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Abstract

We report a genome-wide association study (GWAS) of coronary artery disease (CAD) 

incorporating nearly a quarter million cases, in which existing studies are integrated with data 

from cohorts of White, Black, and Hispanic individuals from the Million Veteran Program. 

We document near equivalent heritability of CAD across multiple ancestral groups, identify 95 

novel loci, including the first nine to be identified on the X-chromosome, detect the first eight 

genome-wide significant loci among Blacks and Hispanics, and demonstrate that two common 

haplotypes at the 9p21 locus are responsible for risk stratification in all populations except those 

of African origin, where these haplotypes are virtually absent. Moreover, in the largest GWAS for 

angiographically derived coronary atherosclerosis performed to date, we find 15 genome-wide 

significant loci that robustly overlap with established loci for clinical CAD. Phenome-wide 

association analyses of novel loci and polygenic risk scores (PRS) augment signals related to 

insulin resistance, extend pleiotropic associations of these loci to include smoking and family 

history, and precisely document the markedly reduced transferability of existing PRS to Black 

individuals. Downstream integrative analyses reinforce the critical roles of vascular endothelial, 

fibroblast, and smooth muscle cells in CAD susceptibility, but also point to a shared biology 

between atherosclerosis and oncogenesis. Our study highlights the value of diverse populations in 

further characterizing the genetic architecture of CAD.

Editor summary:

To overcome limitations of previous genome-wide association studies of coronary artery disease, 

this study incorporates a cohort of individuals containing large fractions of Black and Hispanic 

individuals, providing a wider perspective of the genetic landscape of this disease.

Introduction

Remarkable progress in the prevention and treatment of coronary artery disease (CAD) 

has been made over the last half century. Yet, the rate of decrease in the age-adjusted 

prevalence of CAD has slowed substantially in the last decade, and CAD remains the 

leading cause of death worldwide1. Sizeable differences in the age-adjusted fatality rates of 

CAD persist between men and women and among the major populations in the US with 

non-Hispanic Black men persistently demonstrating the highest risk of fatal CAD2. These 

disparities, largely driven by structural racism3, may be amplified in the era of precision 

medicine due to little or no inclusion of Blacks and Hispanics in large-scale genetic studies 

of cardiovascular disease to date4–6. Thus, a persistent need exists to further understand both 

the between-population and the population-specific genetic causes of CAD as an avenue 

towards improved risk prediction and the development of novel therapies.

Large-scale population genetic studies provide an opportunity to improve our understanding 

of the inherited basis of complex traits. Twin studies report a heritability of 40–60% for 

fatal CAD7,8 and genome-wide association studies (GWAS) to date have identified 208 

susceptibility loci9,10. These loci explain a modest fraction (~15%) of this heritability, 

have largely been identified in European populations, and are exclusively autosomal9,10. 

Approximately one half of established loci appear to confer risk through effects on 
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traditional risk factors such as lipids and blood pressure with fewer links to other 

risk factors9,11. Several loci discovered in Europeans have also reached genome-wide 

significance in South and East Asian populations suggesting an overlap in the genetic 

architecture of CAD across these three populations10,12,13. Yet, 14 years after the discovery 

of the first susceptibility locus at 9p21, no region has convincingly reached genome-wide 

significance in Black or Hispanic populations, which represent a sizable and growing 

proportion of the US population14,15.

New DNA biobanks with enrollment of diverse populations are poised to fulfill this 

knowledge gap. Here we describe results from analyses of the Million Veteran Program 

(MVP), a nationwide cohort drawn from an integrated health care system serving a diverse 

population including many Blacks and Hispanics. By meta-analyzing these new large-scale, 

multi-population GWAS data with extant GWAS of CAD from public resources, we extend 

discovery of CAD loci within and across populations for both the autosomes and the 

X-chromosome (X-chr). In addition, we incorporate data from a national registry of cardiac 

catheterization procedures in the discovery of novel CAD loci and in the interpretation of the 

mechanism of action of established loci and polygenic risk scores.

Results

Population diversity in the MVP population

Fig. 1a summarizes new and existing cohorts included in our analyses stratified by 

population and the analytic approach for the clinical CAD phenotype. A majority (90.8%) 

of veteran participants are male with 95,151 cases and 197,287 controls being classified 

as non-Hispanic White, hereinafter referred to as White, (73.1%), 17,202 cases and 59,507 

controls as non-Hispanic Blacks, hereinafter referred to as Black, (19.2%), and 6,378 and 

24,270 as Hispanic (7.7%) (Extended Data Table 1). Most cases (85.6%) showed evidence 

of CAD at the time of enrollment in the MVP (i.e., “prevalent”). The mean age at first 

evidence of CAD in the electronic health record (EHR) was 63 years with a mean combined 

EHR follow-up either prior to and/or after enrollment of 10 years.

Estimation of CAD heritability across multiple ancestries

We first estimated the SNP-based heritability using GREML-LDMS-I in equally sized 

subsets of MVP Whites, Blacks with the least European admixture, and Hispanics with the 

least African admixture, as well as Japanese participants from Biobank Japan after matching 

on the age of onset and severity of disease of cases and the age of controls observed among 

the MVP Hispanics (Methods, Fig. 1b, Extended Data Table 2). Assuming a prevalence 

of CAD of 8.2%, 6.5%, 4.9%, and 6.0% in the same populations16,17, we derived roughly 

equivalent heritability on the liability scale of 36.3% (±7.0%), 30.0% (±8.1%), 32.6% 

(±3.9%), and 36.0% (±5.4%), respectively (Fig. 1c–d).

GWAS in MVP and meta-analysis with existing studies

We conducted a GWAS of autosomes and X-chr stratified by population of White, Black, 

and Hispanic MVP participants. The genomic control inflation (λ) for these GWAS was 

1.360 (Whites), 0.988 (Blacks), and 0.986 (Hispanics). The LD score regression intercept 
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for Whites was 1.077 (±0.014), indicating most of the inflation was polygenic in nature. 

We found a high rate of replication of established loci as of 20199 among Whites with 

100% of 163 known lead SNPs being directionally concordant, 67.5% reaching Bonferroni 

significance (P<3.1×10−4), and 36 (22.1%) reaching genome-wide significance (GWS). 

Effect sizes were also highly correlated (Pearson rho=0.94) (Supplementary Table 1).

The GWAS of MVP Whites was followed by a meta-analysis with existing predominantly 

European-ancestry GWAS from CARDIoGRAMplusC4D18 and the UK Biobank9 yielding 

33 novel loci at GWS (lead SNP P<5×10−8), including five on the X-chr (Methods, Fig. 2, 

Supplementary Table 2). Our multi-population meta-analysis further incorporated the GWAS 

data from MVP Blacks and MVP Hispanics and Biobank Japan19, yielding an additional 62 

novel autosomal loci including four more loci on the X-chr (Fig. 2, Supplementary Table 

3). All lead SNPs showed no significant heterogeneity across studies (lowest p=0.0017), 

both within the meta-analysis of Whites as well as the multi-population meta-analysis using 

either METAL or MR-MEGA. We annotate lead SNPs from these 95 loci by providing 

hyperlinks to five comprehensive variant-based portals (Supplementary Table 4).

XPEB and two-stage joint analysis in Blacks and Hispanics

Our GWAS of Blacks and Hispanics in MVP did not yield any GWS loci that passed 

quality control within either population in isolation. We were unable to replicate findings 

among Blacks at CDK14, a locus reported as GWS about a decade ago20. The same region 

was entirely void of signal in our MVP Blacks and two SNPs in high LD (r2=1) with 

the previously reported lead SNP (rs1859023) had p-values near one (rs7792416, p=0.97; 

and rs10639151, p = 0.99). However, XPEB, an empirical Bayes mapping approach that 

adaptively incorporates cross-population evidence with an ‘auxiliary base GWAS’ (CAD 

meta-analysis in Whites), identified 37 SNPs at 16 loci in MVP Blacks and 157 SNPs at 

38 loci in MVP Hispanics with a local False Discovery Rate (FDR) < 0.05 (Supplementary 

Table 5). All but one of the loci identified by XPEB were GWS in the base GWAS (meta-

analysis in Whites).

We then extended our GWAS analysis of MVP Blacks and MVP Hispanics to include 

additional data from multiple external cohorts (Extended Data Table 3) for the most 

promising variants from our GWAS (P<1×10−5) and all SNPs identified by XPEB 

(Methods, Supplementary Text, Supplementary Tables 5–6). A two-stage joint meta-

analysis of these SNPs yielded the first five GWS loci in Blacks and the first three in 

Hispanics (Fig. 2a, Supplementary Tables 7–8, Extended Data Table 4), all of which have 

been previously established in Whites14. Three out of five loci in Blacks (LPA, FGD5, and 

LPL) included GWS signals generated by low-frequency African specific genetic variation 

(Extended Data Fig. 1). The SNPs identified through XPEB and cross-population evidence 

include loci with more moderate allelic effects; therefore, a priori, we did not expect all of 

them to reach GWS in the much smaller two-stage meta-analysis of Blacks and Hispanics. 

