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Abstract
In cerebral small vessel disease (cSVD), whole brain MRI markers of cSVD-related brain injury explain limited variance 
to support individualized prediction. Here, we investigate whether considering abnormalities in brain tracts by integrating 
multimodal metrics from diffusion MRI (dMRI) and structural MRI (sMRI), can better capture cognitive performance in 
cSVD patients than established approaches based on whole brain markers. We selected 102 patients (73.7 ± 10.2 years old, 
59 males) with MRI-visible SVD lesions and both sMRI and dMRI. Conventional linear models using demographics and 
established whole brain markers were used as benchmark of predicting individual cognitive scores. Multi-modal metrics 
of 73 major brain tracts were derived from dMRI and sMRI, and used together with established markers as input of a feed-
forward artificial neural network (ANN) to predict individual cognitive scores. A feature selection strategy was implemented 
to reduce the risk of overfitting. Prediction was performed with leave-one-out cross-validation and evaluated with the R2 of 
the correlation between measured and predicted cognitive scores. Linear models predicted memory and processing speed 
with R2 = 0.26 and R2 = 0.38, respectively. With ANN, feature selection resulted in 13 tract-specific metrics and 5 whole brain 
markers for predicting processing speed, and 28 tract-specific metrics and 4 whole brain markers for predicting memory. 
Leave-one-out ANN prediction with the selected features achieved R2 = 0.49 and R2 = 0.40 for processing speed and memory, 
respectively. Our results show proof-of-concept that combining tract-specific multimodal MRI metrics can improve the 
prediction of cognitive performance in cSVD by leveraging tract-specific multi-modal metrics.
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Introduction

Cerebral small vessel disease (cSVD) is a major cause 
of cognitive decline (Gorelick et al. 2011; Iadecola et al. 
2019) and one of the leading causes of dementia (Iadecola 
2013), often as a co-morbidity to Alzheimer’s disease. Brain 
injury in patients with cSVD can be assessed with comple-
mentary MRI techniques. Structural MRI (sMRI), such as 
T1-weighted imaging and fluid attenuated inversion recov-
ery (FLAIR), provides imaging markers of brain atrophy 
and lesion burden (e.g., volume or count), such as white 
matter hyper-intensities (WMH), micro-bleeds, and lacu-
nar infarcts (Wardlaw et al. 2013). Diffusion MRI (dMRI) 
leverages sensitivity to the motion of water molecules at 
the microscopic scale to detect microstructural tissue altera-
tions in cSVD. Metrics quantified with dMRI, such as the 
mean diffusivity (MD) or peak-skeletonized mean diffusivity 
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(PSMD) (Baykara et al. 2016), have been shown promis-
ing to detect cSVD-related injury beyond visible lesions 
(Finsterwalder et al. 2020), also in normal appearing brain 
tissue. The relation between cSVD lesions visible on MRI 
and cognitive function remains overall poorly understood. 
While at the population level WMH burden clearly associ-
ates with dementia risk (Debette et al. 2019), in individual 
patients, this relation is variable. This can create diagnostic 
dilemmas. For example, in a memory clinic setting, a patient 
with subjective complaints may have the same WMH burden 
as a patient with cognitive impairment attributed to cSVD. 
Even in research settings, the actual explained variance in 
cognition for individual MRI metrics remains modest. For 
example, a prediction model combining patient demograph-
ics, whole brain markers of lesions and atrophy, and PSMD 
only explained 8–16% of variance in cognitive performance 
in sporadic cSVD (Baykara et al. 2016). There is therefore a 
need for tools that can capture more relevant features of MRI 
detectable abnormalities to better explain the deficit of an 
individual patient, ultimately supporting diagnosis. Moreo-
ver, better understanding the relation between MRI markers 
and concomitant cognitive function may also provide new 
insights into the mechanisms through which brain lesions 
cause cognitive impairment.

An emerging approach to characterize cognitive decline 
in cSVD is to consider not only injury burden, but also its 
location on the brain circuitry. For example, damage of spe-
cific white matter (WM) tracts in patients with stroke was 
shown to be linked to impairment of specific brain func-
tions (Rojkova et al. 2016; Howells et al. 2018; Thiebaut de 
Schotten et al. 2020). Moreover in cSVD it has been shown 
that diffusion tensor imaging (DTI) metrics of specific WM 
tracts—either derived with fiber tractography or using stand-
ardized atlases—are better predictive of cognitive perfor-
mance than whole brain DTI metrics (Biesbroek et al. 2018). 
Hence, a promising way forward to achieve larger sensitivity 
to outcomes of interest (Zeestraten et al. 2017; de Lange 
et al. 2020) (e.g., cognition), is to consider a multi-modal 
analysis where tract-based metrics from dMRI, markers of 
brain atrophy from sMRI (e. g., cortical thickness), lesion 
markers (e.g., WMH burden) and clinical covariates (e.g., 
age, gender, education level) are integrated.

