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Systemic IL-27 administration prevents abscess formation and
osteolysis via local neutrophil recruitment and activation
Yugo Morita1, Motoo Saito1, Javier Rangel-Moreno2, Anthony M. Franchini3, John R. Owen4, John C. Martinez 1, John L. Daiss1,5,
Karen L. de Mesy Bentley 1,5,6, Stephen L. Kates4, Edward M. Schwarz 1,5 and Gowrishankar Muthukrishnan 1,5✉

Interleukin-27 is a pleiotropic cytokine whose functions during bacterial infections remain controversial, and its role in patients
with S. aureus osteomyelitis is unknown. To address this knowledge gap, we completed a clinical study and observed elevated
serum IL-27 levels (20-fold higher, P < 0.05) in patients compared with healthy controls. Remarkably, IL-27 serum levels were
60-fold higher in patients immediately following septic death than in uninfected patients (P < 0.05), suggesting a pathogenic role
of IL-27. To test this hypothesis, we evaluated S. aureus osteomyelitis in WT and IL-27Rα−/− mice with and without exogenous IL-
27 induction by intramuscular injection of rAAV-IL-27p28 or rAAV-GFP, respectively. We found that IL-27 was induced at the
surgical site within 1 day of S. aureus infection of bone and was expressed by M0, M1 and M2 macrophages and osteoblasts but
not by osteoclasts. Unexpectedly, exogenous IL-27p28 (~2 ng·mL−1 in serum) delivery ameliorated soft tissue abscesses and peri-
implant bone loss during infection, accompanied by enhanced local IL-27 expression, significant accumulation of RORγt+

neutrophils at the infection site, a decrease in RANK+ cells, and compromised osteoclast formation. These effects were not
observed in IL-27Rα−/− mice compared with WT mice, suggesting that IL-27 is dispensable for immunity but mediates redundant
immune and bone cell functions during infection. In vitro studies and bulk RNA-seq of infected tibiae showed that IL-27 increased
nos1, nos2, il17a, il17f, and rorc expression but did not directly stimulate chemotaxis. Collectively, these results identify a novel
phenomenon of IL-27 expression by osteoblasts immediately following S. aureus infection of bone and suggest a protective role of
systemic IL-27 in osteomyelitis.
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INTRODUCTION
Despite significant medical advances, deep bone infections
continue to be the bane of orthopedic surgery, with infection rates
essentially remaining at 1%–2% after elective surgery over the past
50 years1–4. Staphylococcus aureus is the major pathogen in
orthopedic infections. It is responsible for 10 000–20 000 prosthetic
joint infections (PJIs) annually in the United States5,6 and 30%–42%
of fracture-related infections (FRIs)7,8. Unfortunately, these difficult-
to-treat S. aureus bone infections are associated with poor clinical
outcomes and high recurrence rates following revision surgery9,10.
With the increasing incidence of methicillin-resistant S. aureus
(MRSA) osteomyelitis and emerging strains with pan-drug resis-
tance11,12, there is an urgent need for novel immunotherapies to
supplement existing antibiotic therapies.
S. aureus causes the most lethal form of human sepsis, with a

10% mortality rate, and a catastrophic outcome of osteomyelitis is
death due to sepsis and multiple organ failure13,14. The cellular
and molecular mechanisms underlying S. aureus osteomyelitis-
induced sepsis are largely unknown. Interestingly, several studies
have reported elevated serum IL-27 levels during sepsis,
suggesting that IL-27 could potentially be useful in predicting

sepsis-driven mortality15–20. IL-27 is a heterodimeric cytokine
belonging to the IL-12 cytokine family and is mainly produced by
antigen-presenting cells such as macrophages, monocytes, and
dendritic cells21,22. IL-27 is composed of the IL-27p28 and
EBI3 subunits and signals through a heterodimeric cell surface
receptor composed of IL-27 receptor α (IL-27Rα) and gp13021–23.
Similar to IL-12, IL-27 signaling is mediated mainly through the
intracellular JAK-STAT pathway and participates in multiple
immunoregulatory activities21–23. Classical IL-27 signaling down-
regulates Th17 differentiation, stimulates regulatory T-cell devel-
opment, and drives IL-10 production by CD+ T cells21,22,24,25.
Studies involving cecal ligation and puncture (CLP)-induced
bacterial sepsis and S. aureus pneumonia following influenza
demonstrated that IL-27 mediates enhanced susceptibility to
infection by attenuating Th17 immunity and promoting IL-10
induction26,27. These studies highlight the importance of IL-27 in
immune suppression. On the other hand, IL-27 has been reported
to promote the proliferation and differentiation of hematopoietic
stem cells28, increase the production of proinflammatory cytokines
by monocytes29,30, and induce Th1 differentiation31. Currently, the
contribution of IL-27 to host immunity during S. aureus
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osteomyelitis is unknown. Here, we examined whether IL-27 is an
essential cytokine involved in the pathogenesis of S. aureus
osteomyelitis. We report that IL-27 expression was induced in
patients with S. aureus osteomyelitis and that elevated serum IL-27
correlated with septic death in these patients. IL-27 is produced
early in murine S. aureus bone infection, especially by macro-
phages and, surprisingly, by osteoblasts. We also unexpectedly
discovered that exogenous and prophylactic administration of IL-
27 significantly accelerates S. aureus clearance in mouse bone by
enhancing early local host innate immune responses and
preventing bone erosion.

