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Summary:

Multi-modality or multi-construct data arise increasingly in functional neuroimaging studies to 

characterize brain activity under different cognitive states. Relying on those high-resolution 

imaging collections, it is of great interest to identify predictive imaging markers and inter-

modality interactions with respect to behavior outcomes. Currently, most of the existing variable 

selection models do not consider predictive effects from interactions, and the desired higher-

order terms can only be included in the predictive mechanism following a two-step procedure, 

suffering from potential mis-specification. In this paper, we propose a unified Bayesian prior 

model to simultaneously identify main effect features and inter-modality interactions within the 

same inference platform in the presence of high dimensional data. To accommodate the brain 

topological information and correlation between modalities, our prior is designed by compiling 

the intermediate selection status of sequential partitions in light of the data structure and brain 

anatomical architecture, so that we can improve posterior inference and enhance biological 

plausibility. Through extensive simulations, we show the superiority of our approach in main and 

interaction effects selection, and prediction under multi-modality data. Applying the method to 

the Adolescent Brain Cognitive Development (ABCD) study, we characterize the brain functional 

underpinnings with respect to general cognitive ability under different memory load conditions.
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1 Introduction

Functional brain imaging techniques, which measure an aspect of brain activity, have 

yielded explosive growth in recent decades to characterize neural basis of disease or 

behavior. Among all, functional magnetic resonance imaging (fMRI) is the dominant 
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whole brain mapping tool, and it gradually becomes common to collect multiple fMRI 

runs from different cognitive tasks on a single individual. Uncovering brain underpinnings 

associated with the clinical outcome under these multi-modal imaging measurements as 

well as understanding how inter-task interaction effects play a role in the mechanism will 

improve people’s understanding of the associated neurological etiology and guide potential 

intervention targets.

Our work is motivated by the recent Adolescent Brain Cognitive Development (ABCD) 

study with an overall goal to investigate brain development from childhood through 

adolescence (Casey et al., 2018). For each participant, multiple task-based fMRI scans 

were obtained to measure brain activity under a range of functional domains, and we are 

particularly interested in the memory-related n-back tasks (Casey et al., 2018). It has been 

lately shown that functional brain activation under each of the memory task conditions 

is associated with general cognitive ability (Sripada et al., 2020). Our aim here is to 

characterize brain functional underpinnings and identify active brain markers corresponding 

to general cognitive ability by integrating high-dimensional imaging traits from different 

memory tasks while innovatively considering the interactions between different memory 

conditions.

To study the prediction of imaging features on a behavior outcome, scalar-on-image 

regressions have been developed under a single imaging modality or construct (Wang et al., 

2017; Kang et al., 2018), though it is always a concern on how the spatial correlation among 

imaging markers can be accommodated. Recently, with the emergence of big complex data, 

a considerable amount of efforts have been placed on selecting variables incorporating 

structural information–the so-called “structural sparsity” which assumes data structure 

impacts the pattern of risk features. By extending canonical regularized regressions, sparse 

group lasso (Simon et al., 2013) and its variations with more complex within-group 

correlation (Danaher et al., 2014; Zhao et al., 2016) have been developed to select grouped 

variables with selection smoothed over the prior structure. From a Bayesian perspective, 

variable selection under group structure has also been investigated with an extra benefit of 

uncertainty quantification. For instance, by introducing both group level and individual level 

selection indicators, Chen et al. (2016); Zhao et al. (2019) extend stochastic search variable 

selection (SSVS) to achieve sparse group selection under a nested two-level indicator set. 

Rockova et al. (2014); Zhang et al. (2014) adopt similar ideas but impose one or both levels 

of selection with a shrinkage prior. Despite the success of these methods, they are more 

suitable to accommodate grouped features. Simply assembling voxels into regions of interest 

(ROIs) may omit the structural details over brain topology within individual ROIs.

Under multi-construct cognitive states, the interaction among information domains on their 

association to a behavior outcome offers another potential to contribute to the predictive 

mechanism. Recent works have started to explore the nonlinear impact of single imaging 

modality on behavior (Mastrovito, 2013), but the interaction effects among collections from 

different tasks have not yet been studied. From an analytical perspective, joint modeling 

high-dimensional features and pairwise interaction effects is a non-trivial task due to an 

inflation of feature space. Under a heredity assumption which requires the inclusion of 

both main effects if their interaction effect is included in the model (Chipman, 1996), 
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two-step method is dominantly used for model fitting by first identifying main effects and 

then refitting the model with both main effects and their interaction effects (Hao et al., 

2018; Wang et al., 2019). Under Bayesian paradigms, recent works have placed main and 

interaction terms in one inference system via hierarchical shrinkage priors (Griffin et al., 

2017). Due to the non-sparse nature, the heredity assumption has to be relaxed.

In this paper, we develop an innovative Bayesian selection prior to efficiently identify risk 

features and interaction effects from high dimensional, topologically structured imaging 

markers collected from multiple modalities. Specifically, we construct nested topological 

partitions over the brain, and introduce a unified prior model to adaptively search the 

predictive main effects and inter-modality interaction effects. The group sparsity between 

adjacent levels allows the signal detection to follow a structural driven path, and the 

prior dependence between main effect selection and interaction effect selection naturally 

guarantees the heredity. Such a multi-level learning idea has been adopted previously to 

construct model stages under different scales to optimize computational efficiency and 

refine model estimation (Kou et al., 2012). Recently, Zhao et al. (2018) has developed a 

multiresolution-based Bayesian variable selection model and showed an improved posterior 

mixing and feature selection accuracy for ultra-high dimensional imaging data. One of the 

limitations of this method is the resolution parameters are not connected within a joint 

inference paradigm, leading to hurdles for the fine scale parameters to explore the whole 

sample space. In this work, we fully address this issue by integrating parameters from 

different scales under one prior model, which ensures the posterior inclusion probability 

is nonzero for each unit. Here, we use the word “modality” to refer to a broader concept 

of technique, domain or construct. Though the motivated study considers measurements 

from different functional domains collected via the same imaging technology, the analytical 

framework is general to perform data integration on measurements from different imaging 

techniques.