Considering together multiple MRI metrics can be 
challenging with conventional statistical approaches such 
as linear models (Chamberland et al. 2019; Muncy et al. 
2022)—the leading analysis method in cSVD research. 
Indeed, metrics derived from the same imaging modality 
and sampled in different brain regions (e.g., at the tract level) 
are likely to be collinear, and create instability in regression 
modeling. Adding large numbers of predictors to the models 
also puts constrains on statistical power. Furthermore, rela-
tions between imaging markers and cognitive performance 
may be non-linear (Wang et al. 2013; Wan et al. 2014; Cao 

et al. 2018). A promising way to address these issues is 
to consider an analysis method able to learn the relation 
between multiple inputs and outcome in a data-driven fash-
ion. Artificial neural networks (ANN) have recently gained 
attention as a versatile tool able to map complex relations 
between imaging metrics and outcome measures in a data-
driven fashion, and allow to take into account potential col-
linearities between imaging metrics, as well as eventual non-
linear relations with outcome. Furthermore, their application 
is supported by high-quality frameworks striving for ease of 
use and computational performance, which allow to scale up 
their application on large datasets, an important feature in 
the upcoming era of big data analysis in SVD (de Luca and 
Biessels 2021).

In this work, we investigate whether integrating multi-
modal metrics of the main WM tracts explains more inter-
subject variability in cognitive performance than established 
whole brain imaging markers of cSVD (Biesbroek et al. 
2016, 2017; Boomsma et al. 2020). Our approach includes 
a fully automated pipeline to derive and integrate established 
whole brain markers, and sMRI and dMRI metrics sampled 
both at the whole brain level as well as in 73 WM tracts.

Methods

Study sample

The data included in this study include the UMC Utrecht 
participants of the TRACE-VCI study (Boomsma et  al. 
2017), a cohort of patients visiting the memory clinic with 
cognitive complaints and visible vascular lesions on their 
brain MRI. During their assessment at the memory clinic, 
participants underwent a 3 Tesla MRI scan with a stand-
ardized protocol including T1-weighted imaging with reso-
lution 1 × 1 × 1 mm3, a fluid-attenuated inversion recovery 
(FLAIR) acquisition with resolution 0.96 × 0.96 × 3.00 mm3, 
and a diffusion MRI scan with resolution 2.5 mm3 isotropic 
including 45 gradient directions at b = 1200 s/mm2 in addi-
tion to 1 b = 0 s/mm2 averaged three times. Next to MRI, all 
participants underwent a standardized neuropsychological 
evaluation to assess their cognitive status. The study was 
approved by the institutional review board of the UMC 
Utrecht. All patients provided informed consent prior to 
research-related procedures.

The severity of WMH burden was rated with the Fazekas 
score only considering deep and not periventricular lesions, 
as follows: 0 = absence, 1 = punctate foci, 2 = beginning 
confluence of foci, 3 = large confluent areas. Out of the 
196 available subjects, we selected only patients exhibiting 
manifestations of cSVD, which was operationalized as hav-
ing a Fazekas score ≥ 2, or presence of (small) subcortical 
or lacunar infarcts. Patients were excluded in presence of 
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infarct(s) or hemorrhage(s) with volume above 4.2 mL (i.e., 
the equivalent of a spherical lesion with a diameter > 2 cm) 
or incidental findings (i.e., brain cancer, cysts) on MRI 
affecting analyses. This arbitrary volume cut-off was pri-
marily used because larger lesions by themselves more likely 
affect cognition.

Of the 116 subjects selected with the abovementioned 
criteria, 14 were further discarded because of incomplete 
cognitive assessment (n = 11) or poor MRI quality (n = 3), 
resulting in the final selection of 102 subjects reported in 
Table 1. A flow chart summarizing our inclusion and exclu-
sion criteria is shown in the Supplementary Material, Figure 
S1.

Cognitive performance

A detailed explanation of the cognitive evaluation of the 
study sample can be found in a previous work (Boomsma 
et al. 2017). In short, level of education was defined accord-
ing to a 7-point rating scale [Verhage scale (Verhage 1964) 
1–7; low to high education]. Cognition was first screened 
with the Dutch version of the Mini Mental State Exami-
nation (MMSE, max. score 30). The severity of cognitive 
symptoms was assessed with the Clinic Dementia Rat-
ing score (CDR, 0–3). Patients received a multidomain 

cognitive assessment. For the present study, we considered 
the domains memory and processing speed.

The domain memory was assessed by the Dutch version 
of the Rey Auditory Verbal Learning Test (RAVLT). For 
the RAVLT, the total number of words remembered in five 
learning trials was recorded and the delayed recall and rec-
ognition tasks were used. Furthermore, the Visual Associa-
tion Test (VAT) part A was included to assess visuospatial 
association learning.

The domain information processing speed was assessed 
by the Trail Making Test Part A (TMTA-A), the Stroop 
Color Word Test I and II, and the Digit Symbol-Coding 
Test (DSCT) of the WAIS-III or the Letter Digit Substitu-
tion Test (LDST). Z-scores were created for each individual 
test (reversed Z-scores for the TMT and Stroop Color Word 
Test).

Individual test scores of all subjects were transformed to 
z-scores, e.g., subtracting the average and dividing by the 
standard deviation of all subjects, then averaged to create 
domain Z-scores. Accordingly, a z-score equal to 0 indicates 
the average cognitive value in the whole cohort, and not an 
intact average cognitive score.

Participants were clinically classified as follows:

•	 No objective cognitive impairment, when having cog-
nitive complaints but no objective impairment on neu-
ropsychological testing.

•	 Mild cognitive impairment (MCI), when observing dete-
rioration in cognitive function as compared to a previous 
time point, and objective impairment in at least one cog-
nitive domain.

•	 Dementia, when observing objective impairment in two 
or more cognitive domains. Dementia was further clas-
sified based on its main etiology using internationally 
established criteria in the following subtypes: vascular 
(Roman et al. 1993), Alzheimer’s disease (McKhann 
et al. 1984), other neurodegenerative etiology (McKeith 
et al. 2005; Rascovsky et al. 2011), or unknown origin.