However, this group of SNPs exhibited a significantly higher proportion of directional 

consistency and correlation of effect sizes between the MVP discovery cohort and the 

external cohorts, for both Blacks (13 out 15 loci with available data in external cohorts were 
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directionally consistent, binomial P=0.0032, Pearson’s rho=0.82) and Hispanics (33 out of 

36 loci directionally consistent, P=1.1×10−7, rho=0.80) (Supplementary Table 9).

GWAS of angiographically determined burden of CAD

We conducted the largest GWAS to date of angiographically determined burden of 

coronary atherosclerosis, defined by number of significantly obstructed (>50% of luminal 

diameter) coronary arteries. Analysis included 41,507 MVP participants: stratified GWAS 

was performed in 31,658 Whites, 7,313 Blacks, and 2,536 Hispanics followed by multi-

population meta-analysis (Methods, Extended Data Tables 5–6) identified 15 GWS of 

which 12 also reached GWS in Whites alone and 1 (LPL) in Blacks alone (Fig. 2b, 

Supplementary Table 10). All 15 loci have been previously reported for clinical CAD, 

and eight (CDKN2B-AS1, SORT1, CXCL12, WDR12, PHACTR1, LDLR, KCNE2, 
ADAMTS7) were among the 12 earliest loci associated with clinical CAD by GWAS and all 

but TGFB1 were identified prior to 201314.

Credible set analysis of genome wide significant loci

We conducted a credible set analysis of all 188 known and novel loci reaching GWS within 

our meta-analysis of Whites to identify candidate causal variants, then compared results 

to the same analysis performed in our multi-population meta-analysis in the same regions 

(Supplementary Tables 11–12). Most loci (134/188, or 71%), had a reduction in the number 

of SNPs within their credible set when comparing the multi-population meta-analysis to that 

of Whites, with a 27.7% median and 34.1% mean percent reduction of SNPs per locus. A 

small fraction of loci (23/188, or 12%) had a modest increased number of SNPs among the 

multi-population meta-analysis credible set (median +19.0%, mean + 31%, respectively), 

mostly because of a second independent signal reaching a level of significance comparable 

to the initial region with the larger sample size including non-Whites. The remaining loci 

had no change in the number of SNPs per credible set.

We annotated all SNPs within the credible sets for our 95 novel loci with Ensembl 

Variant Effect Predictor (Supplementary Table 13). Protein coding genes with high +/− 

moderate impact variants within these sets include COQ10A, FBF1, GUF1, CYFIP2, MSR1, 

and FAM120AOS while genes with moderate impact genetic variants include DHDDS, 
ZMYND12, IL1F10, PRDM6, ADAM19, MCM7, TRAF1, C5, LOXL4, R3HCC1L, 
ST3GAL4, BDNF, ZNF268, ANKRD52, STAT2, AKAP13, LRRC48, MYO15A, COASY, 
MLX, TUBG2. CNTNAP1, TRIM65, ZNF100, RRBP1, PNPLA3, SAMM50, PLXNA3, 
UBL4A, ZNF100, and CYSLTR1.

Local ancestry and haplotype analysis at the 9p21 locus

The well-established susceptibility locus at 9p21 did not reach GWS among Blacks or 

Hispanics even after two-stage meta-analysis involving >27,000 and >12,100 CAD cases, 

respectively. A previously reported lead SNP at 9p21 in a meta-analysis of multiple African 

American cohorts was rs6475606 with a p-value of 6.4×10−4 21. The p-value in MVP Blacks 

for this SNP was 1.6×10−3.
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We explored whether the ancestral origin of the high-risk haplotype block at 9p21 among 

Blacks influences the observed magnitude of association with CAD (Methods). Using 

RFMix, we stratified MVP Blacks into three subgroups based on whether they had inherited 

two (Black_AFR = +/+, 66.8%), one (Black_AFR = +/−, 29.6%), or zero (Black_AFR = 

−/−, 3.6%) chromosomal 9p21 segments from African (AFR) ancestry when compared to 

European (EUR) ancestry through admixture (Extended Data Fig. 2a). Only the first two 

of these three subgroups had adequate power to detect an association at 9p21. Between 

these two, we found notably stronger associations with CAD among Blacks with one AFR 

segment (Black_AFR = +/−, lowest P=6.4×10−7) despite a sample size of less than one half 

of Blacks with two AFR segments (Black_AFR = +/+, lowest P=1×10−3) (Extended Data 

Fig. 2b, Supplementary Table 14).

Haplotype analysis at 9p21 (Methods) revealed a largely non-overlapping set of haplotypes 

when comparing Whites to Blacks with zero 9p21 segments derived from EUR (Fig. 3a, 

Supplementary Table 15). Only 17 out of a possible 32 haplotypes were observed to any 

appreciable frequency. Two haplotypes (AACATT, GGTTCA) account for a large majority 

(87%) of observed haplotypes among Whites but these same two haplotypes are virtually 

absent (<0.5%) among the majority of Blacks with no EUR admixture at 9p21. Most of 

the remaining haplotypes are present to an appreciable frequency in Black_AFR+/+ but are 

virtually absent in Whites. Only one haplotype (AGTTCA) has appreciable frequency in 

both Whites (~5%) and Black_AFR+/+ (~10%). Our haplotype trend regression analysis 

suggests the second most common haplotype (GGTTCA) is associated with an increased 

risk for CAD when compared to the most common haplotype among Whites (AACATT, 

47%) and these two haplotypes are largely responsible for the risk-stratifying potential of 

this locus within this group (Fig. 3b–c, Supplementary Table 15). However, the AACATT is 

unable to risk stratify among Blacks given it is virtually absent among Black_AFR+/+. Any 

signal among Blacks is dependent on the presence of this haplotype through local admixture 

with Whites, although analyses among the small subgroup Black_AFR−/− do not generate a 

reliable signal likely because of inadequate power.

As a sensitivity analysis, we repeated haplotype analysis using more stringent thresholds for 

assigning homozygous local ancestry (probability of 1 for AFR +/+ and probability of 0 for 

AFR −/−) and found results to be virtually unchanged (details not shown).

Analyses of the frequency of the same haplotypes in the 1000G populations suggest that 

these two haplotypes likely provide most of the risk-stratifying potential in all but West 

African populations where both haplotypes are virtually absent (Supplementary Table 16). 

Supporting these observations, we found that a single SNP (rs1333050) reaches GWS 

among Hispanics when GWAS analysis is restricted to the subgroup of Hispanics with no 

AFR admixture at 9p21 despite a very substantial reduction in sample size (Supplementary 

Table 17, Extended Data Fig. 3).

Pleiotropy assessment of novel loci

We explored the potential mechanisms of action of our novel loci by performing an extended 

phenome-wide association study (PheWAS) in MVP of all 95 lead novel SNPs (Methods). 

All but two (98%) of these SNPs were associated with one or more non-CAD phenotypes 
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at an FDR<0.05. A total of 55 (58%) were associated with ≥ 1 traditional risk factor (TRF) 

for CAD, defined by blood lipid levels/hyperlipidemia (36 loci), blood pressure/hypertension 

(24 loci), diabetes mellitus (15 loci), body mass index (BMI)/obesity (12 loci), and/or 

smoking/tobacco use disorder (seven loci) (Fig. 4, Supplementary Table 18–20). Of these 

55 loci, 33 (53% of TRF loci, 31% overall) were also associated with one or more TRFs 

even after excluding CAD cases. The five most pleiotropic loci (TCF7L2, FTO, PNPLA3, 

CDK12, and TDGF1P3) were linked to a range of 74 to 198 phenotypes while four 

additional loci (DSTYK, NPC1, IL1F10, and WWP2) were associated with >40 phenotypes. 

Of these 10 highly pleiotropic loci, five (FTO, IL1F10, PNPLA3, TCF7L2, TDGF1P3) were 

linked to a family history of the same dominant TRF even among MVP participants without 

CAD. Other phenotypes found to associate frequently with our novel loci included white 

blood cell related counts (23 loci), cancer (17 loci), renal function (15 loci), platelets (12 

loci) and height (12 loci).

Colocalization analysis between CAD and TRFs (Methods) for these loci further confirmed 

a strong link between our novel signals for CAD and analogous signals among TRFs which 

likely mediate the risk of CAD at many of these loci. We found strong evidence of the same 

causal variant for CAD and TRF for 6 loci with the strongest signals identified for ABCA1 
with multiple lipid and blood pressure traits, TCF7L2 with diabetes, and NBC1, FBXL17, 

and FTO with BMI (Supplementary Table 21). Evidence for colocalization with different 

causal variants was present for an additional 20 loci.