RESULTS
Serum IL-27 levels were associated with S. aureus osteomyelitis in
patients
To better understand the involvement of IL-27 in host immune
responses to S. aureus osteomyelitis, we measured IL-27 in serum
from healthy individuals, orthopedic patients with culture-
confirmed S. aureus bone infections, and patients who died from
sepsis associated with S. aureus osteomyelitis. Serum IL-27 levels
were significantly elevated in infected patients compared to
uninfected individuals (20-fold higher, P < 0.05). Remarkably, IL-27
levels immediately following septic death were 60-fold higher
than those in healthy individuals (Fig. 1a, P < 0.05), suggesting that
IL-27 could be useful in predicting S. aureus osteomyelitis-induced
septic death. Indeed, in this small patient cohort, formal analyses
of IL-27 as a diagnostic biomarker using receiver operator
characteristic (ROC) curve analysis revealed good prediction
accuracy for identifying S. aureus osteomyelitis, as indicated by
the area under the curve (AUC) of 0.922 (Fig. 1b, P < 0.000 1).

IL-27R is required for S. aureus-driven early IL-27 expression in
mice
Given the association between IL-27 expression and S. aureus
osteomyelitis in patients, we next measured IL-27 in mice with
S. aureus osteomyelitis induced using a well-established transtibial
model32–36. C57BL/6 (WT) and IL-27Rα−/− mice were challenged
with bioluminescent MRSA (USA300 LAC::lux), and tibiae were
harvested 14 days post-infection to assess the bacterial load and
measure IL-27 levels via ELISA. We observed early induction of IL-27
expression in tibiae due to S. aureus infection, and this response was
autoregulated by IL-27/IL-27R signaling, as IL-27 induction on Day 1
was not observed in IL-27Rα−/− mice (Fig. 2a, P < 0.05). The ex vivo

CFUs in the implants, tibiae, and soft tissues were not different in IL-
27Rα−/− mice compared to WT animals (Fig. S1), suggesting that IL-
27 is dispensable for clearance of S. aureus from bone.

S. aureus induces IL-27 secretion in macrophages and osteoblasts
but not in osteoclasts
Although early induction of IL-27 by S. aureus infection of bone
was evident, its cellular origin was unclear. Thus, to assess the
potential of different cell populations to produce IL-27 in response
to S. aureus, we measured IL-27 production by murine osteoblasts,
osteoclasts, and macrophages in vitro. S. aureus induced
significant concentration-dependent IL-27 secretion 24 h post-
infection in both RAW 264.7 macrophages and M0, M1, and M2
murine macrophages (Fig. 2b, P < 0.05). Surprisingly, murine
calvarial MC3T3-E1 osteoblasts and primary bone marrow-
derived osteoblasts produced significantly higher amounts of IL-
27 at 24 h post-infection (Fig. 2c, P < 0.05). In sharp contrast, bone
marrow-derived osteoclasts did not produce IL-27 when exposed
to S. aureus in vitro (Fig. 2d, P < 0.05). To our knowledge, this is the
first demonstration of IL-27 expression by osteoblasts and
suggests an important early host innate immune response against
S. aureus infection.