Data processing

MRI data were processed with an automated pipeline based 
on CAT12 (http://​www.​neuro.​uni-​jena.​de/​cat/), ExploreDTI 
(Leemans et al. 2009) and the in-house developed toolbox 
“MRIToolkit” (Guo et al. 2020) (https://​github.​com/​deluc​
aal/​MRITo​olkit).

T1-weighted and FLAIR images were processed with 
CAT12 to derive automatic segmentations of white matter, 
gray matter, cerebrospinal fluid and white matter hyper-
intensities (Tohka et al. 2004). All segmentations were indi-
vidually inspected to ensure they were of sufficient quality 
and did not contain major errors. Additionally, the cortical 
thickness (CTH) (Yotter et al. 2011; Dahnke et al. 2013) was 

Table 1   Demographic characteristics, clinical diagnosis, and cogni-
tive evaluation of the study participants

Numbers before brackets indicate either the count (#) or the median. 
Numbers between brackets indicate the 25th and 75th percentile, or 
the percentage (%)

Included patients n = 102

Demographics
 Sex, % men #59 males (58%)
 Age (years) 73.7 (67.4–81.7)
 Level of educationa 5 (4–6)

Clinical diagnosis
 No objective cognitive impairment #18 (18%)
 MCI #31 (30%)
 Dementia #53 (52%)
 Vascular dementia #6 (6%)
 Alzheimer’s disease #41 (40%)
 Other neurodegenerative etiology #5 (5%)
 Unknown etiology #1 (1%)

Measures of global cognitive status
 Mini-mental state examination 26.5 (24–28)
 Clinical dementia rating 0.5 (0.5–1)

Cognitive performance
 Processing speed 0.09 (− 0.4 to 0.5)
 Memory − 0.15 (− 0.8 to 0.3)

aVerhage scale: low education (1–4), middle education (5), high 
education (6–7)

http://www.neuro.uni-jena.de/cat/
https://github.com/delucaal/MRIToolkit
https://github.com/delucaal/MRIToolkit
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evaluated. Next, micro-bleeds, infarcts, and hemorrhages 
were evaluated by a trainer rater using the FLAIR images as 
previously described (Boomsma et al. 2020).

dMRI data were corrected for signal drift (Vos et al. 
2016) and Gibbs’ ringing (Perrone et al. 2015), then motion, 
Eddy currents and echo-planar-imaging (EPI) corrections 
with b-matrix rotation were performed in one step. The latter 
step was performed using the T1-weighted image resampled 
to 2 × 2 × 2 mm3 as target. Next, a robust fit of the diffusion 
tensor was performed with REKINDLE (Tax et al. 2015). 
Visual inspection was performed to effectiveness of motion 
correction and registration to the T1-weighted image, as 
well as the presence of major data artifacts in the DTI fit 
residuals.

Constrained spherical deconvolution (CSD) (Tournier 
et al. 2007) was performed using spherical harmonics of 
order 6 and recursive calibration of the response function 
(Tax et al. 2014) to determine the fiber orientation distri-
bution, then deterministic fiber tractography was applied 
using each brain voxel as a seed, with angle threshold 30°, 
step size 1 mm. Streamlines shorted than 30 mm or longer 
than 500 mm were discarded (default values in ExploreDTI). 
Subsequently, the white matter analysis clustering approach 
(Zhang et al. 2018) was applied to automatically reconstruct 
73 brain tracts based on known anatomy. A list of the recon-
structed tracts and their abbreviation is reported in Supple-
mentary Material Table S1. Spatial probability maps of the 
reconstructed tracts in the whole dataset are reported in Sup-
plementary Information Videos S1–S3.

Study design

First, we aimed to characterize the maximum amount of 
variance that conventional linear models can explain at 
the group level. To this end, we used linear regression to 
characterize the amount of variance in cognitive scores 
(i.e., information processing speed, memory performance) 
explained by models of increasing complexity considering 
(1) demographics only (i.e., age, sex, level of education); (2) 
demographics + whole brain markers from sMRI (i.e., WMH 
burden, brain parenchymal fraction (BPF), presence of lacu-
nes, presence of micro-bleeds); (3) model 2 + the average 
value of a diffusion metric (i.e., FA or MD or PSMD) in the 
whole WM. In this analysis, all subjects were used simulta-
neously (N = 102).

Subsequently, we evaluated two methods to predict 
individualized cognitive function using a leave-one-out 
validation strategy, which is an arguably harder task than 
regression and allows to evaluate the generalizability of 
a prediction model to unseen data. This implies that the 
prediction was performed 102 times, removing 1 subject 
each time and re-training the prediction on the remaining 
101 subjects. Furthermore, in the supporting information 

we further evaluated the generalizability of the method by 
repeating the prediction with a leave-5-out cross-validation 
scheme.

The first prediction method is based on linear models —
the current standard in cSVD— and serves as prediction 
benchmark. The same metrics considered for linear regres-
sion (demographics + whole brain markers from sMRI and 
dMRI) were considered as input for this prediction strategy. 
For each input metric, we evaluated its standardized coef-
ficient, its significance (p-value) and the amount of vari-
ance it explained as quantified by the R-squared (R2). In the 
supporting information, we also report an evaluation of the 
prediction performance of linear models when considering 
tract-based metrics as input.