Gene and pathway-based association analyses

Almost all genes implicated by four gene-based analyses (Methods) fell within or very 

near previously or our newly implicated loci that have reached GWS (Supplementary Tables 

22–24). Comparing the DEPICT analyses before and after the addition of MVP GWAS of 

Whites, we found a large majority (95.6%) of the 19,460 genes tested were not implicated 

in either analysis. Among the 437 genes at FDR<0.05 in the previously published analysis9, 

73% had a similar or lower FDR after the addition of MVP data while the remainder had 

a higher FDR or were no longer implicated. Adding MVP data also implicated 189 new 

genes at FDR<0.05. While the probability of a gene being implicated within a tissue relevant 

to CAD in our predicted gene expression analyses (MetaXcan) increased in tandem with 

the fraction of the remaining three algorithms that implicated the gene, the proportion was 

still very low with only 9.3% of the 321 genes implicated by DEPICT, MAGMA, and 

RSS-E also being implicated by MetaXcan. We annotated all implicated genes by providing 

hyperlinks of the genes to three gene-based portals (Supplementary Table 25).

Gene-set enrichment analyses using MAGMA, RSS-E and DEPICT highlight the 

involvement of many of the same pathways identified through similar analyses in previous 

large-scale GWAS of CAD (Supplementary Tables 26–28). A sizable fraction of the most 

significant curated gene-sets tested by MAGMA, RSS-E, as well as the protein-protein 

interaction subnetworks tested by DEPICT involve basic cellular processes/gene networks 

responsible for cell cycle, division/replication, and growth. For at least some of these gene-

sets/networks, the ‘hub gene’ includes a gene mapped to either one of our novel loci (e.g., 

CDKN1A) or within previously established loci (e.g., TCF21).
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We implemented MAGMA and DEPICT to prioritize cells and systems/tissues based on our 

GWAS meta-analysis of Whites (Methods, Fig. 5, Supplementary Tables 29–32). MAGMA 

identified 15 of 54 (27%) GTEx tissues, 95 of 729 (13%) Mouse Atlas cell types, 27 of 119 

(22%) Tubula Muris FACS, and 19 out of 75 (25%) Tubula Muris Droplet cells as enriched 

in the expression of genes associated with CAD. A total of 35 out of 209 tissues/cell types 

reached an FDR<0.05 in DEPICT. MAGMA gene property analyses of a wide range of 

single-cell RNA datasets from mice as well as a more restricted set of cell types in humans 

highlight the relevance of the endothelial, stromal/fibroblast, and smooth muscle cells in 

the pathogenesis of CAD (Fig. 5a–b) with DEPICT reinforcing these findings and further 

delivering strong signals for hepatocytes and adipocytes (Fig 5d). The most significant 

system/tissue for both algorithms involved arteries, with MAGMA producing a top signal 

specifically for the ‘coronary artery’, a tissue almost exclusively made up of endothelial, 

stromal/fibroblast, and smooth muscle cells (Fig. 5c, f). In DEPICT, these findings were 

supported by significant associations in related vasculature (e.g., veins, portal system). 

Additional tissues prioritized across both algorithms included: i. components of the female 

reproductive system rich in smooth muscles (e.g., uterus, cervix, and the fallopian tube) with 

DEPICT implicating the myometrium specifically, ii. the esophagus and the sigmoid colon 

(MAGMA) as well as other components of the upper GI track including the liver and the 

pancreas (DEPICT), iii. the steroidogenic endocrine tissues of the ovary (MAGMA) and the 

adrenal cortex (DEPICT), iv. the lung, v. the bladder, and vi. multiple sources and types of 

adipose tissue (DEPICT). Findings unique to DEPICT include a signal involving the ‘aortic 

valve’ second only to ‘arteries’ in strength, the spleen, and a cluster of four signals involving 

joint related tissues.

Performance of externally validated polygenic scores in MVP

Four polygenic risk scores (PRS) of CAD previously derived and validated in datasets 

of primarily European-ancestry populations external to MVP (Methods) predicted clinical 

CAD status in all populations in MVP (Fig. 6a, Extended Data Table 7, Supplementary 

Table 33). The LDPred22 and metaGRS23 PRSs generated the highest odds ratios (ORs) 

per standard deviation (SD) increase of PRS with differences between the four scores least 

evident among Blacks. ORs were higher among the subset of cases with EHR evidence of 

myocardial infarction and/or a revascularization procedure and subjects with an age of onset 

of CAD below the median. The former subgroup also allowed for a direct comparison of the 

performance of the LDPred and the metaGRS PRS to that observed in the validation cohorts 

in the UK Biobank Whites. Based on the ratio of the log ORs, this comparison demonstrated 

a relative efficiency of the PRS of 75% to 80% when transferred to MVP Whites and as low 

as ~30–35% when transferred to Blacks consistent with prior studies23,24. ORs were notably 

lower among the subset of cases with first evidence of CAD after enrollment in MVP (i.e., 

incident cases) as compared to cases with first event prior to enrollment (i.e., prevalent), a 

finding that is also consistent with prior studies23,24. The four PRSs were also near linearly 

associated with burden of CAD among Whites with a similar ranking of performance to 

that observed for clinical events (Fig. 6b). Overall, we found the metaGRS slightly but 

consistently outperformed LDPred PRS based on the point estimate of the OR with the most 

notable difference between the two observed among Hispanics.
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Performance of a new multi-population polygenic score in MVP

We derived new CAD PRSs using a pruning and thresholding (P+T) approach applied to our 

multi-population meta-analysis. We performed population-specific tuning to identify optimal 

window size, LD r2, and p-value thresholds for each PRS. The tuning cohorts consisted 

of prevalent cases and controls independent of the GWAS. For each population, the score 

with the highest OR (Supplementary Table 34) was then tested in a validation cohort. The 

validation cohorts consisted of incident cases and controls independent of both the GWAS 

and the tuning cohorts. We observed numerically higher OR for the population-specific P+T 

PRS compared to metaGRS across all populations, though the confidence intervals overlap 

within the Black and Hispanic groups (Fig. 6d).

Phenome-wide association study of PRS among controls in MVP

We explored factors through which a PRS mediates CAD susceptibility by conducting a 

PheWAS of the metaGRS among MVP participants. To minimize ascertainment bias of 

risk factors, the PheWAS was restricted to MVP White controls with further exclusion 

of subjects with evidence of peripheral arterial disease (PAD) or ischemic stroke (IS). 

After excluding only subjects with CAD, we found evidence that a higher PRS of CAD 

was associated with a higher risk of non-coronary related atherosclerosis complications 

(stroke, PAD, abdominal aneurysm, erectile dysfunction) and all TRFs including smoking 

(Supplementary Table 35). When further excluding subjects with PAD or IS, associations 

with all TRFs were sustained (Fig. 6c, Supplementary Table 36).

Extending the PheWAS to self-reported family history revealed not only an association with 

a family history of CAD but also with a family history of high cholesterol, hypertension, and 

diabetes. Extending the PheWAS to physical exam measures and laboratory measurements 

not only reinforced our Phecode findings through robust associations with analogous 

quantitative traits but also linked the PRS to renal function. Additional non-TRF associations 

included three lab indices derived from a complete blood count and several other commonly 

measured chemistries as well as hypothyroidism, viral hepatitis C, multiple common 

disorders of the eyes (cataract, glaucoma, blindness/low vision), and shorter height.

In addition to ‘tobacco use disorder’, we found evidence of a more widespread 

predisposition to substance abuse through associations with Phecodes ‘alcoholism’, 

‘alcohol-related disorder’, and ‘substance addiction disorder’. These three codes were found 

to be modestly correlated with tobacco use disorder (Pearson r = 0.29, 0.29, and 0.32, all 

p<2.2×10−308). We were able to replicate all four of these associations in an independent set 

of 92,242 White subjects without evidence of clinical CAD (p-value <.001, Supplementary 

Table 37).

Discussion

We report the largest multi-population GWAS for CAD to date incorporating nearly a 

quarter of a million cases from four populations and increasing the total number of GWS 

loci for CAD by ~50% through the identification of 95 new loci reaching genome wide 

significance including the first nine on the X-chromosome. While several of these loci 
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have already been strongly implicated through large scale consortium studies of causal 

risk factors (e.g., FTO, TCF7L2, TDGF1P3)25,26, exome sequencing association studies 

(PNPLA3)27, and subgroup analyses restricted to cases with documented myocardial 

infarction (IL1F10, UFL1-AS1)28, our analysis of multiple populations provides important 

insights on the genetic architecture of CAD.

First, we document a largely equivalent degree of heritability of CAD across multiple 

ancestries using a uniform and unbiased approach of estimation among unrelated 

individuals. Our absolute estimates of heritability are somewhat lower than the range 

previously reported in twin studies for fatal CAD7,8 but in line with an estimate of 

heritability derived in the UK Biobank using BOLT-LMM9. The remaining heritability may 

be captured through future large-scale whole genome sequencing association of cohorts 

capturing the full spectrum of CAD including both fatal and non-fatal presentations29.