Our major contributions are several-fold. First, we remove the linearity constrain among 

imaging predictors by including spatially-varying interaction effects over the whole brain 

for an enhanced prediction and interpretation. Rather than resorting to a two-step fashion 

to select main and interaction effects with potential mis-specification, we jointly identify 

both components under a heredity condition by naturally adjusting the included features 

and estimating their contribution to the outcome within one posterior inference framework. 

Second, we take into consideration the complementary information from different fMRI 

tasks, and integrate multi-modal imaging to strengthen the neuroimaging signals. Third, 

we develop a unified Bayesian prior model to achieve a structurally adaptive selection 

under high dimensional, multi-modal neuroimaging features. The new selection prior model 

facilitates a sequential incorporation of brain structural information as well as inter-modal 

correlation, leading to an improved model specification and posterior inference. Overall, 

the coherence of our modeling framework and its biological plausibility ensures the unique 

advantage of this method over existing ones on applying to scalar-to-multi-modal image 

problems.

The rest of the paper is organized as follows. We present the model formulation, proposed 

prior specification and posterior algorithm in Section 2. We assess the method and compare 
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it with existing alternatives by extensive simulations in Section 3, and implement the method 

to the ABCD study in Section 4. Finally, we conclude with a discussion in Section 5.

2 Method

For subject i (i = 1, …, n), let yi be a clinical outcome variable, e.g., cognitive assessment. 

Let xi = xi1
T , …, xiM

T T  denote the collected M-modal imaging measurements over the whole 

brain with xim referring to the imaging markers associated with modality m. Without loss 

of generality, we assume all the imaging modalities are registered under the same template 

space consisting of P voxels. Let si represent a vector of non-imaging covariates with 

the first element being one. To model the impact of multi-modal imaging traits and their 

inter-modal interaction effects on a continuous outcome variable, we consider the following 

high dimensional linear regression with main effects and inter-modality interaction effects

yi = si
Tβ0 + ∑

m = 1

M
xim

T βm + ∑
m < m′

∑
m′ = 1

M
xim ◦ xim′

Tβ < m, m′ > + ϵi . (1)

Here, “◦” represents the entry-wise product, β0 denotes non-imaging covariate effects 

including the intercept effects, βm = (βm1, …, βmP)T represents the voxel-wise main effect 

of imaging modality m, β<m,m′> = (β<m,m′>1, …, β<m,m′>P)T captures the coefficient for 

the voxel-wise interaction effects between modalities m and m′, and residual error term 

ϵi N 0, σϵ
2 . We discuss the case when yi is a categorical variable in the Web Appendix A.

Model (1) describes a clinically meaningful nonlinear association between multi-modal 

predictors and a scalar outcome. In the ABCD application with the goal to investigate 

how functional brain activation under different memory conditions associates with general 

cognitive ability (Sripada et al., 2020), we consider three functional brain activation contrast 

maps derived from the emotional n-back fMRI data using SPM (Penny et al., 2011) to 

measure the low memory load brain activity (0-back versus baseline), high memory load 

brain activity (2-back versus baseline) and working memory brain activity (2-back versus 

0-back). It has been shown that working memory brain activity is closely related to fluid 

intelligence but does not fully explain its variability (Takeuchi et al., 2018). Thus, including 

interaction effects between brain activities under different memory load conditions offers a 

great potential to enhance the prediction on general cognitive ability.

2.1 Multi-modal imaging feature selection

Given the total number of imaging predictors in model (1) exceeds M(M+1)P/2, sparsity is 

an inevitable assumption to facilitate proper model fitting. Meanwhile, besides prediction, it 

is of great interest to assess the impact of risk neuroimaging traits and their interaction 

effects on adolescents’ cognition, which will offer a high potential to characterize 

the mechanism of brain development at younger ages and guide downstream clinical 

interventions.

Yet it is indeed a challenging task to achieve a joint selection on both multi-modal imaging 

features and their potential interactions. On the one hand, a commonly used strategy is to 
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select features in a two-step fashion by first selecting main effects and then identifying 

interactions among selected features, which unavoidably leads to erroneous results as these 

steps are not independent. On the other hand, there exist correlations among imaging 

features across brain anatomy and between modalities, and a disregard of such information 

will sacrifice statistical power and biological interpretation. To address these hurdles by 

joint selecting both main effects and interaction effects in light of brain structure, as well as 

accommodating model fitting and computational difficulty, we now describe our proposed 

Bayesian feature selection model under sequential partitions to enable an efficient stochastic 

searching, an incorporation of within modal structure, as well as a natural bridge between 

the selection of main effects and interaction effects.