The second prediction strategy is based on a novel tract-
based ANN to predict individualized cognitive function, 
and is presented in the following section. To compare our 
proposed strategy to the benchmark, we evaluated the mean 
absolute error (MAE) of the prediction and its R2 value. To 
assess whether tract-based ANN significantly predicted cog-
nitive performance better than conventional models, F-tests 
were performed. Because conventional F-tests weight the 
residuals sum of squares (RSS) by the number of parameters, 
they are unsuited for evaluating ANNs because of their large 
number of parameters. Accordingly, we applied a modified 
F-test considering the number of input predictors #K in 
place of the number of parameters, as follows:

where NS is the number of subjects (102).

Tract‑based ANN prediction

ANN features sampling

In our prediction framework, we integrated multi-modal 
MRI metrics sampled both at the whole brain level and in 
73 WM tracts, as depicted in Fig. 1. At the whole brain 
level, we considered the same markers used as input for 
linear prediction. Additionally, we considered the average 
CTH, and the mean squared error of the DTI fit residuals, 
which informs on both data quality and appropriateness of 
the model. Residuals assume high values in presence of out-
liers in the data, but also in case of non-Gaussian diffusion 
effects in the data (van Rijn et al. 2020) owing to, for exam-
ple, microstructural alterations (Jensen et al. 2005; Goghari 
et al. 2021).

To extract tract-specific metrics, the volumetric repre-
sentation of the streamlines of each white matter tract was 
derived and used as a region of interest. For each tract, 
we computed the average FA, MD, WMH burden volume 

F =

RSSlinear−RSSANN

#KANN−#Klinear

/

RSSANN

NS−#KANN

,
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(WMHV) and DTI fit residuals without distinguishing 
between WM and GM. Next, we evaluated the peak width 
of mean Diffusivity (PWD) for each tract in analogy to the 
whole brain PSMD, e.g., by determining the difference 
between the 75th and 25th percentile of MD within each 
tract mask. Additionally, the average CTH of each tract was 
calculated as the average thickness of the cortex adjacent to 
a WM tract.

All metrics were transformed to Z-scores as common 
practice in machine learning (More et al. 2021) to optimize 
their use as predictors in subsequent analyses.

ANN architecture

Our ANN framework consists of a feed-forward network 
with 20 nodes and 1 hidden layer (empirically chosen). The 

Fig. 1   An overview of the 
framework used in this work. 
Multi-modal metrics computed 
from the diffusion tensor (FA, 
MD, PSMD, RESIDUALS), 
T1-weighted imaging (CTH) 
and FLAIR (WMH) are derived 
at (i) the whole brain level and 
ii) for each major white matter 
tracts of the 73 obtained with an 
automatic tractography cluster-
ing method. The considered 
measures are used as input to 
a linear multivariate prediction 
model and an artificial neural 
network (ANN) with leave-one-
out cross-validation
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input of each layer was normalized (“BatchNorm1d”), and 
the non-linear rectified linear unit function (ReLU) was 
included as activation function between each layer. The net-
work was implemented in Python using the PyTorch library 
and trained with the ADAM optimizer using the mean 
squared error cost function with L1 penalty (“L1Lasso”). 
The learning rate was empirically set to 0.01 after experi-
mentation in the range 0.0001–0.1, and a dropout rate equal 
to 30% was used. The training dataset (N = 101) was split in 
a training (90%) and validation set (10%) to implement an 
early stopping strategy, e.g., to interrupt the training once 
the error in the validation set increases during training. The 
minimum number of training epochs was 30, and the maxi-
mum 300. For each subject, the training and prediction were 
repeated 30 times to account for non-deterministic processes 
in ANNs, then the median of all predicted values was taken 
as final prediction.

ANN features selection

We designed a feature selection strategy based to integrate 
multimodal MRI metrics and predict cognitive performance 
while minimizing potential risks of over-fit. An overview of 
our strategy is presented in Fig. 1.

To reduce the number of metrics to be considered for 
ANN feature selection, we implemented a first filtering 
step based on linear prediction. To this end, we repeatedly 
performed a leave-one-out prediction using a single metric 
(WMHV, FA, MD, PWD, residuals, CTH) sampled for all 
73 WM tracts. For each metric, the 7 most significant tracts 
(e.g., 10% of the total) and their contralateral pathways were 
selected for the next phase. For the prediction of memory, 
the superior longitudinal fasciculus and the frontal-thalamic 
projections were additionally included if not selected at the 
previous stage, given their previously reported relevance in 
memory-related tasks (Bolkan et al. 2017; Biesbroek et al. 
2018).

Once a set of candidate tracts was determined, these were 
given as input to an iterative ANN optimization procedure 
repeated 10 times on random subsets of 51 subjects (50%). 
The procedure determined the optimal combination of fea-
tures to predict cognition in the given random subset with a 
bottom-up strategy. At the first iteration, age and education 
are the only predictors. Subsequently, the procedure evalu-
ates which of the available metrics improves the prediction 
performance (R2) in the random subset and adds it to the 
predictors list. Given the aleatory nature of ANN, each pre-
diction was repeated three times and the average prediction 
considered as outcome. The procedure continued until the 
prediction performance did not further improve.

The feature selection procedure was repeated 10 times 
to obtain the candidate predictors. We then evaluated the 
final performance of the ANN at predicting processing speed 

and memory performance in the complete dataset using (1) 
the features corresponding to the feature selection iteration 
achieving the highest R2, and (2) all candidate predictors 
determined in the 10 repetitions.