Systemic IL-27 inhibits draining abscess formation and bone loss
during the establishment of S. aureus osteomyelitis
We next examined whether systemic IL-27 mediates bacterial
clearance during S. aureus osteomyelitis in our murine model.
MRSA (USA300 LAC::lux) was used to induce transtibial osteomye-
litis in mice after intramuscular (IM) injection of recombinant
adeno-associated virus expressing GFP (rAAV-GFP, control) or
rAAV-IL-27p28 (Fig. 3a). We first confirmed the magnitude and
stability of IL-27 production after rAAV-IL-27p28 injection and
detected a temporal increase in serum IL-27, which peaked
(~2 ng·mL−1) on Day 24 post-injection (Fig. 3b). While rAAV-IL-
27p28 treatment did not show an effect on in vivo S. aureus
growth, as assessed by the bioluminescence intensity (BLI) values
(Fig. 3c), rAAV-IL-27p28-treated mice showed improved body
weight recovery following septic surgery compared to rAAV-GFP-
treated animals (Fig. 3d, P < 0.05). Remarkably, mice injected with
rAAV-IL-27 showed much smaller draining abscesses at the sites of
bone infection (Fig. 3e). Ex vivo CFU analysis confirmed that the
bacterial load in surgical site soft tissues was significantly lower in
rAAV-IL-27p28-treated mice (Fig. 3f, P < 0.05). Moreover, high-
resolution μCT demonstrated that peri-implant osteolysis was
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Fig. 1 Serum IL-27 levels are elevated in patients with S. aureus infection. a Serum samples were collected from healthy individuals (n= 10),
orthopedic patients with culture-confirmed S. aureus bone infections (n= 23), and patients who died from septic S. aureus osteomyelitis
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decreased in mice treated with rAAV-IL-27p28 compared to mice
receiving rAAV-GFP (Fig. 3g).
MRSA-infected tibiae from rAAV-IL-27p28- and rAAV-GFP-

treated mice were harvested on Days 1, 3, 7, and 14 post-septic
surgery and subjected to bulk RNA sequencing. As expected, IL-27
expression in the infected tibiae was significantly upregulated in
mice receiving rAAV-IL-27p28 compared to mice receiving rAAV-
GFP at all time points (Fig. 3h), suggesting a positive feedback
effect37. To validate the transcriptome data, the IL-27p28 protein
level was measured at early time points in mouse tibia
homogenates using ELISA (Fig. S2). Collectively, these results

demonstrated that IL-27 affects abscess formation and bone
osteolysis. Of note, CFU quantification in the implants revealed
similar bacterial loads between the groups, suggesting that
systemic IL-27 treatment does not affect biofilm formation on
implants. Indeed, scanning electron microscopy (SEM) confirmed
these findings (Fig. S3).

IL-27 enhances the accumulation of RORγt+ neutrophils at early
stages of implant-associated osteomyelitis
We next explored possible scenarios that can lead to the
observed suppression of S. aureus Staphylococcus abscess
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communities (SACs) and reduced bone loss at the surgical site.
Immunohistopathology of infected tibiae revealed an increased
number of neutrophils (Ly6G+ cells) on Day 1 post-surgery in
both SACs and the adjacent bone marrow in rAAV-IL-27p28-
treated animals compared to rAAV-GFP control animals (Fig. 4a).
Histomorphometric quantification confirmed the significant
increase in neutrophils in SACs and in the bone marrow in the
rAAV-IL-27 group (Fig. 4b, P < 0.05). Interestingly, increased
numbers of Ly6G+RORγt+ neutrophils were observed in the
rAAV-IL-27p28 group (Fig. 4a, b, P < 0.05), suggesting a possible
involvement of proinflammatory IL-17 signaling in bacterial

clearance. Indeed, transcriptome analyses revealed increased
expression of proinflammatory IL17A, IL17F, and RORC (which
encodes the IL-17 transcription factor RORγt38) genes in rAAV-IL-
27p28-treated mice early during infection (Fig. 4c). As expected,
these genes were downregulated at the later stages of infection
due to reduced bone disease. Similar trends were observed for
immunostimulatory genes associated with Toll-like receptor (TLR)
and iNOS signaling, suggesting an IL-27-mediated proinflamma-
tory innate response (Fig. 4c). Indeed, we confirmed that
stimulation with a combination of IL-27 and the TLR agonist
lipopolysaccharide (LPS) increased nitric oxide (NO-) production
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in primary macrophages, revealing the synergistic properties of
IL-27 in enhancing TLR-driven production of microbicidal nitric
oxide (Fig. S4).

Systemic IL-27 reduces bone loss and osteoclast formation during
implant-associated osteomyelitis
μCT demonstrated that peri-implant osteolysis was ameliorated in
infected mice subjected to rAAV-IL-27p28 treatment (Fig. 3g). We
hypothesized that the decreased bone loss was due to reduced
osteoclast formation and differentiation. Histomorphometric
analysis of tibial sections stained for tartrate-resistant acid
phosphatase (TRAP) and immunostained for RANK confirmed
decreased osteoclast formation and resorption of trabecular bone
due to systemic IL-27 treatment (Fig. 5b, c).