We start by introducing latent selection indicators. Let δmp ∈ {0, 1} indicate the main effect 

selection of modality m at voxel p, and δ<m,m′>p ∈ {0, 1} indicate the interaction effect 

selection between modalities m and m′ at voxel p. The indicator set within each modality 

is represented as δm = (δm1, …, δmP)T, and between modalities as δ<m,m′> = (δ<m,m′>1, …, 

δ<m,m′>P)T. Let I0 be the point mass at zero. To impose sparsity, we assign a point mass 

mixture prior for each corresponding regression coefficient,

βmp ∣ δmp 1 − δmp I0 + δmpN 0, σ1
2 ,

β < m, m′ > p ∣ δ < m, m′ > p 1 − δ < m, m′ > p I0 + δ < m, m′ > pN 0, σ2
2 ,

(2)

under a selection constraint δ<m,m′>p ⩽ δmp × δm′p for 1 ⩽ m,m′ ⩽ M and p = 1, 

…, P. Such a point mass mixture is the canonical Bayesian feature selection prior, and 

we will show in the later part the alignment of this prior specification with our unique 

selection procedure. Compared with shrinkage priors, the point mass mixture prior requires 

a higher computational involvement and may suffer with poor mixing. For instance, to 

conduct posterior inference, we could assign δmp ~ Bern(p0), δ<m,m′>p ~ Bern(p1δmpδm′p) 

with prior inclusion probabilities p0, p1, noninformative prior β0 ~ N(0, σ0
2) with a large 

σ0
2, residual error variance σϵ

2 IG aϵ, bϵ  and hyper-priors σ1
2, σ2

2 IG aσ, bσ . A direct posterior 

computation via Gibbs sampler will involve O(P3 M3) operations. When one only updates 

the main effect coefficients β = β1
T, …, βM

T T , the time complexity reduces to O(PMT2) if 

using a block update by chopping β into segments of a size T (Ishwaran et al., 2005). 

Under moderate to high dimensional case, the latter update scheme becomes the only option 

due to the computational allocation of large matrices inverse. However, the computational 

cost for the block update will still be tremendous when P × M is large, e.g. P ~ 50, 000, 

M = 3 in our data application, which is more challenging as we aim to incorporate both 

main and interaction effects within the stochastic searching procedure, while simultaneously 

accounting for structural information.

2.2 A Partition Nested Selection Prior

To jointly select both main and interaction effects with inherent correlation structure under 

a computational intractable procedure, we propose a partition nested selection prior by 

replacing the sparsity imposing procedure in Section 2.1 with a sequence of nested sparsity 

for β that can be naturally expanded to βinter = β < 1, 2 >
T , …, β < M − 1, M >

T T . One unique advantage 

of a point mass mixture model is we can easily intersect the selection status of each main 
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and corresponding interaction terms by matching the indicator value. First, we adopt the 

following equivalent prior representation for (2) as

βmp = δmpαmp,     β < m, m′ > p = δ < m, m′ > pα < m, m′ > p, (3)

where αmp ~ N(0, σ1
2) and α<m,m′>p ~ N(0, σ2

2) represent the nonzero main and interaction 

effects measured at voxel p. We can further summarize (3) as β = δ ◦ α and βinter = 

δinter ◦ αinter, with δ (δinter) and α (αinter) organized by the index order of β (βinter). The 

posterior distribution of coefficients β, βinter can be fully captured by those of δ, δinter and α, 

αinter, providing a straightforward representation for our prior specifications and subsequent 

posterior inference. In the following sections, we will first discuss the selection prior for 

main effects, and then direct expand it to a joint interaction selection.

2.2.1 Nested sparsity on main effects—To induce nested sparsity within β, 

we reconstruct δ into a sequence of nested selection indicators for the corresponding 

intermediate imaging features partitioned from coarse scales to fine scales. Referring back 

to the brain anatomy, selecting a proper way to construct such a partition could facilitate the 

incorporation of structural information and correlation among different imaging modalities. 

To achieve so, we first partition over brain locations. At level k (k = 1, …, K − 2), we divide 

the whole brain voxels {1, 2, …, P} into L(k) mutually exclusive voxel groups summarized 

by their index sets P1
(k), …, PL(k)

(k) , where for each l = 1, …, L(k+1), there exists l′ ∈ 1, 

…, L(k) with Pl′
(k + 1) ⊆ Pl

(k), i.e. each index set of a partition at level k + 1 is a subset of 

certain index set of level k. Consequently, the total number of partitions at each level keeps 

increasing from lower levels to higher levels, until it reaches the voxel scale (level K − 

2 with L(K−2) = P) where M modalities are collected from. Within each of the levels, the 

multi-modal imaging traits collected from the same spatial location are maintained within 

one union to leverage their correlation with respect to signal searching. To proceed to the 

actual feature scale, we can directly split each unit Pp
(K − 2) into M elements with each element 

containing an imaging modality at voxel p.

These nested partitions along multi-modal main effect imaging features pave a unique way 

to represent θ by the accumulative selection information over different partition levels. 

To first link selection between adjacency levels, we introduce a mapping matrix between 

levels k and k + 1 as A(k) = al, l′
(k)  of a dimension L(k+1) × L(k), k = 1, …, K − 2, with 

al, l′
(k) ∈ 0, 1  indicating whether partition l at level k + 1 is the “child” for partition l′ at 

level k. Then, we introduce a selection indicator set γ(k) = γ1
(k), …, γm(k)

(k) T for partitions at 

level k (k < K) with γl
(k) indicating whether imaging features within partition l at level k 

are highly predictive for outcome as a whole; and γ(K−1) characterizes the selection at 

the actual imaging feature level. Sequentially between adjacent levels, these intermediate 

selection indicators are linked with each other by the fact that if a partition at a higher level 

is selected, then its parent partitions from all the lower levels should all been selected. In 

other words, only if γl1
(1) = , …, = γlk

(k) = 1 with Plk
(k) ⊆ , …, ⊆ Pl1

(1), Plk
(k) contains signals. We can 

describe this information transition more clearly by summarizing the accumulative selection 

at level k reflected by all the previous and current levels denoted by δ(k) as
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δ(k) = ∏
k′ = 1

k − 1
  A k′ γ(1) ◦ ⋯ ◦ ∏

k′ = k − 1

k − 1
  A k′ γ(k − 1) ◦ γ(k), (4)

where the selection information of each γ(1), …, γ(k−1) can sequentially pass along through 

mapping matrices and are combined with γ(k) to determine this overall selection status. 