Results

Linear regression

The baseline imaging values of the studied cohort can be 
found in Supplementary Material Table S1. Results of the 
linear regression between demographics, lesion markers and 
conventional whole brain MRI features and cognition are 
reported in Table 2. Demographics alone explained R2 = 0.29 
in both processing speed and memory in our dataset. Whole 
brain markers explained additional R2 = 0.06 and R2 = 0.03 
in processing speed and memory, respectively. Next, the 
addition of MD for processing speed and FA for memory 
resulted in R2 values equal to 0.43 and 0.33, respectively.

Benchmark: linear prediction

Table 3 summarizes the results of the leave-one-out predic-
tion of cognitive performance using conventional metrics, as 
well as with the addition of the average MD of three specific 
WM tracts that were previously suggested to be strategic in 
cSVD. The combination of the whole brain MD with lesion 
markers, BPF and demographics resulted in the best per-
formance at predicting processing speed (R2 = 0.38), with 
an increase of 0.11 and 0.08 in R2 as compared to the use 
of models 1 and 2, respectively, and a decrease of MAE 
equal to 0.06. Conversely, no improvement in the predic-
tion of memory performance was observed for any of the 
models as compared to the use of demographics only. Next, 
we evaluated whether tract-based metrics could be beneficial 
to predict cognitive performance using linear models. The 
results reported in supporting information Table S3 indicate 
that tract-based metrics did not improve the performance 
of linear regression as compared to whole brain metrics in 
our dataset.

Tract‑based ANN prediction

ANN features selection

The results of the features selection procedure on a random 
selection of 50% of the data to identify the most promising 
predictors of processing speed and memory performance 
are shown in Fig. 2. Among all features of the 18 bi-lateral 
WM tracts relevant for the leave-one-out linear prediction 
of processing speed in these 51 subjects (Supplementary 
Material Figure S2), the following features were selected 
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after 10 iterations of feature selection: the average FA of 9 
WM tracts, the average MD of 5 WM tracts, the CTH of the 
cortex connected from the right thalamic-frontal radiation, 
and 5 whole brain measures. For the prediction of memory 
performance, a larger number of features was sampled from 
15 candidate tracts (Suppl. Fig. S2) as compared to process-
ing speed. These included the FA of 5 WM tracts, the MD 
of 5 WM tracts, 4 average CTH values, the PWD of 6 tracts, 

the average residuals of 7 tracts and the WMH volume of the 
right superior temporo-occipital tract, in addition to 4 whole 
brain metrics. The frequency with which these features were 
selected across iterations largely varied, as shown in Fig. 3, 
with only a minority being repeatedly selected whereas the 
majority was selected only in a specific subset iteration. Of 
the 10 iterations, the one providing the highest prediction R2 
in the training set (50% of the subjects randomly selected) 

Table 2   The R-squared (R2) 
and the mean absolute error 
(MAE) obtained with linear 
regression of processing speed 
and memory performance 
using (i) demographics 
only, (ii) demographics and 
conventional lesion and 
neurodegenerative markers, (iii) 
model ii + white matter metrics 
(mean diffusivity, fractional 
anisotropy, peak-skeletonised 
mean diffusivity)

For each regressor, we report its normalized regression coefficient (Beta), p-value

N = 102 Processing speed Memory

Beta p-value R2 [MAE] Beta p-value R2 [MAE]

Model 1: demographics only: age, sex, education
 Age − 0.37 < 0.001 0.29 [0.62] − 0.51 < 0.001 0.29 [0.67]
 Sex [male] − 0.02 0.80 − 0.11 0.21
 Education 0.34 < 0.001 0.17 0.05

Model 2: model 1 + lesion and atrophy markers
 Age − 0.19 0.07 0.35 [0.61] − 0.38 < 0.01 0.32 [0.65]
 Sex [male] 0.03 0.68 − 0.07 0.46
 Education 0.31 < 0.001 0.14 0.11
 Presence of infarcts − 0.05 0.50 − 0.02 − 0.79
 Presence of micro-bleeds − 0.06 0.48 0.11 0.22
 BPF [%] 0.29 < 0.01 0.20 0.09
 WMH [%] − 0.04 0.65 0 0.98

Model 3a: model 2 + average mean diffusivity in white matter
 Age − 0.12 0.23 0.43 [0.55] − 0.35 < 0.01 0.33 [0.65]
 Sex [male] − 0.01 0.91 − 0.09 0.35
 Education 0.35 < 0.001 0.16 0.08
 Presence of infarcts − 0.04 0.57 − 0.02 0.83
 Presence of microbleeds -0.03 0.74 0.12 0.17
 BPF [%] 0.16 0.13 0.15 0.24
 WMH [%] 0.04 0.60 0.03 0.73
 MD [mm2/s] − 0.34 < 0.001 − 0.14 0.19

Model 3b: model 2 + average fractional anisotropy in white matter
 Age − 0.18 0.07 0.36 [0.59] − 0.38 0.001 0.34 [0.65]
 Sex 0.05 0.54 − 0.05 0.59
 Education 0.29 < 0.001 0.13 0.16
 Presence of infarcts − 0.06 0.48 − 0.03 0.77
 Presence of micro-bleeds − 0.05 0.52 0.11 0.19
 BPF 0.27 0.01 0.18 0.13
 WMH [%] 0.03 0.78 0.07 0.51
 FA 0.14 0.16 0.15 0.17

Model 3c: model 2 + peak-skeletonized mean diffusivity in white matter
 Age − 0.21 < 0.05 0.37 [0.59] − 0.39 0.001 0.32 [0.65]
 Sex 0.04 0.59 − 0.07 0.48
 Education 0.31 < 0.001 0.14 0.11
 Presence of infarcts − 0.07 0.41 − 0.03 0.77
 Presence of micro-bleeds − 0.04 0.57 0.11 0.21
 BPF [%] 0.18 0.14 0.17 0.21
 WMH [%] 0.11 0.37 0.03 0.82
 PSMD [mm2/s] − 0.23 0.10 − 0.05 0.74
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is highlighted with white asterisks in Fig. 2 and with red 
boxes in Fig. 3.

