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Asymmetric 1,4-functionalization of 1,3-
enynes via dual photoredox and chromium
catalysis

Feng-HuaZhang1,2,3, XiaochongGuo1,2,3, XianrongZeng1,2 &ZhaobinWang 1,2

The merger of photoredox and transition-metal catalysis has evolved as a
robust platform in organic synthesis over the past decade. The stereoselective
1,4-functionalization of 1,3-enynes, a prevalent synthon in synthetic chemistry,
could afford valuable chiral allene derivatives. However, tremendous efforts
have been focused on the ionic reaction pathway. The radical-involved
asymmetric 1,4-functionalization of 1,3-enynes remains a prominent challenge.
Herein, we describe the asymmetric three-component 1,4-dialkylation of 1,3-
enynes via dual photoredox and chromium catalysis to provide chiral allenols.
This method features readily available starting materials, broad substrate
scope, good functional group compatibility, high regioselectivity, and simul-
taneous control of axial and central chiralities. Mechanistic studies suggest
that this reaction proceeds through a radical-involved redox-neutral pathway.

1,3-Enynes serve as a class of fundamental building blocks with diverse
reactivity patterns, including 1,2-, 3,4-, and 1,4-functionalization1–4.
Particularly, the asymmetric 1,4-functionalization of 1,3-enynes pro-
vides quick access to chiral allenes, which not only widely occur in
natural products and pharmaceuticals5,6 but also represent one of the
most versatile building blocks for the synthesis of complex
molecules7,8. Various transition-metal complexes (TM= Pd, Cu, Rh, Sc,
etc.) have proved to be able to achieve the asymmetric 1,4-functiona-
lization of 1,3-enynes, involving hydrosilylation9,10, hydroborylation11,
hydroamination12, hydrocarbonization13–15, dicarbonization16, etc.17–19.
These transformations generally proceeded via an ionic pathway with
allenyl or homoallenyl metal intermediates and mainly formed only
one axial chirality (Fig. 1a)3. On the other hand, the radical 1,4-func-
tionalization of 1,3-enynes via allenyl or propargylic radicals has
attracted much attention recently20–29, but only limited success has
been achieved in their asymmetric versions. In 2020, the Bao and
Zhang groups30, and Liu group31 independently reported the elegant
Cu-catalyzed enantioselective synthesis of chiral allenes via the radical
1,4-dicarbonization of 1,3-enynes. Compared to the ionic pathway,
these radical reactions could proceed under mild conditions and
afford densely functionalized complexes via a multicomponent man-
ner, which expanded the chemical space for the functionalization of

1,3-enynes. Thus, further exploration of new reaction patterns invol-
ving radicals could facilitate efficient access to valuable chiral allenes.

The Nozaki–Hiyama–Kishi reaction32 is one of the most reliable
C–C bond construction approaches with various applications in
synthesis chemistry33–36. However, conventional NHK reactions are
generally limited to reductive processes, and stoichiometric amounts
of metal reductants and strong Lewis acids (e.g., chlorosilanes and
Schwartz’s reagent) must be employed to turn over the chromium
catalytic cycle33. Recent breakthroughs in dual photoredox and chro-
mium catalysis37–42 have enabled redox-neutral NHK reactions43–46.
However, the photocatalytic transformations are limited to asym-
metric allylations, reported by the Glorius group47, Kanai group48,49. To
the best of our knowledge, the asymmetric radical 1,4-functionaliza-
tion of 1,3-enynes via merging photoredox and Cr catalysis remains
underdeveloped.

As our ongoing efforts in Cr-catalyzed radical-involved
reactions50, we anticipate that the propargyl radical, which is in
equilibrium with the allenyl radical, could be captured by a chiral
chromium complex, and subsequent nucleophilic addition to the
aldehyde affords the enantioenriched products (Fig. 1a, bottom).
To achieve this goal, several challenges have to be addressed: (1)
the regioselectivity control of 1,4-functionalization versus
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1,2-functionalization; (2) the proper choice of radical precursors
and photocatalysts to maintain the catalytic cycle; (3) the inhi-
bition of quickly occurring side reactions from reactive radical
intermediates or organochromium complexes.

Herein, we describe the three-component asymmetric radical 1,4-
functionalization of 1,3-enynes bymerging photoredox and chromium
catalysis (Fig. 1b). This reaction proceeds efficiently in a redox-neutral
manner without an external reductant. And two C–C bonds are
simultaneously constructed to provide chiral α-allenols with both a
stereogenic center and a stereogenic axis, which serve as essential
building blocks in total synthesis (Fig. 2) 51. Furthermore, the applica-
tion of versatile and readily accessible materials, including 1,3-enyne,
aldehyde, radical precursors, endow the reaction with significant
advantages in practical utility.