Therefore, between adjacent levels, we have δ(k+1) = A(k)δ(k)◦γ(k+1), and we can eventually 

link the intermediate selections to main effect selection as

δ = δ(K − 1) = A(1)γ(1) ◦ ⋯ ◦ A(K − 2)γ(K − 2) ◦ A(K − 1)γ(K − 1) , (5)

where A(k) = ∏k′ = k
K − 2 A k′  denotes the mapping from level k to the actual main effect feature 

space, and Ã(K−1) = IM×P. Based on the representation (5), we replace the main effect 

selection indicator δ by a number of nested intermediate selection indicator sets {γ(1), …, 

γ(K−1)}. For any k ∈ {1, …, K − 1}, if there exists p ∈ {1, …, P} such that the pth element 

of the accumulative selection vector Ã(k)γ(k) is zero, then the corresponding pth element of 

δ will be zero. When it comes to the posterior inference, this means that at each iteration, 

any unselected partition at a specific level will directly set all its children partitions at higher 

levels to be noises; and the inference will only concentrate on the partitions containing 

signals. This effect accumulates from lower levels to higher levels, allowing the algorithm to 

keep adjusting the potential signal components. Though the original number of features at 

level K − 1 equals the actual scale, given the active set has been dramatically downsized via 

“screening” from previous levels, we will have a much more efficient posterior computation 

and better inference performance upon the refined feature space.

Another appealing feature of this model is reflected by an embedding of structural 

information, which is highly preferred in the application of neuroimaging data. Given 

neuroimaging measurements are spatially correlated under such a fine measure scale with 

respect to brain anatomical structure, biologically, the spatially contingent imaging features 

should have a higher possibility to be selected or excluded simultaneously. Our model can 

straightforwardly accommodate this information by constructing contiguous partitions in 

light of brain anatomical structure; and we also demonstrate the impact of different partition 

constructions in our numerical studies. Along with the nested selection indicators, we 

essentially realize a series of sparse group selection; and the smoothing effect of selection 

status will be sequentially achieved between each pair of adjacent levels.

2.2.2 Connection to the selection of interactions—The developed sequential 

sparsity along multi-modal imaging features only accomplish two of our goals to incorporate 

correlated data structure and facilitate an efficient posterior computation. To jointly identify 

inter-modal interactions which are determined by their own contribution to the outcome and 

the existence of the corresponding main effects, we can directly expand our sequential 

sparsity by adding another level K with indicators γ(K) for the selection status of 

interactions. Specifically, we define a mapping matrix between main effects (level K − 

1) and interactions (level K) as A(K) = al, l′
(K)  with al, l′

(K) ∈ 0, 1  describing whether imaging 

measure l′ is one of the two parent features of interaction l. It is straightforward to see 
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that each row of A(K) contains two “1” elements with the rest to be zero. Accordingly, the 

accumulative selection till the interaction level follows

δinter = δ(K) = ℐ A(K)δ(K − 1) > 1 ◦ γ(K), (6)

where ℐ( ⋅ ) represents the element-wise indicator function. Model (6) allows us to learn the 

selection of interactions in a similar fashion as the previous sequential selection procedure 

by either directly excluding an interaction when at least one of its main effects is unselected, 

or determining its selection status by the corresponding element in γ(K). In real practice, 

even though the total number of potential interaction terms is PM(M − 1)/2 which can 

be tremendous, a majority of them will be directly marked as unselected in our posterior 

inference. Combining (6) and (5), (4) will finish the prior construction for β and βinter. 

We name this new prior model as the Bayesian structure-driven sequential sparsity (BSSS) 

model, and it is well suited to identify either main effects or both main and higher order 

effects (interaction in our case) in the presence of large-scale structural or correlated 

predictors.

2.3 Posterior inference.

We move on to the posterior inference, through which we can clearly see the advantage of 

our BSSS prior to improve the computational efficiency. After constructing K − 2 levels of 

partition across whole brain voxels, the unknown parameter set for model (1) with M-modal 

imaging features is Φ = (γ(1), …, γ(K−1), γ(K), α, αinter, β0, σ1
2, σ2

2, σϵ
2). There are different 

prior choices for selection indicators such as the Bernoulli-Beta hierarchical prior (Stingo 

et al., 2011) and Ising model (Li and Zhang, 2010), aiming to adjust the posterior selection 

from different perspectives. To focus on the main message and enhance robustness, we use 

simple independent Bernoulli prior γl
(k) Bern pk  as an illustration, and one can easily replace 

it with an Ising model to further smooth the selection.

To conduct posterior computation, we rely on a Markov chain Monte Carlo (MCMC) 

algorithm. The joint posterior distribution of all the parameters given the data is

π Φ ∣ y, X, Xinter , S ∝ π y, X, Xinter , S ∣ β0, α, αinter , δ, δinter , σϵ
2 π α, αinter , σ1

2, σ2
2

× ∏
k = 1

K − 1
π γ(k + 1) ∣ γ(k) π γ(1) π β0 π σϵ

2 ,

where y = (y1, …, yn)T, X = (x1, …, xn)T, Xinter = x1,  inter
T , …,  xn,  inter

T T , 

xi,  inter
T = xi1

T ◦ xi2
T , …, xiM − 1

T ◦ xiM
T  and S = (s1, …, sn)T. For each of the parameters, we can 

derive the analytical form of its posterior distribution, based on which, we use (block) 

Gibbs samplers to draw the posterior samples. A detailed description of the MCMC 

algorithm is provided in the Web Appendix B. Along the posterior inference, the majority 

computation is concentrated on parameters involved in δ = 1 and δinter = 1, corresponding 

to the potential signals within main and interaction effects. The sequential update of δ 
and δinter facilitates a broad signal searching at coarse scales and gradually refines feature 

identification at fine scales. Compared with existing Bayesian SSVS methods which directly 
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work on the selection of actual feature scale, the posterior inference under our model 

accumulatively downsizes the searching space within each MCMC iteration in light of 

structural information, making the whole searching procedure targeted and biologically 

plausible.