ANN prediction evaluation

On the whole dataset, we predicted processing speed and 
memory performance with both linear regression and ANN 
as reported in Fig. 4. For ANN, we used both all selected 
predictors shown in Fig. 2, as well as the best performing 
subset in the training set. For processing speed, the ANN 
predictions resulted in R2 values equal to 0.44 with all can-
didate predictors, and 0.49 with the best subset, respectively, 
compared to 0.38 of the best linear regression (whole brain 
MD + lesion markers + demographics Similarly, the ANN 
predictions of processing speed achieved the lowest MAE, 
0.544 and 0.536, respectively, as compared to 0.566 for 

Table 3   The mean absolute error (MAE) and R-squared (R2) obtained 
with linear predictions with leave-one-out validation. Conventional 
whole brain metrics and established tract-specific metrics were used 
to predict processing speed and memory scores. Bold indicates the 
best prediction for each cognitive domain

N = 102 subjects Processing 
speed

Memory

Model Predictors MAE R2 MAE R2

Conventional whole brain metrics
 1 Age + sex + education 0.63 0.27 0.68 0.26
 2 1 + lesion markers + BPF 0.63 0.30 0.70 0.25
 3a 2 + MD 0.57 0.38 0.70 0.25
 3b 2 + FA 0.63 0.31 0.69 0.25
 3c 2 + PSMD 0.62 0.29 0.69 0.26

Fig. 2   A visual representation of all fiber tracts selected by the 
10-iterations artificial neural network (ANN) feature selection proce-
dure on random subsets of 50% of the subjects. The white asterisk 

shows the features that resulted in the best prediction performance 
(R2) in the training set together with age and education as predictors
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the linear regression). The ANN prediction with the best 
subset of predictors significantly improved the prediction 
performance as compared to the best linear regression 
(F = 10.32), whereas the improvement observed with all 
predictors was not significant (F = 0.49)—likely penalized 
by the larger number of predictors. For the prediction of 
memory, the ANN with all features and with the best sub-
set resulted in R2 values equal to 0.37 (MAE = 0.619) and 
0.40 (MAE = 0.615), respectively, as compared to R2 = 0.26 
(MAE = 0.681) for the best linear model (demographics 
only). Similarly to what was observed for processing speed, 
the ANN prediction with the best subset of predictors out-
performed the best linear model (F = 4.62), whereas the 
improvement obtained with all candidate predictors was not 
significant (F = 0.41).

In Supporting Information Figure S3, we repeated the 
ANN prediction using a leave-5-out cross-validation scheme, 
observing minor changes of prediction performance in terms 
of R2 (reductions up to 0.02).

Discussion

We have shown proof-of-concept that integrating tract-
specific multimodal MRI metrics with an artificial neural 
network framework can outperform conventional methods at 
predicting cognitive performance in memory clinic patients 
with small vessel disease. Compared to the best linear pre-
dictors selected in this work, the optimized ANN framework 

Fig. 3   Depicted are all the predictors selected by the artificial neu-
ral network (ANN) feature selection on random subsets of 50% of 
the subjects after 10 iterations for the prediction of processing speed 
(top) and memory performance (bottom). The red boxes highlight the 

combination of predictors selected from the ANN in 1 of the 10 fea-
ture selection iterations that achieved the best prediction performance 
in the training set
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explained additional R2 = 0.09 predicting processing speed 
and R2 = 0.14 when predicting memory performance, and 
thus represents a promising framework toward a better char-
acterization of cognitive performance based on concurrent 
MRI.

Multimodal imaging better explains cognitive 
performance than individual metrics

An important result of our work is to confirm that the inte-
gration of multiple modalities, such as dMRI and sMRI 

(T1-weighted, FLAIR), is needed to achieve a better under-
standing of SVD-related brain injury and of its impact on 
brain function. Table 2 unequivocally shows that combining 
established DTI metrics—even at the whole brain level—
with lesion markers and non-imaging information (e.g., 
demographics) better captures inter-subject variation in 
cognitive performance in this clinically heterogeneous study 
cohort, which is in line with previous observations from 
our group and others (Baykara et al. 2016; Biesbroek et al. 
2018; Duering et al. 2018; Groeneveld et al. 2019; Boomsma 
et al. 2020; de Lange et al. 2020; Jokinen et al. 2020). In our 

Fig. 4   Scatter plots of measured and estimated processing speed 
(top) and memory performance (bottom) using the linear multivari-
ate predictor (first column) and ANN (second and third column) with 
leave-one-out cross-validation. The solid line is the regression line, 
and is colored in blue for multivariate prediction (left), and in red for 
ANN prediction (middle and right). The colored dots represent each 
included patient and are colored encoded according to the clinical 

diagnosis: blue for no cognitive impairment (NoCI), orange for mild 
cognitive impairment (MCI), and green for patients with dementia 
(Dem). The best multivariate prediction (left) included demographics, 
lesion and atrophy markers and average MD in WM, and is compared 
to predictions with the neural network using all candidate metrics 
(middle), and the best subset (right)
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study, we have chosen to consider demographics as part of 
the model rather than regressing their effect out from the 
data as part of a multi-step regression approach. While this 
increases the complexity of the considered model, it allows 
to consider collinearities between predictors that could 
otherwise potentially lead to biases, as previously shown 
in other fields (Freckleton 2002). Interestingly, the inclu-
sion of imaging markers increases the amount of explained 
variance (e.g., group level) during regression (Table 2), but 
not in leave-one-out prediction of individual memory scores 
(Table 3). A possible explanation for this observation is the 
existence of a weak (linear) relation between predictors and 
outcome, which is difficult to estimate and substantially 
changes even when excluding a single measurement, collin-
earity between predictors, or the existence of non-linear rela-
tions between (some) predictors and cognitive performance 
that cannot be captured with linear prediction.