Second, the CAD susceptibility loci of populations with a high proportion of either African 

and/or Indigenous American ancestry are likely to overlap substantially with those identified 

to date in other populations, as the first eight loci reaching GWS in Black and Hispanic 

populations have all been previously identified. Further supporting the presence of such 

overlap is the number of established loci implicated by XPEB and the degree of replication/

correlation observed for these loci in our external Stage-2 Black and Hispanic cohorts. As 

these cohorts expand in size, many of the XPEB loci may reach GWS.

Third, GWAS in admixed populations may be leveraged to better understand the source of 

heterogeneity of effects across populations at some CAD loci. We show this for the widely 

replicated susceptibility locus at 9p2130 where common SNPs in the same haplotype block 

are GWS in South and East Asians12,13 but not in Blacks or Hispanics. Taking advantage 

of admixed populations, we provide compelling evidence for the presence of a protective 

haplotype at this locus which is common in all but African descent chromosomes where it is 

virtually absent. Further, the presence of an association signal among Blacks and Hispanics 

at 9p21 is dependent on the inheritance of non-African haplotypes in the region. Thus, 

the 9p21 locus is unlikely to ever serve as a key risk stratifying locus among populations 

with a high proportion of African ancestry at this locus, in stark contrast to its prominent 

risk-stratifying role in all other ancestral populations.

The degree to which genetic variation underlies sex differences in the incidence of CAD 

remains unclear. Initial GWAS of CAD did not detect sex differences in the magnitude of 

effects of autosomal susceptibility loci between men and women31 but more recent GWAS 

of adiposity-related traits such as waist-to-hip ratio as well as a study examining a PRS 

of CAD in the UK biobank have identified compelling sex differences32,33. While gonadal 

hormones undoubtedly serve as a major determinant of sex-differences in obesity and related 

traits, the X-chr may further contribute to sex differences in the rates of CAD through 

dosage effects on adiposity, lipid level and inflammation-related traits34. Determining the 

contribution, if any, of the novel and X-chr loci to sex-differences in the rates of CAD will 

require the study of additional very large populations of females with CAD.
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Our GWAS of angiographically derived burden of coronary atherosclerosis did not identify 

novel CAD loci. Larger sample sizes may prove more fruitful, and our current results 

suggest that a large fraction of the initial loci uncovered for CAD increase risk of 

clinical disease by promoting coronary plaque rather than predisposing to plaque rupture 

or thrombosis35.

PheWAS for our lead novel SNPs continue to suggest that about one half of CAD 

loci influence risk through known risk factors9–11. We note a more prominent role of 

highly pleiotropic loci operating through the obesity, insulin resistance, and diabetes 

risk axis among our novel loci including the top GWAS signals for obesity (FTO)25, 

diabetes (TCF7L2)26, and non-alcoholic fatty liver disease (PNPLA3)36, as well as the 

previously known lipid loci TDGF1P3 and NPC1, which are also associated with metabolic 

indices37,38. Furthermore, we note the appearance of loci associated with smoking status. 

These findings for single novel SNPs were consistent with our PheWAS of the externally 

derived metaGRS23, which now provides evidence that a genome-wide PRS for CAD 

incorporates a strong readout for predisposition to every well-established TRF including 

a family history of not only CAD but also risk factors for CAD. In the PheWAS of the 

metaGRS, we also found evidence that the PRS predisposes to alcohol and substance 

addiction disorders. While these associations may be at least partially mediated by the co-

morbid use of tobacco, the chronic use of other addictive substances may also independently 

contribute to the formation of coronary atherosclerosis, plaque rupture, vasospasm, and/or 

hypertension39.

Our gene-based association analyses expand on prior efforts to identify the most likely 

causal gene within a susceptibility locus. Despite substantially larger sample sizes and an 

improvement in analytic methods, it remains a challenge to unambiguously identify a causal 

gene within susceptibility loci. Our results highlight the need for integrative and orthogonal 

genomic methods to reliably identify the most likely causal gene and its putative mechanism 

within specific tissues40.

Our gene-set enrichment analyses continue to highlight well-established relevant biology in 

CAD but also point to an enrichment of pathways related to basic cellular processes/gene 

networks responsible for cell cycle, division/replication, and growth. This observation is 

buttressed by our PheWAS findings which link nearly one third of the novel loci to either a 

cancer or to height. Intriguingly, a shared biology between atherosclerosis and oncogenesis 

has long been hypothesized and others have recently documented the genetic basis of 

longstanding epidemiologic correlations between height, CAD, and cancer41,42. Expanding 

on this relationship, we note that Breast Cancer 1 gene (BRCA1) falls within one of our 

novel loci. The plausibility of BRCA1 as a CAD gene is supported by recent evidence of 

a genetic correlation between CAD and breast cancer43,44. Further, BRCA1 overexpression 

has been shown to protect against atherosclerosis and improve endothelial function45. We 

also identify ZEB1 as a candidate novel causal gene. ZEB1 is an oncogene and master 

regulatory of the epithelial-mesenchymal transition (EMT) that is well-established in breast 

cancer pathophysiology, and its expression may be dependent on BRCA146,47. BRCA1 
suppresses EMT during tumorigenesis48. Other key EMT genes, including ZEB2, TWIST1, 

and SNAI1 are all previously identified CAD loci with established roles in cancer biology 
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and recent experimental work suggests that EMT genes may impact CAD risk through 

the regulation of smooth muscle cell transitions in atherosclerotic plaques49–51. Overall, 

we suspect that these links reflect the prominence of these processes in tissues and cell 

types most relevant to CAD such as the de-differentiation, proliferation, and migration of 

endothelial cells, vascular smooth muscle cells, fibroblasts, and fibromyocytes within the 

vascular wall in response to the development of coronary atherosclerosis40,52,53.

Cell types prioritized for CAD include endothelial cells, fibroblasts, smooth muscle cells, 

hepatocytes, and adipocytes using two independent analytic algorithms. The first three 

comprise the vast majority of the cells in the normal vasculature54 consistent with top tissue 

signals observed for these tissues as well as the vessel rich lung. Strong signals involving the 

aortic valve, joints, joint capsule, synovial membrane, and cartilage may reflect shared gene 

networks expressed in these subtypes of connective tissue54. Signals involving the female 

reproductive tract, the GI tract, and the bladder may reflect the smooth muscle cell make 

up in these tissues54 with signals in the pancreas and the small intestine possibly further 

amplified by the key role these tissues play in the digestion and absorption of dietary lipids 

and cholesterol55. Lastly, strong signals in the liver, adrenal gland, and serum likely reflect 

the dominance of cholesterol-related gene networks within these tissues.

Our testing of externally derived PRSs of CAD in multi-population MVP participants 

confirms previously observed patterns with unprecedented precision and provides some 

additional insights. First, genome-wide PRSs of CAD substantially outperform genetic 

risk scores restricted to GWS loci. Second, higher ORs are observed for prevalent vs. 

incident, younger vs. older onset, and more severe (e.g., acute myocardial infarction and/or 

revascularization procedure) vs. less severe manifestations of CAD. These patterns likely 

reflect a higher average burden of CAD in one subgroup of cases when compared to the 

other with a proportional increase in the mean PRS for that subgroup. This hypothesis is 

supported by the strong linear relationship we observed between the same PRSs and the 

number of obstructed coronary arteries, a proxy for burden. Third, we observe a reduction 

in predictive performance of PRSs derived and validated externally among largely European 

participants when these scores are transferred to MVP most evident in Blacks and consistent 

with previous validation reports in smaller multi-population EHR cohorts24,56. While our 

newly constructed and validated multi-population PRS for CAD improved risk prediction 

across all populations, it did not decrease the performance gap between populations. 

Overall, our results underscore the pressing need to produce more data among non-white 

populations and develop more sophisticated analytic methods to eradicate such differences 

in performance and minimize the potential for exacerbating existing health disparities as 

PRSs are implemented into clinical practice5.

In conclusion, our large-scale multi-population GWAS provides important new insights into 

the genetic basis of CAD and brings us closer to precision medicine approaches for CAD 

across the diversity spectrum, but follow-up studies are needed to improve the transferability 

of PRS for CAD, to identify and understand mechanisms of causal genes, and to develop 

cross-population and population-specific novel therapies based on this understanding.
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Online Methods

Design

Active users of the Veterans Health Administration (VA) of any age have been recruited 

from more than 75 VA Medical Centers nationwide since 2011 with current enrollment 

at >885,00057. Informed consent is obtained from all participants to provide blood for 

genomic analysis and access to their full EHR within the VA prior to and after enrollment 

including inpatient International Classification of Diseases (ICD9/10) diagnosis codes, 

Current Procedural Terminology (CPT) codes, clinical laboratory measurements, and reports 

of diagnostic imaging modalities. The EHR is continuously being integrated with MVP 

genomic data and access to these linked coded data is provided to approved investigators. 

All participants are also asked to optionally complete two short surveys, the Baseline 

and Lifestyle questionnaires, designed to augment data contained in the EHR. The study 

received ethical and study protocol approval from the VA Central Institutional Review 

Board.