The effects of IL-27 on S. aureus osteomyelitis are dependent on
the IL-27/IL-27R axis
It is plausible that IL-27 could directly be involved in the
recruitment of neutrophils to sites of S. aureus infection. Thus,
we examined whether IL-27 is chemotactic for neutrophils. An
in vitro chemotaxis assay using granulocytic HL-60 cells revealed
that IL-27 did not promote the migration of granulocytes through
the Boyden chamber membrane (Fig. S5). IL-27 was also not
chemotactic for primary bone marrow-derived macrophages (data
not shown). Alternatively, it is possible that IL-27/IL-27R signaling
could extrinsically induce chemotaxis of innate immune cells to
the infection site. Therefore, we repeated the in vivo S. aureus
osteomyelitis experiments using IL-27 receptor α knockout (IL-
27Rα−/−) mice. Fourteen days post-infection, the body weight
changes (Fig. 6a) and BLI values (Fig. 6b) were similar between IL-
27Rα−/− mice treated with rAAV-IL-27p28 and those treated with
rAAV-GFP. Most interestingly, the ex vivo CFUs in the implants,
surgical site soft tissues, and tibiae were similar in IL-27Rα−/− mice
(Fig. 6d). Furthermore, no differences were detected between the
groups in the formation of draining abscesses on these implants
(Fig. 6c) or in peri-implant osteolysis (Fig. 6e). These data indicate
that the effects of rAAV-IL-27p28 on S. aureus osteomyelitis in WT
mice are mediated by IL-27/IL-27R signaling.

DISCUSSION
Cytokines, including IL-27, are central for the timely induction of
immune responses during infection. Thus, elucidation of the
functions of IL-27 in the context of infection is essential to
improve our understanding of protective vs. pathogenic host
immunity21. In this study, we measured systemic levels of IL-27 in
serum from patients with S. aureus osteomyelitis. These clinical
studies revealed elevated serum IL-27 levels in patients with S.
aureus bone infections. In mice, we demonstrated that IL-27
expression is induced early during S. aureus infection in
macrophages and osteoblasts. Remarkably, exogenous IL-27
treatment decreased the severity of S. aureus osteomyelitis,
including reductions in abscess formation and bone loss. The
observed phenotype was likely linked to an IL-17-mediated
proinflammatory neutrophil response.
A notable finding of our study is that serum IL-27 levels were

highly associated with S. aureus osteomyelitis in patients
(AUC= 0.922). Previous studies have shown that serum IL-27
levels are elevated in sepsis patients, indicating the potential of
this cytokine as a diagnostic biomarker for sepsis15–19,39. A
single-center prospective study demonstrated that serum IL-27
levels had an AUC of 0.75 in patients with sepsis17. Although IL-
27 levels were 60-fold higher in patients immediately following
septic death than in uninfected patients, we could not calculate
AUC values due to the low number of patients with septic
death. However, our study indicates that IL-27 could be an
diagnostic marker associated with S. aureus osteomyelitis and
could help to predict septic complications. However, extensive

patient cohort studies are required to formally assess its
diagnostic potential.
S. aureus can persist intracellularly in osteoblasts, contributing

to chronic osteomyelitis40–42. This persistence can lead to the
induction of osteoclastogenic and inflammatory cytokines43–47,
osteoblast apoptosis48, and increased antibiotic tolerance41,49,50. A
remarkable finding of our study is that S. aureus induces
significant levels of proinflammatory IL-27 expression in osteo-
blasts but not in osteoclasts. Osteoclasts, although capable of
intracellular S. aureus uptake, exhibit diminished bactericidal
activity compared to that of bone marrow-derived innate immune
cells51. Moreover, we observed that exogenous expression of IL-27
contributes to increased neutrophil accumulation and impaired
osteoclast formation in the bone marrow milieu. Perhaps IL-27
treatment could promote active S. aureus uptake by osteoblasts
and bone marrow innate immune cells rather than by
osteoclasts. However, our results indicate an important role for
this cytokine in orchestrating bone homeostasis and remodeling
during osteomyelitis.
S. aureus-infected tibiae treated with rAAV-IL-27p28 exhibited