3 Simulations

We evaluate the feature selection and prediction performance of BSSS compared with 

alternative approaches; and we assess the sensitivity of BSSS on partition choices through 

a number of simulations. In the first set of simulation, we consider two image dimensions, 

i.e, a 2D image with 30 × 30 pixels and a 3D image with 24 × 24 × 24 voxels, and vary 

the sample size to be 100, 300 and 500 for the 2D case, and 500, 1000 for the 3D case. We 

consider two modalities for all the cases. To generate imaging features for two modalities xi1 

and xi2 while ensuring spatial smoothness and inter-modality correlation, we first generate 

three latent vectors zi0, zi1 and zi2, each with same dimension as the image features.

zit N 0, Ωt ,  with Ωt p, p′ = τtexp − Cp − Cp′ 2
2

2lt
;     t = 0, 1, 2, (7)

where Cp represents the spatial coordinate of feature p, and we set τt = 1, t = 0, 1, 

2; and lt = 0.12, t = 0; lt = 0.032, t = 1, 2. Those spatially smoothed latent vectors 

are then used to construct imaging features for each modality by xi1 = zi0 + 0.2zi1; xi2 

= zi0 + 0.2zi2. In terms of coefficients, we follow a similar procedure by introducing 

latent vectors bit, t = 0, 1, 2, where each bit is generated based on (7) under τt = 

0.02, lt = 0.12. To impose sparsity across main effects and interactions, we generate 

each element of β1, β2 and β<1,2> by β1p = b1p + 0.2)ℐ Cp ∈ D1 + b1p − 0.3 ℐ Cp ∈ D2 , 

β2p = b2p + 0.3 ℐ Cp ∈ D3 + b1p − 0.2 ℐ Cp ∈ D4  and β < 1, 2 > p = b2p + 0.3 ℐ Cp ∈ D2 ∩ D4 , 

where Di, i = 1, …, 4, i = 1, …, 4 are the coordinate set, and the corresponding true signal 

pieces for 2D and 3D images are demonstrated in Figure 1. In this way, each modality 

contains both positive and negative main effects, and the interaction effects obey the heredity 

constrain. In addition, we consider different signal-to-noise-ratios with R2 around 0.63 for 

the high noise, and around 0.83 for the low noise; and simulate 100 datasets for each 

simulation setting.

We apply the BSSS model to the simulated dataset by noninformatively setting σ0
2 = 20, 

ασ = bσ = αϵ = bϵ = 1 and each pk = 0.5. To assess the impact of partition construction, 

we consider two different partition designs for our method under both 2D and 3D images. 

Specifically, for the 2D case, in the first design (BSSS-P1), we construct six levels of 

partitions according to the natural order after vectorizing the image features followed by 

interactions. In the second one (BSSS-P2), we construct six levels of partitions with the 

first four anatomical partitions showed in the upper panel of Figure 2. For the 3D case, 

we follow similar considerations with BSSS-P1 and BSSS-P2 containing five and six levels 

of partition, and the anatomical partitions of BSSS-P2 are presented in the lower panel of 

Figure 2. For each BSSS method, we run the MCMC algorithm with initial values sampled 

from priors for 5,000 iterations with 2,000 burn-in, and estimate each parameter by its 

posterior median. The computational time is 15–30 seconds for the 2D case and 5–6 minutes 
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for the 3D case per thousand iterations on a Mac with M1 chip and 16 GB memory. In 

terms of competing approaches, given few existing approaches are readily applicable to 

achieve a joint consideration of intra- and inter-modality feature selection, we resort to the 

widely used LASSO (Tibshirani, 1996) and horseshoe (Carvalho et al., 2010) implemented 

by R packages glmnet and horseshoe under a regular two-step procedure by first selecting 

main effects and then interactions. To evaluate selection accuracy, we calculate the AUC for 

selecting main effects (AUCmain), interactions (AUCinter) and all features (AUCall); and for 

the prediction performance, we obtain the out-of-sample R2 based on the test set.

We summarize the simulation results in Table 1. Based on the results, the proposed BSSS 

models achieve the best or among the best performance in both feature selection and 

prediction under all the settings, and their superiority becomes more pronounced under small 

sample sizes and high noises. Particularly, besides a much higher selection accuracy on 

interaction effects (AUCinter), BSSS also substantially improves the selection accuracy for 

the main effects (AUCmain) compared with the existing frequentist and Bayesian methods 

under a traditional two-step procedure. This reassures the power of an integrative analysis 

on main and interaction effects under the same platform. When comparing between two 

BSSS versions which are under different partition constructions, we confirm the advantage 

of performing sequential selection in light of structural information for spatially contiguous 

signals as the case in neuroimaging applications; and when enough spatial structure is 

considered, BSSS is not sensitive to different partition designs. It is worth noting that 

we have also tried an alternative way to implement the competing methods (LASSO and 

horseshoe) by combining imaging features and inter-modality interactions as a whole set of 

predictors for model fitting and variable selection. However, the performance is even worse 

than that under the two-step procedure; hence, we only provide the two-step results here.