Genetic Data and Quality Control

We genotyped 468,961 participants who enrolled in MVP between 2011 and 2017 with 

a customized Affymetrix Axiom array in two batches. The first batch including 359,964 

participants and the second batch including 108,997 participants. The genotyping data 

generated underwent extensive quality control (QC)58. We initially imputed to the 1000 

Genomes phase 3 version 5 reference panel (1000G)59 in each batch of genotyped data 

separately using EAGLE v2.360 and Minimac361 before joint imputation was performed in 

the two batches combined using EAGLE v2.4 and Minimac4. Prior to imputation, variants 

that were poorly called (genotype missingness > 5%) or that deviated from their expected 

allele frequency observed in the reference data (1000G) were excluded. Genotyped SNPs 

were interpolated into the imputation file.

Assignment of Populations

We assigned population membership to participants using HARE62, an algorithm that 

integrates genetically inferred ancestry with self-identified race/ethnicity. HARE assigned 

>98% of participants with genotype data to one of four non-overlapping groups: non-

Hispanic Whites (Europeans), non-Hispanic Blacks (Africans), Hispanics, and non-Hispanic 

Asians. The sample size of Non-Hispanic Asians was too small for discovery and was 

excluded from further analyses62.

Additional Quality Control for X-chromosome

We implemented additional QC steps for analyses involving the X-chr to minimize risk of 

false positive associations due to sex-specific genotype calling errors. First, we excluded 

subjects with suspected XXY (n = 350) and XYY (n = 850) karyotypes based on an analysis 

of the median logR ratios of nonPAR X and Y chromosome SNP intensities. Second, 

we quarantined 6,707 out of 17,809 genotyped X-chr SNPs that met one or more of the 

following criteria: i. out of Hardy-Weinberg equilibrium among females (P<1×10−6); ii. 

demonstrated differential missingness between cases and controls and/or between males and 
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females (P<1×10−6); iii. demonstrated differential minor allele frequencies between males 

and females (P<1×10−6); iv. high homology to another chromosome (mostly for the Y-chr 

within the pseudo-autosomal 3 region). Lastly, we phase and re-imputed the X-chr across all 

genotyped subjects combined using only the remaining 11,102 SNPs before proceeding with 

association analyses.

Phenotype

Clinical CAD—We used inpatient and outpatient ICD diagnostic and CPT procedure codes 

to identify subjects with clinical CAD in MVP. EHR data was available retrospectively 

before enrollment going back to October 1999 and prospectively after enrollment until 

mid-August 2018. An individual was classified as a case if he or she had: 1) any admission 

to a VA hospital with a discharge diagnosis of acute myocardial infarction (AMI) or 2) any 

procedure code for revascularization of the coronary arteries, or 3) two or more ICD codes 

for CAD (410 to 414) in at least two different encounters. Individuals with only one ICD 

code for CAD in a single encounter and no discharge diagnoses for AMI or revascularization 

procedures were excluded from the analyses. The remaining subjects were classified as 

controls.

We accessed individual level genetic and phenotypic data for the UK Biobank and 

implemented the same case-control definitions for clinical CAD used by others to conduct 

association analyses involving the X-chr.

Angiographic burden of CAD based on number of obstructed vessels—We 

linked MVP participants to the Veterans Affairs Clinical Assessment, Reporting, and 

Tracking (CART) Program, a national quality and safety organization for invasive cardiac 

procedures, to reliably estimate the burden of atherosclerosis among participants who 

had undergone at least one coronary angiogram by October 201863. Data were available 

retrospectively starting in 2004 in select sites and from all sites by 201064. A total of 

31,658 non-Hispanic White, 7,313 non-Hispanic Black, and 2,536 Hispanic participants, 

a majority of which were subjects with clinical CAD, were found to have at least one 

evaluation of the degree of angiographically defined coronary atherosclerosis. For each 

angiogram, we classified an individual’s extent of disease to one of the following categories 

of disease of the native vessels: normal, non-obstructive, 1 vessel, 2 vessel, 3 vessel and/or 

left main coronary artery disease. Obstructive disease of a native vessel was defined as the 

presence of at least one lesion >50% or a prior revascularization procedure involving that 

vessel. Non-obstructive disease of a native vessel was defined as a vessel with at least one 

stenosis >20% of luminal diameter but no lesion >50%. We modified a previously validated 

algorithm to derive these classifications by decreasing the threshold of significant disease 

in a vessel from at least one lesion >70% to one lesion >50%65. Entries were filtered to 

remove those where disease severity was missing or listed as “other”, then subjects were 

removed if they were missing a HARE assignment, date of birth, sex, or had previously 

received a cardiac transplant. For subjects with multiple angiograms over follow up where at 

least one reported disease, we assigned severity based on the procedure reporting the most 

advanced disease. If more than one angiogram reported the same advanced disease, we used 
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the earliest one. Age was calculated on the date of the cardiac catheterization with the most 

severe disease for cases and the last normal angiogram for controls.

Statistical Analysis

Genetic Relatedness—We used KING, version 2.0, to identify 20,881 related 

participants at a 3rd degree or closer58. Among these individuals, we preferentially retained 

5,289 unrelated cases and 4,909 unrelated non-cases in analyses and excluded the remaining 

individuals (1,023 cases and 9,601 non-cases).

Analyses of heritability across populations—We used GREML-LDMS-I as 

implemented in Genome-wide Complex Trait Analysis (GCTA) 1.93.0beta to estimate 

the multicomponent narrow sense heritability of CAD in our three HARE-defined MVP 

groups and in the Biobank Japan dataset66. GREML-LDMS-I is one of the most accurate 

heritability estimation methods when considering common factors that may bias such 

estimates67. To minimize the confounding effects of admixture, we identified minimally 

admixed subsets of individuals in each of the HARE groups by performing a combined PCA 

of MVP data and 1000G data, then selecting White, Black, and Hispanic MVP subjects 

who clustered most closely with the 1000G European, African and Peruvian populations, 

respectively. Restricted by computing memory requirements, we next randomly selected 

19,395 of least-admixed Hispanic participants (our smallest group) to run through GREML-

LDMS-I68,69. To minimize the influence of differences in the severity of the cases and the 

age of controls between populations on the final estimates of heritability, we then matched 

an approximately equal number of MVP Blacks (n=19,392), MVP Whites (n=19,392), and 

Japanese from Biobank Japan (n=18,747) to the Hispanic group using case-control status, 

EHR-based estimated age of onset of CAD, the type of case (MI/revascularization versus 

other), and the age of controls as factors. These sample sizes provided us with >80% 

power to detect a heritability of at least 7% on the liability scale and 100% of at least 

11% assuming a prevalence of disease of 8%70. We then estimated heritability within each 

group after applying identical QC procedures. First, SNP dosages used for all GWAS were 

converted to hard-call genotypes using the default settings in PLINK 2.0 described under 

section “Standard data input/dosage import settings”. SNPs that were multi-allelic, had 

MAC < 3, or hard call-rate < 95% were removed. Since CAD case status is a binary trait, 

SNPs with p < 0.05 for Hardy-Weinberg equilibrium or differential missingness in cases vs 

controls were also removed68,69. LD scores were computed on each autosome using GCTA 

default settings with an r2 cutoff of 0.01, and the genome-wide LD score distribution was 

used to assign SNPs to 1 of 4 LD quartile groups, where groups 1–4 represented SNPs with 

progressively higher LD scores. Within each LD group, SNPs were further stratified into 6 

MAF bins ([0.001, 0.01], [0.01, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5]) and a genetic 

relatedness matrix (GRM) was constructed from each bin, ultimately creating 24 GRMs. 

Finally, GCTA --reml was used to fit a model of CAD case status based on the 24 GRMs, 

with age and sex as covariates. Total observed heritability estimates were transformed to 

estimate disease liability4 across a range of presumed CAD prevalence estimates in the 

general population.
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Genome-wide association study in MVP—We performed a GWAS of autosomes for 

clinical CAD and for coronary angiographic burden of disease within each of the three 

HARE groups using logistic and linear regression, respectively, implemented in PLINK 

2.0 alpha. Models assumed an additive genetic effect adjusted for sex and the respective 

first 10 ancestry-specific principal components (PCs). For burden of disease, we further 

adjusted models for age at the time of angiography. Association tests were performed within 

each HARE group and across 2 tranches of MVP genotyped data. Thus, six GWAS were 

performed for each phenotype. Each set of results was filtered separately using PLINK and 

EasyQC. First, we removed SNPs with i. population-specific imputation r2 < 0.4, ii. OR, 

p-value and/or SE missing value as well as SNPs with absolute(beta) >4; iii. multi-allelic 

SNPs, and iv. SNPs with minor allele count (MAC) <6. Second, we filtered all SNPs with 

a minor allele frequency < 0.01 in non-Whites and less than 0.001 in Whites. Third, we 

filtered any SNP that was not in HWE among controls as defined by deviation from HWE 

with a p<1×10−6. METAL71 was then used to apply a genomic control to each input dataset 

and meta-analyze GWAS results across genotype releases within each HARE group. For 

Whites, we also ran METAL with genomic control turned off to create a dataset suitable for 

LD score regression72.