ANN prediction methods

Considering multimodal tract-specific metrics proved 
advantageous to predict the considered cognitive domains 
only in combination with a feed-forward artificial network. 
This finding well aligns with recent literature showing the 
need for methods beyond linear models when dealing with 
many imaging predictors, to account for their collinearity 
and, potentially, for their non-linear relation with the out-
come. Examples of these methods include variance decom-
position algorithms, such as principal component analysis 
which have previously been used to combine tract-specific 
metrics (Chamberland et al. 2019), and methods based on 
with sparsity constraints (Schouten et al. 2017; Boot et al. 
2020; Cole 2020). In the latest years, ANN have emerged 
not only as a versatile tool to achieve image segmentation 
and other tasks both in research and clinical practice (van 
Rijn and De Luca 2020), but also to perform prediction by 
learning complex relations between multiple input metrics 
and outcome while potentially dealing with collinearity. In 
this work, we have shown that ANN can explain additional 
R2 values up to 0.10–0.13 when predicting processing speed 
and memory performance, respectively, as compared to con-
ventional methods. Importantly, using the best predictors 
from the ANN feature selection as input to a linear model 
slightly improved the prediction of processing speed from 
R2 = 0.38 to 0.39, and of memory from R2 = 0.26 to 0.33, 
which is well below what is observed with the correspond-
ing ANNs (R2 = 0.49 and R2 = 0.40, respectively). Overall, 
this suggests that most of the gain in performance of the 
ANN prediction is driven by the ability of ANNs to handle 
eventual collinearities between predictors and to account 
for eventual non-linear relations with outcome as compared 
to conventional linear methods. Of note, other methods to 
account for these effects can be found in machine learning 

literature (e.g., support vector machines, nonlinear principal 
component analysis and regression, random forests, etc.), 
and might prove equally advantageous to ANNs to overcome 
limitations of linear approaches. Demonstrating which of 
these methods is the most advantageous to relate multimodal 
tract-based metrics to cognition remains an open question 
for future work.

ANN feature selection

We have introduced a feature selection strategy to support 
the performance of the ANN with a relatively small sam-
ple size, which proved key to the final performance of the 
method. In studies with larger samples, which are becom-
ing easier to achieve, thanks to the ability to pool multi-site 
that with data harmonization methods (de Brito Robalo et al. 
2021; de Luca and Biessels 2021), this step might be less rel-
evant. In that case, deeper networks (i.e., with more hidden 
layers) might be able to prove the identity of relevant predic-
tive features without further tweaking. In most neuroimag-
ing studies, however, achieving large sample sizes remains 
challenging, and our feature selection strategy might prove 
promising to the success of ANNs in this context, especially 
to prevent overfitting and their consequent poor generaliza-
tion in unseen subjects. Nevertheless, it should be reminded 
that ANNs depend on random initialization factors and 
hyper-parameters choices, and their training might there-
fore not always converge to a global minimum especially 
with limited sample sizes as those employed in this study. 
Taking these factors into account, it is likely that running the 
feature selection procedure de novo would result in a differ-
ent—only partly overlapping selection of features, which 
suggests the need for great care when attempting biological 
interpretations. In future studies, fixing the randomization 
seed and discarding non-deterministic components during 
the design of ANN architectures could prove advantageous 
to support interpretation and reproducibility. Independently 
from these technical solutions, the use of larger datasets than 
the one in this study should intrinsically lead to more con-
sistent feature selections, allowing the ANN to train more 
extensively and be thus likely less prone to initialization 
parameters and local minima.

Comparison with previous studies on cognition 
in SVD

There is increasing awareness in the field of vascular cognitive 
impairment that brain lesions observed on T1-weighted imaging 
and FLAIR only represent the tip of the iceberg of the ongoing 
pathological processes, and that dMRI metrics might better cap-
ture “hidden” brain injury and its relation to cognitive performance. 
These considerations hold also in our result, as dMRI metrics 
outperformed other imaging markers at both whole brain and at 
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tract-specific level. Previous studies in SVD and beyond have sug-
gested that the location of brain lesions (e.g., WMH) is predictive 
of their impact on specific cognitive functions through mechanisms 
such as brain disconnection. Indeed, the potential of shifting the 
analysis focus to the tract level to better capture cognitive func-
tion is supported by a growing body of evidence suggesting the 
importance of understanding lesions in the context of brain connec-
tions (Fox 2018), and the existence of a direct link between specific 
white matter tracts and brain function (Thiebaut de Schotten et al. 
2020), also in cSVD (Biesbroek et al. 2018). Following a similar 
concept, the MetaVCI-Map (Biesbroek et al. 2017; Weaver et al. 
2019, 2021) study has recently showcased the idea of predicting the 
impact of lesions on brain cognition based on their location within 
the brain white matter, although no localization of the tracts with 
dMRI was involved. Interestingly, in our analyses WMH burden 
was not selected by our feature selection procedure neither at whole 
brain nor at tract-specific level to predict processing speed. When 
we performed a linear regression using the amount of WMH of 
each WM tract as predictor (Supporting Information Table S3), we 
obtained a worse prediction of both processing speed and memory 
than when using demographics only, suggesting a tendency toward 
overfitting of this metrics and perhaps a lack of specificity to the 
different etiologies included in our study sample. Altogether, this 
might indicate that although WMH of specific tracts are related to 
brain function at the group level, they do not generalize to prediction 
tasks, such as the prediction of individualized cognitive function.” 
Regarding other lesion markers, we should note that we only con-
sidered the presence/absence of lacunes and micro-bleeds, which 
did not allow us to evaluate their effect at the tract level.