To further investigate the robustness of BSSS on partition construction, in the second set of 

simulation, based on 2D images, we consider five different partition designs for the BSSS 

implementation. The details of the simulation setting, model implementation and results 

are provided in the Web Appendix C. Through the simulation, we confirm our model is 

relatively robust with respect to the partition design.

Finally, we perform the third set of simulation in light of the motivated ABCD study 

to evaluate our model performance under the real data scale compared with competing 

methods. We directly adopt the multi-modal imaging data from the ABCD study and 

consider the inter-modality interactions. The details of the simulation setting, model 

implementation and results are also provided in the Web Appendix C. Based on this set 

of simulation, we further confirm the superior performance of the BSSS under an ultra-high 

dimensional case.

4 The Adolescent Brain Cognitive Development Study.

The ABCD (Casey et al., 2018) is an ongoing landmark study to investigate how 

environmental and socio-cultural factors impact human brain development from childhood 

through adolescence. The study recruits more than 10,000 9- to 10-year-old children from 21 

study sites across the United States; and the study will collect the behavioral, psychosocial 
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and neuroimaging measurements longitudinally from participants for ten years. Our analyses 

focus on the first release of baseline ABCD data with the detailed imaging processing and 

acquisition across different sites described in Hagler Jr et al. (2019) and Casey et al. (2018). 

The task-based fMRI study contains an emotional version of the n-back task, during which 

the participants were required to respond whether the stimulus was the same as the one 

shown 2 trials earlier (2-back) or the target stimulus shown at the beginning (0-back). The 

obtained fMRI data reflects the application of the standard preprocessing steps including 

gradient-nonlinearity distortions, inhomogeneity correction for structural data, gradient-

nonlinearity distortion correction, motion correction and field map correction (Hagler Jr 

et al., 2019). All the fMRI images are co-registered and normalized into the standard 3mm 

MNI space which consists of 47,636 voxels in the brain. For each subject, we construct 

task-related activation contrast maps by fitting voxel-wise general linear models (GLM). We 

primarily focus on the three task contrasts, i.e. 2-back versus 0-back (2back-0back), 2-back 

versus baseline (2back), and 0-back versus baseline (0back), characterizing a subject’s 

working memory brain activity, high memory load brain activity and low memory load brain 

activity, respectively. Our goal here is to determine the informative imaging markers and 

inter-contrast interaction effects, as well as quantify their prediction for children’s general 

intelligence, or G-Factor, which will help pave the way to characterize the neural signature 

for this life-outcome related factor.

To perform the analysis, we construct the training data under the 20 study sites with the 

minimum missing values, and the test data based on the remaining site. Of note, the imaging 

protocol of the ABCD study follows a well-developed harmonization process to remove 

site effect (see Casey et al. (2018) for details); and we also show balanced residuals based 

on our predictive model across different sites (see the Web Appendix D), supporting the 

rationale of our data split. Under the training set, we apply BSSS for the three imaging 

modalities and inter-modality interactions adjusting for age, gender, race, highest parental 

education, household marital status and household income. Given the ABCD study also 

provides the propensity weight for each participated child (Garavan et al., 2018), we 

straightforwardly adjust our implementation under a weighted regression to accommodate 

potential recruitment bias. To construct partitions over voxels in light of brain anatomy, we 

set the first level in light of automated anatomical labeling (AAL) atlas, and each subsequent 

level by dividing an original partition unit into eight spatially contiguous pieces based on 

the 3D coordinates with the unit center as the origin. This allows us to reach the actual 

feature scale at level five and between modality interaction at level six. The hyper-parameter 

settings closely follow those in the simulations. We implement the MCMC for 10,000 

iterations with the first 5,000 as burn-in, and the posterior convergence has been confirmed 

by both trace plots and GR method (Gelman et al., 1992) as shown in the Web Appendix D.

We first display the significant main and interaction effects identified by our method 

across the brain from each contrast and contrast interaction in Figure 3, which also 

showcases our model structure. To examine how the strongest intra- and inter-modality 

predictive signals are concentrated across different ROIs, we summarize the posterior 

median proportion of voxels with a posterior inclusion probability higher than 0.95 for 

each ROI. Table 2 highlights the top five regions with the largest piece of signals under 

each task contrast and interactions; and the full list of AAL regions and the associated 
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signal proportion under different effects are provided in the Web Appendix D. The results 

indicate a general consistency among working memory, high and low memory loads on 

the activated brain locations reflected by the main effects. Specifically, right hippocampus, 

right parahippocampal gyrus and right calcarine sulcus display strong neural signals for all 

three task contrasts. Previous literature indicates that hippocampus and parahippocampal 

gyrus are the two essential brain areas that significantly contribute to memory-based 

ability during the neurodevelopment (Faridi et al., 2015), and the right hippocampus, right 

parahippocampal gyrus and calcarine sulcus have been extensively reported to support 

spatial sense cognition (Mathieu et al., 2018), social cognition (Barber et al., 2013) and 

visual processing respectively (Tang et al., 2015). In terms of the interactions, different from 

the main effects, the three interaction units show diverse signal patterns across the brain for 

different memory process combinations. The clear distinction between the ROIs with strong 

intra-modality and inter-modality effects suggests a nonlinear relationship on the imaging 

predictors and indicates a potential oversight of signals if we only emphasize the first-order 

prediction.

We further investigate the imaging signals with respect to brain sub-networks (Power et 

al., 2011) by summarizing the posterior median proportion of the above signals within 

each functional sub-network in Table 3. Based on the table, sub-networks with the largest 

activation from the main effects under each contrast focus on the ones controlling auditory, 

memory retrieval and visual processes. These signal patterns are the most cognition-related 

ones, reassuring the plausibility of our results. The imaging signals within different 

memory process interactions again display under distinct sub-network sets. Most of these 

sub-networks have not been disclosed before for a direct impact on a child cognitive 

development but the uncovered interaction effects could enrich our understanding on the 

memory process system and guide future investigation.