Results
Reaction optimization
With the idea in mind, we initially explored the three-component
reaction of benzaldehyde, 1,3-enyne 1, and DHP ester 2 (Table 1).
After detailed investigations of a series of reaction parameters, we
determined that the merger of a chiral chromium/cyano-bisoxazo-
line ((S,R)-L1) and a photocatalyst 4-CzIPN could achieve the che-
moselective allenylation reaction in good yield and high

diastereoselectivity and enantioselectivity under visible-light irra-
diation (entry 1). Control experiments establish that CrCl2, 4-CzIPN,
and light are critical for this allenylation reaction under these con-
ditions (entries 2–4). A slight decrease in enantioselectivity was
detected when using a similar anionic ligand L2 (entry 5). Other
chiral nitrogen-containing ligands are not effective for this reaction
under similar conditions (entries 6–10). In the case of L6, the
homopropargylic alcohol was isolated in 1:3 ratio vs the allenol
(entry 9). The reaction also performed well in DME, CH3CN, or
EtOAc, furnishing the desired chiral allenol only with a slight
decrease in yield and dr (entries 11–13). The photocatalyst
[Ir(dF(CF3)ppy)2(dtbpy)]PF6 also led to the allenol but with a slight
erosion in d.r. and ee (entry 14). Decreasing the catalyst loading to
5mol% CrCl2 and 6mol% (S,R)-L1 led to a drop in yield (entry 15).
When increasing the concentration from 0.05M to 0.1 M, the d.r.
decreased from 20:1 to 12:1 (entry 16). And the yield or dr of the
allenylation product was only modestly diminished, if 1.2 equivalent
of 1,3-enyne 1 and DHP ester 2 are used (entries 17&18). However,
adding 1.0 equivalent water to the reaction mixture inhibits the
formation of α-allenol 3 (entry 19). The addition of 1.0mL air to the
reaction vessel has a deleterious effect (entry 20). These results
indicated that the reaction was sensitive to moisture and air, prob-
ably due to the involvement of unstable alkyl chromium complexes.
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Substrate scope
We next explored the aldehyde scope (Fig. 3). Gratifyingly, a broad
array of aromatic and aliphatic aldehydes serve as effective reaction
partners, affording the chiral α-allenols in high yields, good diaster-
eoselectivities, and enantioselectivities (Fig. 3, 3–51). On a gram scale
(1.10 g product), the 1,4-functionalization of 1,3-enyne to product 3
proceeded in 77% yield and 94% ee. A variety of functional groups are
compatible with this method, including an aryl halide (e.g., fluoride,
chloride, bromide), boronate, methoxy, thioether, amide, carboxylate
ester, CF3, furan, thiophene, benzofuran and N-alkylated carbazole
(Fig. 3,6–19). To our delight, heteroaromatic aldehydes,withN,O, or S
in the aromatic ring, could react well with the 1,3-enyne and DHP ester
under the optimal condition, affording the enantioenriched products
efficiently (Fig. 3, 14–23). Notably, N-heteroaromatic rings are wide-
spread in pharmaceuticals and natural products52. However, the reac-
tivity of N-heteroaromatic aldehydes is rarely demonstrated in
previous NHK reactions. As disclosed in recent studies, they generally
led to poor yields, including our stereoconvergent allenylation reac-
tion (20–23)50,53–55. Aliphatic aldehydes, substituted with diverse pri-
mary or secondary alkyl chains, participated efficiently in this 1,4-
functionalization of 1,3-enynes (24–39). However, moderate diaster-
eoselectivities (5:1 dr to 10:1 dr) were generally observed in the cases of
primary aliphatic aldehydes (24–29), probably resulting from the
reduced steric hindrance in comparison with secondary alkyl alde-
hydes (30–39).

Naturally occurring α-amino acids are readily available and act as
prevalent feedstocks in asymmetric synthesis56. We were delighted to
find that the chiral α-amino aldehydes, derived from natural amino
acids, served as effective substrates under the standard condition for
synthesizing chiral amino alcohols with continuous two stereogenic
centers and one chiral axis (Fig. 3, 40–49). As indicated by the single-
crystal structure for products 12 and 42 (see Supplementary Infor-
mation), the chiral chromium catalyst, rather than existing stereo-
centres on the chiral aldehydes, predominantly determines the
stereochemistry of the allenylation products 40–49. It is noteworthy
that chiral amino alcohols are prevalent synthons in pharmaceuticals
and asymmetric catalysis57. Finally, the reactivity of α,β-unsaturated
aldehydes was tested, and the desired chiral α-allenols were obtained
in high yields anddiastereoselectivities after increasing the equivalents
of 1,3-enyne 1 and DHP ester 2 (Fig. 3, 50 and 51).