X-chr association testing in MVP for both phenotypes was conducted stratified by sex 

in addition to HARE group. In the UK Biobank, X-chr analyses were restricted to 

unrelated subjects of White/European descent (34,541 CAD cases and 261,984 controls). 

We implemented a standard logistic regression model using plink with no X-chr inactivation 

assumption (males coded as 0/1, females as 0/1/2). We then used GWAMA for meta-

analysis of male and female within each ancestry group and tested for difference in effect 

between sex as well as sex-interaction.

Meta-analysis with external datasets—We used METAL to conduct two fixed-effect 

inverse variance weighted meta-analyses for the clinical CAD phenotype. The first involved 

the MVP Whites with the CARDIoGRAMplusC4D 1000G study and the UK Biobank 

CAD study and the second further incorporated the MVP Blacks, MVP Hispanics, and 

Biobank Japan. Genomic control was applied to each input dataset by METAL. This second 

multi-population meta-analysis was also performed using MR-MEGA73. METAL and MR-

MEGA were also used to conduct a multi-population meta-analysis of the CART derived 

burden of CAD with the MVP datasets. For the X-chr, we used METAL to conduct a 

meta-analysis of the X-chr data in MVP Whites with the UK Biobank and the X-chr study 

by CARDIoGRAMplusC4D74. Lastly, we used MR-MEGA to conduct a multi-population 

meta-analysis of the X-Chr through further inclusion of the MVP Blacks, MVP Hispanics, 

and Biobank Japan.

Credible set analyses—We generated a list of credible sets of SNPs at all loci, known 

and novel, reaching GWS in our meta-analysis of Whites using a Bayesian approach for 

credible set analysis assuming a single causal variant per locus75. Briefly, we first calculated 

approximate Bayes factors for each variant within a 1MB region centered on the lead SNP 

using the beta, standard error, and sample size from the METAL meta-analysis of Whites. 

We then estimated the posterior probability of each SNP being causal using the Bayesian 
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factor. Lastly, a credible set was defined as the smallest set of SNPs for which the sum 

of posterior probability reached 99%. We also generated credible sets for the exact same 

genomic regions using Bayes factors derived from MR-MEGA in our multi-population 

meta-analysis.

Definition of a locus including parameters for lead and candidate genetic 
variants—We used FUMA76 to define genomic risk loci including independent, lead, and 

candidate variants. First, independent genetic variants were identified as variants with a P 
below a specific threshold and not in substantial linkage disequilibrium (LD) with each other 

(r2 < 0.6). Second, variants in LD (r2 ≥ 0.6) with an independent variant and with p < 0.05 

were retained as candidate variants to form an LD block. Third, LD blocks within 500kb 

of each other were merged into one locus. Lastly, a second clumping of the independent 

variants was performed to identify the subset of lead SNPs with LD r2 < 0.1 within each 

locus. For our meta-analyses of Whites alone and our multi-population meta-analyses, we 

used a UK Biobank release 2b EUR reference panel of genotype data imputed to the 

UK10K/1000G SNPs created by FUMA including ~17 million SNPs. This panel includes a 

random subset of 10,000 unrelated subjects among all subjects with genotype data mapped 

to the 1000G populations based on the minimum Mahalanobis distance. We used the 1000G 

AFR reference panel of 661 subjects with ~43.7 million SNPs for our Blacks, and the AMR 

reference panel of 347 subjects with ~29.5 million SNPs for our Hispanics.

Two-stage joint analysis of most promising findings in non-Europeans—We 

sought replication of all promising genomic risk loci in our MVP Black and MVP Hispanic 

GWAS for clinical CAD in multiple external datasets. Replication was attempted not only 

for all lead SNP(s) with P<1×10−5 but also for all other independent and candidate genetic 

variant members of these loci. In the same external datasets, we also sought replication for 

all SNP with local FDR < 0.05 from our XPEB analyses as described below.

Definition of a significant and novel locus and annotation—A locus was 

considered GWS if at least one lead genetic variant within it reached a P<5×10−8 in any 

of the terminal meta-analyses. For meta-analyses involving METAL, the variant also had 

to lack any significant heterogeneity (P>5×10−8 for test of heterogeneity). A GWS locus 

was considered novel if none of its lead, independent, or candidate SNPs (as defined 

above) overlapped with a SNP that has previously reached GWS in the setting of a GWAS 

meta-analysis or two-stage analysis for clinical CAD. Novel GWS loci were identified 

at three stages: i. after the meta-analysis of all GWAS available among Whites, ii. after 

combining genome-wide summary statistics in Blacks and Hispanics, respectively, with 

external replication data limited to promising loci, and iii. after multi-population meta-

analyses of all summery statistics of GWAS (i.e., not including 2nd-stage data in Blacks 

and Hispanics). For the multi-population meta-analysis, we first identified novel loci with 

lead SNPs with no significant heterogeneity using METAL and supplemented these with any 

additional non-overlapping genome-wide findings identified with MR-MEGA. We annotated 

the lead SNP(s) at each novel locus by creating URL hyperlinks to five variant-base 

portals: OpenTargets, QTLbase, Common Metabolic Disease Knowledge, Open GWAS, and 

PhenoScanner.
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Cross-population empirical Bayes method—We implemented the cross-population 

empirical Bayes method, XPEB77, for the clinical CAD phenotype. XPEB takes as input 

p-value summary statistics from two GWAS, a target-GWAS that is typically a smaller 

non-European population of primary interest and a base-GWAS that is typically a much 

larger GWAS of Europeans and adaptively reprioritizes variants in the target population to 

compute local false discovery rates. We ran XPEB with the MVP Blacks as the target GWAS 

and the meta-analysis of MVP Whites, CARDIoGRAMplusC4D, and the UK Biobank as 

the base-GWAS. We then ran it a second time with the MVP Hispanics as the target GWAS. 

For both runs, analyses were restricted to genotyped SNPs in the target populations.

Calculation of and testing externally derived Polygenic Risk Scores (PRS) of 
CAD in MVP—We calculated four externally derived and previously validated PRS for 

CAD of increasing complexity in each participant included in the MVP GWAS of Whites, 

Blacks, and Hispanics. The four scores included: i. a weighted PRS restricted to a curated 

list of up to 163 independent SNPs having reached GWS among predominantly populations 

of European ancestry as of 2019, ii. the best performing weighted PRS in the UK Biobank 

calculated from a standard pruning & thresholding method of the CARDIoGRAMPplusC4D 

1000G summary statistics involving 1.5 million SNPs, iii. the metaGRS, a 1.7 million-SNP 

PRS consisting of a weighted average of three standardized risk scores followed by LD 

pruning; and iv. the best performing PRS in the UK Biobank derived from applying the 

LDPred algorithm onto the CARDIoGRAMPplusC4D 1000G summary statistics involving 

6.6 million SNPs but assuming 0.1% of SNPs are causal. All scores were standardized to a 

mean of zero and standard deviation (SD) of one within each HARE group.

We then estimated the increase in risk of clinical CAD associated with a 1 SD increase 

in PRS for each of the four PRSs within each of the three HARE groups using logistic 

regression adjusting for imputation release batch, age, sex and the first 10 HARE specific 

PCs where age was defined as the age at the time of first ICD code for cases and age at the 

time of last visit to the VA for controls. Similarly, we estimated the increase in the burden of 

disease per one SD increase in PRS using linear regression where age was defined as age at 

time of coronary angiography.

Derivation and validation of a new multi-population polygenic risk score in 
MVP—We constructed new PRSs using a pruning and thresholding approach implemented 

in PRSice2 and applied to our multi-population meta-analysis78. We used a recently 

genotyped independent MVP cohort (release 4) of Whites, Blacks and Hispanics to tune 

and validate the PRS we constructed with the remaining MVP participants included in our 

multi-population meta-analysis (release 3). From the independent MVP cohort, we set aside 

all subjects who had their first ever CAD event after enrollment along with 10 random 

controls. The prevalent cases and remaining controls were used for tuning the PRSs. Thus, 

the GWAS cohort used for the derivation of the new multi-population PRS, the tuning 

cohort, and the validation cohort were independent.

We used a cosmopolitan cohort of randomly selected MVP participants as the LD reference 

panel. Multiple LD pruning (R2<0.2, R2<0.4, and R2<0.8); distances between pruning 

region (250kb and 500kb), as well as p-value thresholds were used to create PRS that were 
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then tested in the tuning cohort to identify the best performing PRS as estimated by the odds 

ratio per SD increase in the score. We then tested this best PRS in the validation set and 

compared to the performance of the best performing externally derived PRS.