We also evaluate the prediction performance on the test set, and the correlation between 

the predicted G-Factor and the actual value is 0.352, which is higher than the previous 

prediction on the general ability (Sripada et al., 2020). To assess the contribution from 

the interactions, we rerun BSSS without interaction effect, and the correlation decreases 

to 0.291. Furthermore, given most of the hyper-priors are noninformative, we perform a 

sensitivity analysis on impact of partition construction following the strategies in the second 

simulation to assess the robustness of our model. We have shown that BSSS is mildly 

sensitive to partition construction with the majority signals maintained. More details have 

been provided in the Web Appendix D.

5 Discussion

In this article, we propose a unified Bayesian approach that jointly identifies risk first-

order markers and inter-modality/construct interactions for analysis of multi-modality 

neuroimaging data. By constructing a sequential selection prior from the biological 

architecture and inter-modality relationship, we enhance the computational efficiency and 

biological plausibility for the stochastic signal searching along high-dimensional structure 

features and their higher order terms under heredity. Through extensive simulations, 

we demonstrate the superiority of the proposed methods in both prediction and feature 
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selection. By implementing the proposed model to the ABCD study under different task 

fMRI contrasts, we identify not only strongly cognition-related brain areas under working 

memory, high and low memory loads, but also interesting and distinct signal patterns within 

each inter-contrast interaction that are highly associated with children’s general intelligence. 

An increase of correlation by 20% from adding interaction effects confirms the crucial role 

those effects play, though such inter-modal effects have been omitted in previous studies.

Though our current data analyses focus on an integration of functional imaging under 

different task domains, the proposed method can be directly implemented to combine 

imaging modalities collected from different technologies with a range of functional, 

molecular and anatomical information after registration to the same geometrical space. In 

addition, we currently focus on interactions as higher order terms to explain modality-wise 

coordination, and our model can be directly modified to accommodate more comprehensive 

nonlinear support. Meanwhile, besides modeling the interaction effects between different 

modalities, we can also modify mapping matrices to dissect interaction effects within 

modalities. Such a general high-order effect consideration, though may not be well-

motivated in the current brain imaging studies, is of great interest in molecular data with 

a converging recognition that interaction between genetic variants, or epistasis contributes to 

explain phenotypic variance for complex traits.

The construction of partitions contributes to improving biological interpretation and 

enhancing analytical power, as typically the landscape of the true signals is influenced by 

the underlying architecture among features. Given the partition design is flexible, in most 

of the biomedical studies, one can straightforwardly build a set of structurally informative 

partitions in light of biological information. At the same time, from the aspect to relieve 

informative prior assumption, one future direction of our work is to parameterize the 

partition construction within the model inference. By such, we will increase the model 

complexity but gain more adaptation during signal searching.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A demonstration of our simulation under 2D and 3D image settings. The true main effect 

signal pieces for each modality are highlighted under red and green colors, and the inter-

modal interaction signals are marked in blue.
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Figure 2. 
An illustration of the partition design at each level for BSSS-P2 implemented under 2D 

and 3D image feature space over each modality. Level 4 for each case corresponds to the 

partition for each pixel(voxel).
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Figure 3. 
A demonstration of the model structure for BSSS with Xi, i = 1, 2, 3 representing the 

imaging markers associated with the 2back-0back, 2back-baseline, and 0back-baseline 

modalities from the ABCD study. Based on the results from the posterior inference, the 

identified main and interaction effects are displayed by the corresponding heat maps from 

the coefficients.
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Table 1

Simulation results under different image dimensions, sample sizes and noise levels are evaluated by AUCs on 

identifying features within main effects and interaction (AUCall), main effects only (AUCmain) and interaction 

only (AUCinter); and out-of-sample prediction (R2). The Monte Carlo standard deviation for each metric is 

included in the parentheses.

2D Image

Low noise High noise

n Method AUCall AUCmain AUCinter R 2 AUCall AUCmain AUCinter R 2

100

BSSS-P1 0.919(0.018) 0.914(0.022) 0.966(0.021) 0.734(0.058) 0.902(0.021) 0.897(0.027) 0.957(0.025) 0.509(0.072)

BSSS-P2 0.962(0.010) 0.969(0.008) 0.976(0.009) 0.744(0.057) 0.947(0.014) 0.962(0.012) 0.970(0.012) 0.520(0.069)

LASSO 0.546(0.009) 0.542(0.010) 0.573(0.030) 0.706(0.060) 0.527(0.007) 0.526(0.008) 0.536(0.024) 0.469(0.084)

horseshoe 0.593(0.050) 0.587(0.051) 0.653(0.095) 0.620(0.090) 0.566(0.048) 0.571(0.045) 0.607(0.081) 0.313(0.106)

300

BSSS-P1 0.939(0.017) 0.933(0.019) 0.968(0.027) 0.783(0.037) 0.931(0.012) 0.923(0.016) 0.974(0.013) 0.566(0.054)

BSSS-P2 0.975(0.003) 0.976(0.003) 0.980(0.006) 0.788(0.037) 0.969(0.006) 0.973(0.005) 0.979(0.008) 0.572(0.054)

LASSO 0.577(0.011) 0.570(0.012) 0.622(0.033) 0.788(0.035) 0.553(0.010) 0.547(0.010) 0.589(0.030) 0.565(0.054)

horseshoe 0.672(0.064) 0.657(0.067) 0.749(0.093) 0.747(0.075) 0.605(0.058) 0.592(0.057) 0.662(0.093) 0.421(0.122)