With respect to the DHP esters and 1,3-enynes, the scope of this
method is also fairly broad (Fig. 4, 52–69). For example, moderate to
good yields and high diastereo- and enantioselectivities are achieved
for the alkyl radical precursors with various alkyl substituents, such as
cyclohexyl, oxacyclohexyl, azacyclohexyl, cyclopentyl, cyclopentenyl,
and tert-butyl (52–58). However, using DHP ester with a primary alkyl

substituent furnished the desired allenol 59a in moderate yield (42%,
>20:1 d.r., 85% ee), accompanied by 28% direct alkylation product 59b
in 76% ee. These results indicate that the single electron reduction of
the primary alkyl radical by CrII/L could compete with its addition to
1,3-enynes. 1,3-Enynes, bearing different acetylenic substituents vary-
ing from silyl, alkyl to aryl groups, all reacted smoothly with aryl or
alkyl aldehydes and DHP ester 1 to furnish the chiral products effi-
ciently (60–69). We found that the use of TMS and TES substituted
enynes slightlydecreaseddiastereoselectivity (61,62), probablydue to
the variation of steric hindrance. And 1,3-enynes with an aryl group led
to the allenols in high enantioselectivity, albeit with moderate regio-
and diastereoselectivity (66–69). However, the current optimal con-
dition does apply to 1,3-enynes bearing substituents on the C=C bond
(Fig. 4, bottom). The use of triisopropyl(3-methylbut-3-en-1-yn-1-yl)
silane gave the propargylation product 70 predominantly with poor
diastereoselectivity.

Organotrifluoroborates, featuring tetracoordinate boron with
strong boron-fluoride bonds, are generally stable toward numerous
regents that are often problematic for other trivalent organoborons,
and thus have been widely used in Suzuki-Miyaura couplings58. More-
over, organotrifluoroborates also prove to be suitable radical pre-
cursors for C–C bond construction via photoredox catalysis59,60. In this
context, we applied themas radical precursors to our newly developed
method. After further evaluation of different reaction parameters, we
determined an optimal condition with the acridine tetrafluoroborate
(PC-2) as the photocatalyst and 2,6-dimethylpyridine hydrochloride as
the dissociation reagent. Thus, the representative secondary organo-
trifluoroborates engaged well in the 1,4-functionalization of enynes
with aryl and aliphatic aldehydes to efficiently afford the desired
coupling products (Fig. 5a, 53, 56, 71, and 72).N-(Acyloxy)phthalimides
(NHPI esters) are widely available from carboxylic acids, and have
proved to be priviliged alkyl radical precursors in decarboxylitive
cross-couplings61,62. Gratifyingly, NHPI esters also work well under a
slightly modified condition with Hantzsch ester as the reductant, fur-
nishing the desired allenols in moderate to good yield and high ste-
reoselectivity (Fig. 5b, 1, 31, 53, and 58).

Synthetic application
Product transformations were performed to demonstrate the syn-
thetic utility of our newly developedmethod (Fig. 5c). Chiralα-allenols
serve as suitable building blocks in the synthesis of enantioenriched
dihydrofurans63. The desilylation reaction of 63 proceeded smoothly,
affording the chiral α-allenol 73 without losing diastereomeric or
enantiomeric excess. The stereoselective electrophilic cyclization of
73 furnished 2,5-dihydrofurans 74 and 75with good efficiency in axial-
to-central chirality transfer (Fig. 5c).
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Mechanistic observations
A series of conventional experiments were conducted to provide
insights into the reaction mechanism (Fig. 6a–c). The addition of 2
equiv of an allyl sulfone under the standard condition led to an
adduct 76 in 42% yield, with a trace amount of desired product 3,
which suggested that the reaction might involve the formation of
cyclohexyl radical from the DHP ester (Fig. 6a). According to a
reported method64, the quantum yield of this model reaction was

determined to be 0.35. Moreover, the direct correlation between
photolysis and product formation is demonstrated by an interval
light-dark reaction (Fig. 6b). These results indicate that the radical
1,4-functionalization process undergoes a photoredox, instead of
a radical-chain, pathway. As shown in Fig. 6c, the Stern–Volmer
luminescence quenching studies proved that the DHP ester, rather
than the 1,3-enyne, quenches the excited-state photocatalyst 4-
CzIPN, suggesting a reductive quenching pathway.
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According to our observations and previous reports44,46,47, a
putative mechanism is proposed in Fig. 6d with the model reaction as
an example. The excited-state photocatalyst PC* 4-CzIPN* (E1/2(*PC/
PC˙ˉ) = 1.35 V vs. SCE in MeCN)65 is reductively quenched by the DHP