substantial accumulation of neutrophils expressing RORγt, which
are an innate source of IL-1752, and induction of IL-17, TLR, iNOS
signaling genes early during infection. These results indicate an
IL-27-mediated early innate immune response driving bacterial
clearance in these animals. However, transcriptomic analyses
also revealed suppression of these genes at later time points
during the chronic phase. From these observations, it is
conceivable that IL-27 exhibits time-dependent functions in
host immunity, ranging from protective immunity in acute S.
aureus osteomyelitis to suppressive immunity during chronic
infection. A recent study using a murine model of intrafemoral
osteomyelitis demonstrated similar time-dependent changes in
the host response during S. aureus osteomyelitis using gene
expression analyses53.
IL-27 is known to directly inhibit the early stages of RANKL-

induced osteoclastogenesis and suppress osteoclast forma-
tion54–59. Here, we observed that systemic rAAV-IL-27p28
treatment led to impaired osteoclast formation and differentia-
tion, suppressed RANK signaling, and reduced bone osteolysis in
S. aureus-infected mice. IL-27 expression studies in other disease
models have shown similar marked reductions in bone loss60,61.
In murine models of collagen-induced arthritis, researchers
observed that IL-27 was expressed in rheumatoid arthritis
synovial membranes and that ectopic IL-27 expression decreased
disease severity compared to that in untreated control mice60,61.
In our study, it is conceivable that the observed reduction in bone
loss in rAAV-IL-27p28-treated mice was due to reduced infection
and not due to the direct suppressive effects of IL-27 on
osteoclast formation. Additional studies at the cellular level are
required to confirm the effects of IL-27 on osteoclastogenesis
during S. aureus osteomyelitis.
Systemic IL-27 delivery led to amelioration of soft tissue infection

at the surgical site and peri-implant bone loss in animals with
S. aureus osteomyelitis. However, the bacterial loads in the implant
and bone were not affected by IL-27 delivery, underscoring the
ability of S. aureus to invade deep within the immune-privileged
environment of bone62. Interestingly, the effects of IL-27 on abscess
formation and bone osteolysis were lost in IL-27 receptor α knockout
mice, suggesting a direct role of IL-27/IL-27R signaling in modulating
immune and bone cell functions. Similarly, Wang et al. showed that
administration of recombinant IL-27 improved bacterial clearance
and host survival in a rodent model of Clostridium difficile infection63.
In contrast, other studies reported that IL-27 blockade increased the
severity of sepsis-induced myocardial dysfunction in an endotoxic
shock syndrome murine model64. Collectively, these studies highlight
the diverse effects of IL-27 in various bacterial infections.
To summarize our findings, we propose a schematic model of IL-

27-mediated immune regulation during S. aureus osteomyelitis
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(Fig. 7). At the onset of S. aureus osteomyelitis, osteoblasts and
macrophages induce IL-27 secretion via TLR activation, and this
process is dependent on the autoregulatory IL-27/IL-27Rα signaling
pathway. However, endogenous IL-27 is not sufficient to influence

host susceptibility to osteomyelitis. In sharp contrast, exogenous
expression of IL-27 induces the accumulation of proinflammatory
IL-17-producing RORγt+ neutrophils, which leads to decreased
abscess formation and increased bacterial clearance at the infection
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site. Furthermore, the abundance of IL-27 suppresses RANK
expression and inhibits osteoclast differentiation, leading to
decreased bone osteolysis during chronic osteomyelitis. The
proposed model of IL-27-mediated immune homeostasis is
preliminary and warrants several future investigations. First, we
utilized an AAV-IL-27p28 monomer in our studies, which could
exert effects on IL-27R signaling that differ from those of the IL-27
heterodimer (p28+ EBI3)21,65–68. Understanding the potential
differential effects of the monomer and heterodimer in the context
of S. aureus osteomyelitis is an important future consideration.
Second, we need to examine the complex temporal changes in the
infiltrating immune cells in the bone marrow niche, which
contribute to IL-27/IL-27R crosstalk during S. aureus osteomyelitis.
Third, we need to examine specific chemotactic mechanisms that
lead to the infiltration of RORγt+ neutrophils into the infection site.
Finally, we need to understand how IL-27 prevents cytokine storm
and internal organ tissue damage during chronic S. aureus
osteomyelitis in a more relevant murine model of osteomyelitis-
induced sepsis. Humanized mice, which are more susceptible to
osteomyelitis-induced sepsis caused by MRSA, may be better suited

for these studies69. These studies will further our understanding of
IL-27/IL-27R signaling during S. aureus osteomyelitis.

