF11 cooperates with PPARg to enhance
repression of pro-apoptotic miR-15a and
synergistically protect the cerebral vascular
endothelium from ischemic stroke

Yin, 2013 (9)

HUVECs KLF11 overexpression decreases TNF-a-induced
expression of tissue factor F3 mRNA and protein

Liang, 2019 (10)

Murine brain microvascular
endothelial cells

KLF11 overexpression can attenuate
neuroinflammation and preserve tight junction
expression and blood-brain barrier integrity in
ischemic brain injury

Zhang, 2020 (11)

Murine abdominal aorta, HUVECs
(in vitro)

KLF11 expression attenuates development of murine
abdominal aortic aneurysm through potential
mechanisms in reducing inflammation, expression
of MMP9, and production of reactive oxygen
species; and maintaining smooth-muscle cell
integrity

Zhao, 2021 (12)

HUVECs, BAECs, and murine aortic
endothelial cells (in vitro)

KLF11 downregulates tissue factor transcription and
protects against stasis-induced murine deep vein
thrombosis

Liang, 2021 (13)

HUVECs, human colon cancer
endothelial cells, murine
microvascular endothelial cells of
the ear

KLF11 expression is upregulated by VEGF-A and
required for VEGF-A-induced dopamine D2
receptor expression

Sarkar, 2022 (14)

BAECs, bovine aortic endothelial cells; ET-1, endothelin-1; HUVECs, human umbilical endothelial cell line; MMP, matrix
metallopeptidase 9; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; PPARa, peroxisome proliferator-activated
receptor-alpha; PPARg, peroxisome proliferator-activated receptor-gamma; TGF-b, transforming growth factor-beta; TNF-a, tumor
necrosis factor-alpha; VEGF-A, vascular endothelial growth factor A.
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transition (22). Studies designed to improve our under-
standing of the cellular and molecular control of endothe-
lial homeostasis and injury response will have a significant
impact on our ability to design endothelia-modulating
therapies.
The protective effects of KLF11 do not appear to be

attributable to an induction of KLF11 expression following
ischemic injury, but rather normal KLF11 signaling and
localization dictate adaptive responses to ischemic injury,
and perturbations in normal KLF11 signaling exacerbate
injury. Ischemic injury did not significantly alter the total
KLF11 protein or mRNA levels in the kidney, but immuno-
fluorescence imaging of wild-type mice revealed that the
subcellular localization of KLF11 is altered following BIRI.
Increased nuclear localization, and presumed activation of
KLF11 transcriptional activity, was seen in endothelial cells,
tubular epithelial cells, and smooth-muscle cells. Notably,
unlike tubular epithelial cells and smooth-muscle cells,
endothelial cells also exhibited nuclear KLF11 prior to
ischemic injury, suggesting the importance of basal KLF11
activity in regulating endothelial homeostasis. Quantitative
real-time PCR of select genes in KLF11 knockout and wild-
type animals in BIRI and sham surgical conditions suggest
that basal KLF11 may function to limit expression of mono-
cyte chemoattractant protein-1 (MCP-1/CCL2) to minimize
inflammation, SMAD3, which subsequently influences NF-
kB signaling, and plasminogen activator inhibitor 1 to
attenuate thrombus formation. Although whole kidney
lysates did not reveal observable, significant differences in
KLF11 mRNA levels between sham and BIRI mice, explora-
tion of publicly available single-cell and single-nuclear
transcriptomics datasets of murine kidneys reveals subtle
cell-type specific alterations in KLF11 gene expression in
response to unilateral ureteral obstruction (23) and BIRI
(24) that could be explored in future studies.
The authors are careful not to generalize the protective

effects of KLF11 to all etiologies of AKI. As clinical para-
digms of AKI management shift toward precision medicine,
considerations of cell- and state-specific effects of therapeu-
tic intervention are becoming increasingly important. The
role of KLF11 in ischemic injury need not extend to other
pathologic states. The authors highlight this important con-
sideration in showing that in response to lipopolysaccha-
ride, KLF11 expression is robustly induced—a drastically
different response from what is seen following ischemic
injury. Although the complexities of the microenvironments
within the kidney and vast range of etiologies of AKI pose
challenges for subcellular interrogation of kidney patho-
physiology, the growing prevalence and accessibility of
single-cell technologies will facilitate detailed and strategic
studies. Focused studies such as this one will of course also
become increasingly important in validating hypotheses
and underlying mechanisms.
Overall, in identifying KLF11 as an important regulator

in the response to ischemia-induced AKI, Nath et al. not
only signal an appreciation for the role of the endothelium
in kidney health but do so while also underpinning the
importance of precisely considering molecular determi-
nants of function in relation to specific cell types and dis-
ease states.
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