Phenome-wide association study of novel loci and best performing externally 
derived PRS of CAD in MVP—We conducted a PheWAS for each of the lead SNPs 

at all novel loci, for the 163 SNP PRS, and for the externally derived genome-wide PRS 

with the highest OR for CAD in MVP. We adopted the standard PheWAS protocol79,80 and 

augmented this basic approach by including phenotypes derived from the physical exam 

(e.g., measured weight, height, blood pressure, and heart rate), laboratory results (e.g., blood 

cell counts and biochemistries), and select variables derived from the MVP questionnaires 

(family history, smoking status, and alcohol use). For individual novel SNPs, we ran the 

PheWAS in each HARE group separately in both cases and controls combined and controls 

alone, with associations considered significant if their FDR was < 0.05 by the Benjamini-

Hochberg method. For the PheWAS PRS, we restricted association analyses to Whites and 

ran analyses in i. all subjects; ii. after excluding CAD cases; and iii. after further excluding 

subjects with other manifestations of atherosclerosis including peripheral arterial disease and 

ischemic stroke. For select Phecodes, we attempted to replicate significant associations in a 

newly genotyped independent set of 92,242 White MVP participants (release 4).

We generated a network plot with the Yifan Yu proportional multi-level layout and Atlas 2 

layout algorithms implemented in Gephi Software using the subset of significant individual 

novel SNP PheWAS associations. The node size was defined using the weighted in-degree 

network statistic with the directionality from SNP to phenotype. The edge size was defined 

by the number of connections between two nodes (SNPs and phenotypes) and only include 

associations between SNP and phenotype represent by the z-score statistic of the SNP-

phenotype association. The size of the label of the node was proportional to the weighted 

degree statistic. The color of the edges was define using the modularity matrix, a network 

statistic for unfolding communities in large network.

Colocalization analysis—We assessed for the presence of colocalization of genetic 

association signals between novel loci for CAD and associations in analogous regions for 

traditional risk factors (TRFs) using COLOC81. For these analyses, we input results from 

our meta-analysis for CAD in Whites as well as recent large scale genetic studies of 

traditional risk factors independent of our MVP dataset including GWAS of BMI, lipids, 

blood pressure, smoking, and type 2 diabetes82–86. Evidence of colocalization at a locus 

with the same causal variant shared between CAD and the TRF was defined as a posterior 

probability Bayesian factor H4 (PP.H4.abf) > 0.7 while evidence of colocalization with 

a different variant was defined as defined as a posterior probability Bayesian factor H3 

(PP.H3.abf) > 0.7.

Local ancestry inference and haplotype analysis at susceptibility loci of 
interest—We used RFMix87 to derive the most likely ancestral origin of the chromosomal 

segment encompassing loci of interest in MVP Blacks and Hispanics. The YRI, MEL and 

IBR populations from the 1000G project as the African reference, and the GBR, CEU and 

TSI populations as the European reference to infer the most likely sequence of ancestry 
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within the locus. The results allowed us to subdivide the MVP Blacks into three groups: 

i. subjects with a high probability of African ancestry on both chromosomes (homozygote 

Africans), ii. subjects with high probability of one African and one European ancestry 

chromosome (heterozygotes), and iii. subjects with a high probability of European ancestry 

on both chromosomes. For haplotype analyses within loci of interest, we identified all 

common (MAF>10%) SNPs in linkage equilibrium (r2<0.05) in our homozygote Africans 

Blacks among all SNPs reaching GWS (P<5×10−8) in our meta-analysis of Whites and used 

these SNPs to construct haplotypes and perform a haplotype trend regression of this region 

using the EM algorithm implemented in the R package haplo.stats.

Downstream analyses to prioritize genes, pathways, cells, and tissues/
systems relevant to CAD—We conducted downstream analyses to prioritize genes, 

pathways, and tissues involved in the pathogenesis of CAD based on the results of our 

meta-analyses. We applied four analytic algorithms to the summary statistics including 

Multi-marker Analysis of GenoMic Annotation (MAGMA) v1.09 for gene, gene-set, and 

gene-property analysis, as implemented in FUMA76,88,89, a model-based enrichment method 

for GWAS summary data using biological pathways to define gene-sets, Regression with 

Summary Statistics exploiting Enrichments (RSS-E)90, Data-driven Expression Prioritized 

Integration for Complex Traits (DEPICT)91, and MetaXcan92. Gene and cell/tissue/system 

specificity/prioritization analyses incorporating gene-expression data into their algorithms 

were restricted to Whites given a majority of the gene-expression data incorporated into 

these analyses are derived from Whites. We combined results from MAGMA, RSS-E, 

DEPICT, and MetaXcan, at the gene level and compared to the gene level DEPICT 

analyses performed on the CARDIoGRAMplusC4D and UK Biobank meta-analysis alone. 

We annotated implicated genes by creating URL hyperlinks to information on these genes 

in three gene-based portals: Mouse Genome Informatics, Online Mendelian Inheritance 

of Man, Therapeutic Target Database. MAGMA gene-set analyses were run on 10,678 

gene sets (curated gene sets: 4,761, GO terms: 5,917) from MSigDB v6.2 while gene-

property analyses were conducted on GTEx V8 and multiple single cell RNA-seq databases 

incorporated into the FUMA bioinformatic pipeline including the Mouse Cell Atlas, the 

Tabula Muris dataset (FACS and droplet) and several datasets of human brain, pancreas, 

and blood. For RSS-E, gene-sets were derived from nine databases (BioCarta, BioCyc, 

HumanCyc, KEGG, miRTarBase, PANTHER, PID, Reactome, WikiPathways) that are 

archived by four repositories: Pathway Commons v7, NCBI Biosystems, PANTHER (v3.3), 

and BioCarta. We downloaded preprocessed pathway and gene data from http://doi.org/

10.5281/zenodo.1473807 on October 29, 2018 and used a list of 3,803 pathways that 

contains between 2 to 400 autosomal protein-coding genes per pathway in the present study.

URLs

CARDIoGRAMplusC4D http://www.cardiogramplusc4d.org;

Japanese ENcyclopedia of GEnetic associations by Riken: http://jenger.riken.jp/en/result

R statistical software, www.R-project.org;
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EasyQC, https://www.uni-regensburg.de/medizin/epidemiologie-praeventivmedizin/

genetische-epidemiologie/software/;

PLINK 2.0: https://www.cog-genomics.org/plink/; https://www.cog-genomics.org/plink/2.0/

input#dosage_import_settings;

LDSC: https://github.com/bulik/ldsc;

Gephi: https://gephi.org/;

FUMA, http://fuma.ctglab.nl/;

PheWAS, https://github.com/PheWAS/PheWAS;

RFMixv2: https://github.com/slowkoni/rfmix;

GCTA, http://cnsgenomics.com/software/gcta/#Overview;

METAL: https://genome.sph.umich.edu/wiki/METAL;

GWAMA: https://genomics.ut.ee/en/tools/gwama;

MAGMA: https://ctg.cncr.nl/software/magma;

DEPICT: https://data.broadinstitute.org/mpg/depict/;

RSS-E: https://github.com/stephenslab/rss;

MetaXcan: https://github.com/hakyimlab/MetaXcan;

OpenTargets: https://genetics.opentargets.org/;

QTLbase: http://www.mulinlab.org/qtlbase;

Common Metabolic Disease Knowledge Portal: https://hugeamp.org/;

Open GWAS: https://gwas.mrcieu.ac.uk/;

PhenoScanner: http://www.phenoscanner.medschl.cam.ac.uk/;

Mouse Genome Informatics: http://www.informatics.jax.org/;

Online Mendelian Inheritance of Man: https://www.omim.org/;

Therapeutic Target Database: http://db.idrblab.net/ttd/

Data availability

Summary statistics for the Biobank Japan study were obtained from http://jenger.riken.jp/en/

result. Summary statistics for the CARDIoGRAMplusC4D study were obtained from http://

Tcheandjieu et al. Page 21

Nat Med. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.uni-regensburg.de/medizin/epidemiologie-praeventivmedizin/genetische-epidemiologie/software/
https://www.uni-regensburg.de/medizin/epidemiologie-praeventivmedizin/genetische-epidemiologie/software/
https://www.cog-genomics.org/plink/
https://www.cog-genomics.org/plink/2.0/input#dosage_import_settings
https://www.cog-genomics.org/plink/2.0/input#dosage_import_settings
https://github.com/bulik/ldsc
https://gephi.org/
http://fuma.ctglab.nl/
https://github.com/PheWAS/PheWAS
https://github.com/slowkoni/rfmix
http://cnsgenomics.com/software/gcta/#Overview
https://genome.sph.umich.edu/wiki/METAL
https://genomics.ut.ee/en/tools/gwama
https://ctg.cncr.nl/software/magma
https://data.broadinstitute.org/mpg/depict/
https://github.com/stephenslab/rss
https://github.com/hakyimlab/MetaXcan
https://genetics.opentargets.org/
http://www.mulinlab.org/qtlbase
https://hugeamp.org/
https://gwas.mrcieu.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
http://www.informatics.jax.org/
https://www.omim.org/
http://db.idrblab.net/ttd/
http://jenger.riken.jp/en/result
http://jenger.riken.jp/en/result
http://www.cardiogramplusc4d.org/


www.cardiogramplusc4d.org. Summary statistics for the UK Biobank study for CAD were 

obtained from https://www.cardiomics.net/download-data.