ester 2 (E1/2 = 1.10 V vs. SCE in MeCN)66, generating the reduced pho-
tocatalyst PC˙ˉ and the radical cation A. The rapid fragmentation of
intermediateA affords the isopropyl radical and the pyridiniumB. The
isopropyl radical could either reversibly add to the low valent CrII/L1 to
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generate an off-cycle alkyl CrIII/L1 complex67, or add to the terminus of
1,3-enyne 1 to forge the propargyl radical C, which is in equilibrium
with the allenyl radical C’. The radical capture by CrII/L1 leads to two
equilibrated species, the propargyl chromiumD and allenyl chromium
D’. Subsequent nucleophilic attack to benzaldehyde is proposed via a
six-member cyclic manner68, affording intermediate E. We believe that
the isomerization between intermediates D and D’ is faster than the
subsequent nucleophilic addition to aldehydes. So the regioselectivity
might be determined in the nucleophilic carbonyl addition step via a
possible Zimmerman-Traxler transition state. As observed in the scope
study, the steric hindrance of the acetylenic substituents of 1,3-enynes
is critical for the high regioselectivity, which favors the allenylation
product formation from the propargyl Cr D, instead of the allenyl D’.
The dissociation of the O–Cr bond in E by the pyridinium B, provides
chiral allenol 3. Finally, the CrIII/L1 is reduced to CrII/L1 (E1/2 = –0.65 V

vs. SCE in H2O, E1/2 = –0.51 V vs. SCE in DMF)47 by the reduced photo-
catalyst PC˙ˉ (E1/2 (PC/PC˙ˉ) = –1.21 V vs. SCE in MeCN) 65, which closes
the catalytic cycle.

In conclusion, we described a three-component asymmetric
radical 1,4-functionalization of 1,3-enynes via dual photoredox and
chromium catalysis. The key to success is using DHP esters under
photoredox conditions, thus obviating stoichiometric amounts of
metal reductants and dissociation reagents in conventional catalytic
NHK reactions. The present method exhibits broad substrate scope
with good functional group compatibility, providing efficient access to
valuable chiral α-allenols from the readily available starting material.
Given the importance of allenols and the growing interest in metalla-
photoredox catalysis37, we anticipate that our protocol will find broad
utility in organic synthesis and facilitate the current endeavors to
develop dual catalytic systems.

Fig. 5 | Exploration of other radical precursors and representative synthetic applications. a RBF3K as the radical precursor. b Redox-active ester as the radical
precusor. c Desilylation and cyclization. NBS N-bromosuccinimide.
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Methods
General procedure for radical 1,4-functionalizationof 1,3-enynes
with aldehydes and DHP esters
In a nitrogen-filled glovebox, an oven-dried 20mL vial with a
magnetic stir bar, were charged with the CrCl2 (5.0 mg,
0.04mmol, 10mol%) and (S,R)-L1 (23.2 mg, 0.048mmol, 12 mol
%). Then 8.0mL THF was added via syringe. The vial was closed
with a PTFE septum cap and then stirred at room temperature for

2 hours. Next, to the prepared catalyst solution were added the
1,3-enynes (0.6mmol, 1.5 equiv), the aldehydes (0.4 mmol, 1.0
equiv), the DHP esters (0.6 mmol, 1.5 equiv), and photocatalyst
4-CzIPN (6.4 mg, 0.008mmol, 2 mol%) sequentially. Then the vial
was closed with a PTFE septum cap and taken out of the glovebox.
The reaction was irradiated with two 20W 160-440 nm LED for
12 h (tube 5 cm away from lights, fans for cooling, 30–35 °C). After
that, the reaction mixture was concentrated and run through a
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short silica gel pad with hexanes/EtOAc (3:1) as the eluent. Then
the solvent was removed under the reduced pressure. The dia-
stereoselectivity was determined via 1H NMR analysis of the crude
reaction mixture. The residue was purified by flash chromato-
graphy to provide the desired product, and the ee was deter-
mined via HPLC/SFC analysis.

Data availability
The data relating to the materials and methods, experimental proce-
dures, HPLC/SFC spectra, mechanism research, and NMR spectra are
available in the Supplementary Information. The crystallographic data
for compounds 12 and 42 are available free of charge from the CCDC
under reference numbers 2130059 and 2130062. All other data are
available from the authors upon request.
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