MATERIALS AND METHODS
Bacterial strains
Methicillin-resistant S. aureus (USA300 LAC) was used for all
in vitro experiments, and a bioluminescent strain of USA300
(USA300 LAC::lux) was used for all in vivo experiments, as
previously described32–34,36,69.

Ethics statement and patient enrollment
Serum samples were collected from S. aureus osteomyelitis
patients (n= 23) and uninfected patients undergoing elective
total joint replacement (n= 10). Additionally, serum samples were
collected immediately postmortem in patients who succumbed to
S. aureus osteomyelitis sepsis (n= 5). All recruited patients were
either enrolled in an international biospecimen registry (AO
Trauma Clinical Priority Program (CPP) Bone Infection Registry)70

or participated in IRB-approved clinical studies conducted at
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Virginia Commonwealth University. Patients were recruited with
local IRB approval at various institutions, and patient information
was collected in a REDCap database managed by AO Trauma and
VCU data management administrators. Laboratory investigators
had access only to deidentified clinical data, which was provided
on request by the data management teams. All ex vivo and in vivo
mouse infection studies were performed at the University of
Rochester in accordance with protocols approved by the
Institutional Animal Care and Use Committee at the university.

In vitro IL-27 induction assay in osteoblasts, osteoclasts, and
macrophages
Primary bone marrow-derived macrophages (BMDMs), osteoblasts,
and osteoclasts were generated using precursor cells from bone
marrow of the femora and tibiae of 12-week-old female C57BL/6J
mice (The Jackson Laboratory). After harvesting, mouse femora and
tibiae were washed in RPMI 1640+ 10% FBS, 1% HEPES, and 1%
antimicrobial/antimycotic (R10) medium before disinfection with
70% ethanol. Next, the epiphyses of the long bones were cut off,
the marrow was flushed out with a 23 G needle, and the bones
were resuspended in R10 medium to thoroughly separate the bone
and bone marrow. To isolate osteoblasts, bones were cut into small
pieces and incubated in αMEM containing 10% FBS, 2mmol·L−1 L-
glutamine, 1% antimicrobial/antimycotic, and collagenase I
(1mg·mL−1, Thermo Fisher Scientific) for 90min at 37 °C. After
the digestion process, the bone pieces were rinsed to remove
unwanted marrow cells, transferred into a flask containing αMEM
supplemented with 10% FBS, 2 mmol·L−1 L-glutamine, and 1%
antimicrobial/antimycotic, and incubated at 37 °C in 5% CO2. The
migration of osteoblasts from the bone pieces was confirmed after
3 or 4 days. To ensure cellular purity, only primary osteoblasts
obtained after three to five passages were used for the IL-27
induction assays. Murine calvarial MC3T3-E1 osteoblasts were
plated in DMEM+ 10% FBS, 2 mmol·L−1 L-glutamine, and 1%
antimicrobial/antimycotic to 80% confluence. To differentiate
osteoclasts, bone marrow hematopoietic cells were cultured in

medium containing macrophage colony-stimulating factor (M-CSF;
30 ng·mL−1, PeproTech), and RANKL (100 ng·mL−1, PeproTech) was
then added and cultured for 5 to 6 days at 37 °C in 5% CO2. BMDMs
were differentiated with M-CSF (30 ng·mL−1, PeproTech). RAW
264.7 cells were cultured in DMEM+ 10% FBS, 2 mmol·L−1 L-
glutamine, and 1% antimicrobial/antimycotic to 80% confluence.
Subsequently, BMDMs and RAW 264.7 cells were cultured in R10
medium containing PBS, murine IFN-γ (50 ng·mL−1, PeproTech) or
murine IL-4 (20 ng·mL−1, PeproTech) for 24 h to generate M0, M1,
and M2 macrophages, respectively. These cells were then infected
with S. aureus USA300 at an MOI of 10 for 24 h. Following infection,
cell culture supernatants were harvested for measurement of IL-27
secretion using a Mouse IL-27p28 Uncoated ELISA Kit (Invitrogen).
Serum IL-27 concentrations in patients were determined with a

Luminex-based Milliplex xMAP Multiplex Assay (Millipore Sigma)
according to the manufacturer’s instructions.

Nitrite production by murine macrophages
Murine BMDMs were pretreated with PBS or murine IL-27
(50 ng·mL−1, Biolegend) for 24 h and were then stimulated with
or without LPS (100 ng·mL−1, Millipore Sigma) to induce reactive
nitrogen species production71, which is important for the host
defense against bacterial infection72. Additional experiments were
performed utilizing BMDMs stimulated with or without murine IL-
27 (50 ng·mL−1) for 24 h after pretreatment. Subsequently, nitrite
concentrations in the cell culture supernatant were determined
with a Griess assay kit (R&D Systems).