500

BSSS-P1 0.939(0.019) 0.931(0.020) 0.967(0.024) 0.793(0.032) 0.936(0.015) 0.929(0.018) 0.971(0.020) 0.575(0.042)

BSSS-P2 0.977(0.003) 0.977(0.003) 0.982(0.005) 0.796(0.032) 0.973(0.004) 0.975(0.004) 0.981(0.006) 0.579(0.042)

LASSO 0.595(0.012) 0.585(0.013) 0.654(0.035) 0.802(0.029) 0.565(0.011) 0.558(0.012) 0.604(0.031) 0.581(0.040)

horseshoe 0.666(0.064) 0.651(0.063) 0.752(0.091) 0.789(0.036) 0.617(0.073) 0.595(0.077) 0.695(0.102) 0.495(0.103)

3D Image

Low noise High noise

n Method AUCall AUCmain AUCinter R 2 AUCall AUCmain AUCinter R 2

500

BSSS-P1 0.956(0.018) 0.949(0.018) 0.964(0.015) 0.780(0.032) 0.957(0.017) 0.947(0.020) 0.962(0.016) 0.549(0.037)

BSSS-P2 0.952(0.034) 0.940(0.037) 0.986(0.006) 0.775(0.033) 0.959(0.012) 0.948(0.014) 0.982(0.008) 0.546(0.040)

LASSO 0.539(0.007) 0.538(0.007) 0.563(0.040) 0.767(0.032) 0.523(0.004) 0.523(0.004) 0.527(0.031) 0.529(0.042)

horseshoe 0.513(0.012) 0.514(0.013) 0.564(0.054) 0.562(0.048) 0.511(0.010) 0.511(0.010) 0.565(0.062) 0.249(0.043)

1000

BSSS-P1 0.950(0.019) 0.945(0.019) 0.951(0.032) 0.789(0.025) 0.966(0.017) 0.958(0.017) 0.968(0.012) 0.578(0.037)

BSSS-P2 0.916(0.061) 0.906(0.062) 0.987(0.011) 0.774(0.040) 0.963(0.021) 0.952(0.023) 0.986(0.007) 0.577(0.037)

LASSO 0.556(0.007) 0.555(0.007) 0.601(0.045) 0.783(0.026) 0.534(0.007) 0.533(0.005) 0.549(0.039) 0.566(0.036)

horseshoe 0.514(0.015) 0.518(0.015) 0.576(0.079) 0.570(0.039) 0.514(0.012) 0.514(0.015) 0.586(0.067) 0.262(0.037)
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Table 2

The median proportion of the voxels with the posterior inclusion probability higher than 0.95 on the AAL 

regions from the main and interaction effect results for the ABCD study. The top 5 brain regions under each 

effect components are bolded.

2back-0back 2back 0back

Frontal_Med_Orb_L 0.151 0.147 0.191

Insula_R 0.130 0.167 0.189

Cingulum_Ant_L 0.148 0.150 0.169

Hippocampus_R 0.160 0.194 0.212

ParaHippocampal_R 0.187 0.187 0.269

Calcarine_R 0.166 0.164 0.199

Lingual_L 0.132 0.179 0.203

Temporal_Pole_Sup_R 0.128 0.128 0.198

2back-0back × 2back 2back-0back × 0back 2back × 0back

Frontal_Inf_Oper_L 0.086 0.037 0.071

Frontal_Inf_Orb_R 0.048 0.077 0.026

Supp_Motor_Area_L 0.070 0.021 0.096

Supp_Motor_Area_R 0.075 0.020 0.087

Cingulum_Post_L 0.080 0.036 0.066

Parietal_Sup_R 0.057 0.022 0.091

Precuneus_L 0.052 0.037 0.083

Paracentral_Lobule_L 0.076 0.028 0.071

Paracentral_Lobule_R 0.066 0.022 0.084

Caudate_L 0.036 0.079 0.043

Pallidum_R 0.026 0.105 0.013

Thalamus_L 0.029 0.093 0.029

Thalamus_R 0.039 0.081 0.029

Temporal_Pole_Mid_R 0.092 0.054 0.060
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Table 3

The median proportion of the voxels with the posterior inclusion probability higher than 95-percentile on the 

functional sub-networks from the main and interaction effect results for the ABCD study. The top 3 sub-

networks under each effect component are bolded.

2back-0back 2back 0back

Sensory/somatomotor Hand 0.081 0.072 0.086

Sensory/somatomotor Mouth 0.071 0.071 0.119

Cingulo-opercular Task Control 0.115 0.084 0.128

Auditory 0.130 0.130 0.136

Default mode 0.078 0.080 0.095

Memory retrieval 0.091 0.114 0.136

Visual 0.105 0.117 0.147

Fronto-parietal Task Control 0.072 0.078 0.094

Salience 0.103 0.107 0.131

Subcortical 0.027 0.054 0.071

Ventral attention 0.024 0.035 0.059

Dorsal attention 0.074 0.089 0.099

Cerebellar 0.028 0.042 0.042

2back-0back × 2back 2back-0back × 0back 2backx0back

Sensory/somatomotor Hand 0.062 0.053 0.055

Sensory/somatomotor Mouth 0.048 0.048 0.048

Cingulo-opercular Task Control 0.062 0.044 0.044

Auditory 0.059 0.041 0.059

Default mode 0.046 0.046 0.054

Memory retrieval 0.045 0.068 0.045

Visual 0.033 0.054 0.033

Fronto-parietal Task Control 0.055 0.049 0.068

Salience 0.038 0.062 0.038

Subcortical 0.054 0.080 0.036

Ventral attention 0.059 0.012 0.106

Dorsal attention 0.054 0.050 0.045

Cerebellar 0.028 0.028 0.028
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