While this study only represents a proof-of-concept of the 
potential of the proposed framework, it is interesting to note 
that the selected features well agree with previous literature 
in cSVD. For example, features predictive of processing 
speed performance (Fig. 2 and Table 3) include both markers 
of neurodegeneration (BPF), of global WM injury (PSMD), 
and 3 tracts that have been previously related to processing 
speed tasks (Turken et al. 2008; Sasson et al. 2013), such as 
the superior longitudinal fasciculus and 2 superior parietal 
tracts. For the prediction of memory, only metrics sampled 
in the whole GM were selected in addition to several met-
rics of tracts previously suggested to be involved in memory 
tasks, including the cingulum, the forceps minor, occipital 
tracts, and the thalamic projections. Of note, our considered 
features did not include the hippocampal volume, which is 
commonly used to predict memory performance and might 
be worth considering in future studies.

Limitations and strengths

Overfitting

This is one of the major risks when investigating prediction 
methods in modest sample sizes, especially when based on 

machine learning and ANN. Our prediction framework was 
designed with awareness to this potential issue but is not 
free of limitations. First, the number of total predictors was 
reduced to a more viable subset by means of a feature selec-
tion strategy which was run on a random selection of 50% 
of the subjects, and was thus not optimized for the whole 
dataset. Considering our limited sample size, we opted for 
leave-one-out cross-validation for both linear prediction and 
ANN, to retain as many training subjects as possible while 
validating the prediction on unseen subjects. To further eval-
uate the generalizability of the proposed tract-based ANN 
framework, we have repeated the prediction using a leave-
5-out cross-validation scheme observing minor reductions 
in prediction performance (Supporting Information Figure 
S3), which supports a limited impact of overfitting on our 
results. Nevertheless, this validation approach might still 
underestimate the effective generalizability of the method. 
For example, the transformation of input metrics to Z-scores 
was performed once for all data points—including those that 
become part of leave-one-out (or leave-5-out validation), 
which might be prone to leakage of information from the 
training to the validation set. For this reason, future valida-
tion of this framework in a (large) external cohort remains 
needed before attempting a biological interpretation of the 
findings.

Optimization

Another aspect of ANN that can strongly influence their per-
formance is the choice of hyper-parameters (Isensee et al. 
2021), including the network architecture and the optimiza-
tion settings. In this study, we empirically opted for a shal-
low network with 2 layers and a limited number of nodes 
(20) to minimize the chance of overfitting given our limited 
training set. Hence, the architecture used in this work does 
not represent an optimal configuration for all applications 
but rather a starting point to further optimize in each specific 
application, and further research is required to determine 
objective rules to guide the choice of hyper-parameters. Con-
ventional techniques as the linear regression require less user 
choices but are still prone to overfitting. This is shown, for 
example, by the fact that adding tract-specific metrics can 
lead to worse performance than just using demographics 
(Supporting Information Table S3). In this work, we have 
chosen to allow up to 10 predictors in the linear regression. 
This is an arbitrary choice that mediates between the risk of 
under-fitting and overfitting. Of note, several methods can 
be found in literature to improve the performance of a linear 
regression, including principal component analysis, but their 
extensive implementation is beyond the scope of this work, 
and impacts the ability to interpret which metrics are actu-
ally relevant to the prediction.
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MRI data

We have shown proof-of-concept that integrating metrics 
from different commonly acquired imaging modalities can 
substantially improve our ability to predict cognitive perfor-
mance. Nevertheless, the diffusion protocol here included 
did not allow to investigate diffusion metrics beyond the 
diffusion tensor, such as diffusion kurtosis imaging or other 
advanced models which have been shown superior to DTI in 
terms of sensitivity to microstructural changes in a number 
of applications, including SVD (Konieczny et al. 2021). On 
the same note, multi-shell dMRI protocols with higher dif-
fusion weighting than the one employed in this study would 
likely allow to further improve the performance of the WM 
tracts (Jeurissen et al. 2014) reconstruction and of the under-
lying GM properties (De Luca et al. 2020). Besides dMRI, 
the inclusion of other imaging modalities, such as arterial 
spin labeling or cerebrovascular reactivity (van den Brink 
et al. 2021), would likely be favorable to further characterize 
a disease like SVD, which is of vascular etiology.

Conclusion

In conclusion, we have shown that integrating multimodal 
metrics in a framework based on artificial neural networks is 
advantageous to predict cognitive performance in a memory 
clinic setting. Our framework outperforms linear methods 
at predicting cognitive performance, representing a step 
forward toward individualized predictions in patients with 
cerebral small vessel disease.
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