Transwell chemotaxis assay
HL-60 cells (ATCC) were differentiated into granulocytes using
100 mmol·L−1 dimethylformamide (DMF) (Millipore Sigma) and
plated in the top compartment of Boyden chambers, and a
chemotaxis assay was performed according to the manufac-
turer’s protocol (Millipore Sigma QCMTM Chemotaxis 5 μm 24-
Well Cell Migration Assay Kit). Briefly, the chemotaxis of 1 × 106

cells per chamber toward the bottom compartment containing
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RPMI 1640 medium with or without a chemoattractant [human
IL-27 (500 ng·mL−1, PeproTech)] or with N-formyl-methionyl-
leucyl-phenylalanine (fMLP; 800 ng·mL−1, Millipore Sigma) as a
positive control was evaluated by incubation for 1 h at 37 °C.
After incubation, cell migration into the bottom chamber was
quantified as relative fluorescence units (RFUs) according to the
manufacturer’s instructions.

Intramuscular administration of the IL-27-expressing adeno-
associated virus vector (rAAV-IL-27)
To achieve sustained exogenous IL-27 expression, mice were
injected intramuscularly with recombinant murine IL-27-
expressing AAV (IL-27 p28, 0.5 × 1012 genome copies per mouse,
Vector Biolabs) seven days prior to surgical S. aureus infection65.
AAV was administered adjacent to the left quadriceps muscle,
contralateral to the lower limb with the surgical site. Mice
injected intramuscularly with AAV expressing recombinant GFP
(0.5 × 1012 genome copies per mouse, Vector Biolabs) were used
as controls.

Implant-associated MRSA osteomyelitis in mice
The C57BL/6 mice and IL-27Rα-deficient (IL-27Rα−/−) mice on the
C57BL/6 background used in the study were purchased from The
Jackson Laboratory and maintained in the University of Rochester
animal facilities. Our well-validated transtibial implant-associated
osteomyelitis model was utilized for all in vivo S. aureus challenge
experiments in mice32–34,36,69. Briefly, L-shaped stainless-steel
implants were contaminated with USA300 LAC::lux (5.0 × 105

CFU per mL) grown overnight and surgically implanted into the
tibiae of 8-week-old female C57BL/6 mice from the medial to the
lateral side. The body weight change and bioluminescence
intensity at the infection site were evaluated longitudinally, and
terminal assessment of CFUs (in the implant, surgical site soft
tissue and tibia), peri-implant osteolysis (high-resolution μCT
imaging), biofilm formation on the implant (Zeiss Auriga SEM
imaging), and histopathology were performed on Day 14 post-
septic surgery, as described previously32–34,36,69. Murine infection
studies were performed three independent times, and the data
from these experiments were pooled.

Histology
Histopathological analyses were performed according to protocols
described previously32–34,36,69. Briefly, after μCT, each mouse tibia
sample was fixed with 10% formalin neutral buffer for 3 days at
room temperature (RT) and then decalcified with 14% ethylene-
diaminetetraacetic acid disodium salt dihydrate (pH 7.4) for
2 weeks at RT. All samples were embedded in paraffin and
sectioned at a thickness of 5 μm. Digital images of the serially
stained slides were acquired using a VS120 Virtual Slide
Microscope (Olympus, Waltham, MA, USA). To compare the
numbers of osteoclasts within infected tibiae, tartrate-resistant
acid phosphatase (TRAP) staining was performed. The region of
interest (ROI) was manually set around the infection site, as shown
in Fig. 5a. The intensity of TRAP staining within each ROI in the
infection site and the cortical and trabecular bone regions in each
experimental group was quantified using colorimetric histomor-
phometry with a custom Analysis Protocol Package (APP) in
Visiopharm (v.2019.07; Hoersholm, Denmark).

Multiplex immunofluorescence staining
Primary antibodies. The following antibodies were utilized for
immunostaining: rabbit anti-TNFRSF11A/RANK (polyclonal, LS-
B2077, RRID: AB_1276561, LifeSpan Biosciences) at a 1:20 dilution,
goat anti-CD3-epsilon (clone M-20, sc-1127, RRID: AB_631128,
Santa Cruz Biotechnology) at a 1:100 dilution, Armenian hamster
anti-RORγ (clone RORg2, 646502, RRID: AB_2238503, Biolegend) at
a 1:50 dilution, and biotin rat anti-Ly6G (clone 1A8, 127604, RRID:
AB_1186108, Biolegend) at a 1:50 dilution.

Secondary antibodies. The following antibodies were utilized for
immunostaining: Alexa Flour 488-conjugated donkey anti-rabbit
IgG (711-546-152, RRID: AB_2340619, Jackson ImmunoResearch
Laboratories) at a 1:400 dilution for RANK detection, Alexa Fluor
568-conjugated donkey anti-goat IgG (A-11057, RRID:
AB_2534104, Thermo Fisher Scientific) at a 1:200 dilution, FITC-
conjugated anti-Syrian hamster IgG (307-096-003, RRID:
AB_2339583, Jackson ImmunoResearch Laboratories) at a 1:200
dilution, and Alexa Fluor 680-conjugated streptavidin (S32358,
Thermo Fisher Scientific) at a 1:200 dilution.
Then, 5 μm formalin-fixed paraffin sections were incubated at

60 °C overnight for deparaffinization. The tissue sections were
quickly transferred to xylene and gradually hydrated by
sequential transfer to absolute alcohol, 96% alcohol, 70%
alcohol, and finally water. Subsequently, the sections were
immersed in Antigen Unmasking Solution (Vector Laboratories)
and boiled for 2 h. Nonspecific binding was blocked with 5%
normal donkey serum in TBS containing 0.5% Triton X-100 for
40 min at RT in a humidified chamber. Then, primary antibodies
at appropriate concentrations were added to these sections and
incubated at 4 °C overnight. This step was followed by washing
with PBS and incubation with a secondary antibody at RT for
2 h. Finally, the slides were rinsed for 1 h in PBS and mounted
with Vectashield antifade mounting medium with DAPI (H-1200,
Vector Laboratories, Burlingame, CA, USA). Images were
acquired with a Zeiss Axioplan 2 microscope connected to a
Hamamatsu camera.

RNA sequencing of MRSA-infected tibiae
C57BL/6 mice were injected intramuscularly with rAAV-IL-27p28
or rAAV-GFP and then challenged with an S. aureus-contami-
nated transtibial implant as described above. Infected tibiae
were collected on Days 1, 3, 7, and 14 post-surgery for RNA
sequencing. Tibiae were pulverized in liquid nitrogen (−196 °C)
and homogenized using a Bullet Blender Gold instrument (Next
Advance). Isolation of total RNA from homogenized tibiae was
performed with the TRIzol extraction method (Thermo Fisher
Scientific) and RNeasy Mini Kits (Qiagen). Contaminating
genomic DNA was removed using TURBO DNase (Thermo Fisher
Scientific). A TruSeq Stranded Total RNA Library Prep Gold Kit
(Illumina) was utilized for next-generation sequencing library
preparation per the manufacturer’s instructions. Libraries were
sequenced on the NovaSeq6000 platform (Illumina). Quality
filtering and adapter removal were performed with fastp version
0.20.073 using the following parameters: “--in1./$(SAMPLE)
_R1.fastq.gz --out1 clt_$(SAMPLE)_R1.fastq.gz --length_required
35 --cut_front_window_size 1 --cut_front_mean_quality 13
--cut_front --cut_tail_window_size 1 --cut_tail_mean_quality 13
--cut_tail -w 8 -y -r -j $(SAMPLE)_fastp.json”. The remaining high-
quality processed reads were then mapped to the Mus musculus
reference genome (GRCm38.p6) with STAR version 2.7.0 f74 using
the following parameters: “--twopassMode Basic --runMode
alignReads --genomeDir $(GENOME) --readFilesIn $(SAMPLE)
--outSAMtype BAM Unsorted --outSAMstrandField intronMotif
--outFilterIntronMotifs RemoveNoncanonical”. The mapped
reads in the GRCm38.p6 gene annotations were counted using
the featureCounts read quantification program in Subread
version 1.6.475. Then, differential expression analysis and data
normalization were performed on each set of raw expression
data using DESeq2 version 1.22.176 within R version 3.5.1 with a
P value threshold of 0.05. All generated sequence data were
submitted to Gene Expression Omnibus under accession
number GSE168896.

Statistics
For statistical analyses involving more than two groups, we
utilized the nonparametric Kruskal‒Wallis test, one-way ANOVA
and two-way repeated measures ANOVA. Unpaired Student’s
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t-test was used to assess the significance of differences
between two experimental groups. The data are presented as
the means ± standard deviations. A P-value of <0.05 was
considered significant.
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