The full summary level association data from the individual population association analyses 

in MVP as well as the multi-population meta-analysis from this report will be available 

through dbGaP, with accession number phs001672 at the time of publication in a peer 

reviewed journal. This research has been conducted using the UK Biobank Resource under 

Application Numbers 13721 & 19416.

Consortia

Regeneron Genetics Center, Biobank Japan, CARDIoGRAMplusC4D, The VA Million 

Veteran Program

Tcheandjieu et al. Page 22

Nat Med. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cardiogramplusc4d.org/
https://www.cardiomics.net/download-data


Extended Data

Extended Data Fig. 1. LocusZoom plots of loci reaching genome wide significance in Blacks and 
Hispanics
Sets of LocusZoom plots for five loci in Blacks and 3 loci in Hispanics reaching genome 

wide significance after two-stage meta-analysis with external cohorts. Each set of plots show 

the association results for a locus for all three populations using the same chromosome 

location scale (x-axis) but not the same p-value scale (y-axis). P values are derived from 

inverse variance weighted meta-analysis using METAL and are two-sided.
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Extended Data Fig. 2. Allele frequencies and association results at the 9p21 locus among Black in 
the Million Veteran Program stratified by local ancestry status
Top panels show plots of corresponding allelic frequencies at the 9p21 susceptibility locus 

observed in MVP Whites vs. subgroups of MVP Blacks including those with a. two African 

chromosomes (chr), b. one African chr, and c. no African chr at the locus. Corresponding 

LocusZoom plots for each group are in the panels immediately below. Association testing 

was performed using logistic regression with adjustment on sex and principal component as 

implemented in PLINK. P values were derived from a Wald test and are two-sided.
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Extended Data Fig. 3. LocusZoom plots of SNP association at the 9p21 susceptibility locus for 
CAD.
Top panel plots the results for MVP GWAS of all Hispanics + Stage 2 cohort meta-

analysis. P values are derived from inverse variance weighted meta-analysis using METAL 

and are two-sided. Bottom panel plots the subset of MVP Hispanics with no African 

derived chromosomes at 9p21 based on local ancestry assessment using RFMix (5,298 

cases / 20,556 controls). Association testing was performed using logistic regression with 

adjustment on sex and principal component as implemented in PLINK. P values were 

derived from a Wald test and are two-sided.
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Extended Data Table 1

Demographic characteristics of the Million Veteran Program participants included in the 

genome wide association study analyses of the clinical coronary artery disease phenotype.

Cases (118,731) Non-cases 
(281,064)

Excluded (28,148)

Calendar Year of Enrollment: count (%)

 2011 5,162 (4.3) 8,102 (2.9) 1,079 (3.8)

 2012 27,011 (22.7) 50,591 (18.0) 6,262 (22.3)

 2013 27,279 (23.0) 59,534 (21.2) 6,278 (22.3)

 2014 23,218 (19.6) 57,873 (20.6) 5,665 (20.1)

 2015 18,160 (15.3) 51,121 (18.2) 4,593 (16.3)

 2016 9,267 (7.8) 27,080 (9.6) 2,168 (7.7)

 2017 8,634 (7.3) 26,763 (9.5) 2,102 (7.5)

 2018 -- -- 1 (0.0)

Mean Age at enrollment: mean (SD) 69.40 (9.8) 59.70 (14.2) 65.50 (11.1)

Male Sex count (%) 115,606 (97.4) 250,509 (89.2) 26190 (93.0)

Case subgroups

 AMI on discharge summary 19,341 (16.3)

 Revascularization procedure (CABG or PCI) 29,439 (24.8)

 AMI and/or revascularization procedure 36,086 (30.4)

 chronic CAD (no AMI or revascularization) 83,070 (70.0)

HARE ancestry assignment counts (%)

 white/European 95,151 (80.2) 197,287 (70.2) 19,909 (70.7)

 black/African American 17,202 (14.5) 59,507 (21.2) 6,283 (22.3)

 Hispanic 6,378 (5.3) 24,270 (8.6) 1,956 (7.0)

Cases diagnosed before enrollment count (% of all 
cases)

101,861 (85.6) -- --

Age at earliest CAD code mean (SD) 63.3 (13.0) -- --

Age at earliest CAD code median (quartiles) 65 (56.7) -- --

years of follow up after first CAD code: mean (SD)

 prevalent cases only 11.5 (4.9) -- --

 incident cases only 2.5 (1.6) -- --

 all cases 10.0 (5.5) -- --

Age at last visit day mean (SD) 73.3 (9.5) 63.3 (14.3) 69.3 (11.0)

SD: standard deviation. AMI: acute myocardial infarction. HARE: Harmonizing Genetic Ancestry and Self-identified 
Race/Ethnicity algorithm. CAD: coronary artery disease.
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Extended Data Table 2

Demographic characteristics of the White, Black, and Hispanic participants from the 

Million Veteran Program and the Japanese from Biobank Japan used in GREML-LDMS-I 

heritability analyses.

Stratum MVP Whites
MVP Blacks (high 

proportion of African 
ancestry)

MVP Hispanics (high 
proportion of Native 
American ancestry)

Japanese from 
Biobank Japan

Status Sex N Mean SD N Mean SD N Mean SD N Mean SD

CONTROL Females 1520 46.17 13.31 1684 44.92 12.6 1520 46.14 13.3 1518 46.3 13.3

CONTROL Males 13791 57.54 15.87 13627 60.85 14.48 13794 57.55 15.9 13143 58.9 15.1

HARD 
CASES

Females 20 58.25 10.24 55 51.85 7.86 22 57.64 11.19 23 58.2 11.1

HARD 
CASES

Males 1400 60.49 9.04 1365 58.5 9.12 1398 60.53 9.06 1402 60.5 9.1

SOFT 
CASES

Females 55 57.16 11.01 42 55.55 9.36 58 55.19 12.96 60 55.2 12.6

SOFT 
CASES

Males 2606 61.96 9.59 2619 61.98 9.42 2603 61.99 9.54 2601 61.9 9.5

N: number in stratum. SD: standard deviation.

Extended Data Table 3

Characteristics of Stage 1 and Stage 2 Black and Hispanic cohorts.

Cases Controls

N % male Mean age (sd) N % male Mean age (sd)

Stage 1 COHORT: BLACK

 MVP 17202 92.2 59.1 (9.8) 59507 75.3 59.8 (12.3)

Stage 2 COHORTS: BLACKS

PAGE Cohorts 5225 20702

 ARIC 615 48 54.7 (5.6) 2207 34 53.0 (5.8)

 BioME all 656 43 61.9 (11.8) 6458 37 48.8(14.8)

  BioME MEGA 553 43 61.9 (11.4) 4613 37 51.0(14.2)

  BioME non-MEGA 103 43 61.9 (13.5) 1845 36 43.3 (14.9)

 MEC all 2640 3361

  PAGE 2 MEGA diabetes 914 33 71.2 (7.4) 530 27 67.7 (8.1)

  PAGE 2 MEGA controls 426 31 71.2 (7.7) 1147 24 66.8 (8.2)

  Breast CA study - cases 176 0 71.1 (8.4) 275 0 66.4 (9.4)

  Breast CA study - controls 199 0 70.9 (8.4) 347 0 64.8 (10.0)

  Prostate CA study - cases 455 100 71.1 (6.6) 475 100 69.1 (7.4)

  Prostate CA study - controls 470 100 69.5 (7.4) 587 100 66.7 (8.4)

 WHI 1314 0 63.8 (7.0) 8676 0 61.2 (7.0)

  MEGA 938 0 63.8 (7.1) 5891 0 59.4 (6.5)

  SHARE 354 0 63.6 (6.7) 2690 0 65.1 (6.5)

  GARNET 22 0 63.9 (7.4) 95 0 61.0 (7.5)

Other 4594 22096
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Cases Controls

N % male Mean age (sd) N % male Mean age (sd)

BioVU 151 49.1 69.9 (11.8) 1719 31.6 57.5 (16.1)

CHS 419 38.2 73.1 (5.7) 401 36.4 72.6 (5.7)

Health ABC 322 51.3 73.6 (3.0) 783 40.1 73.4 (2.9)

HANDLS 84 32.6 47.1 (8.4) 854 45.1 48.5 (9.0)

JHS 54 n/a n/a 1400 n/a n/a

eMERGE 1820 42.1 58.8 (12.8) 7286 30.3 48.8 (17.0)

Penn Biobank 1395 51.5 67.5 (12.2) 4276 31.3 53.2 (16.1)

UK-Biobank 349 55 66.8 (7.8) 5377 58.3 60.5 (7.9)

TOTAL Stage 2 cohorts 9819 42798

OVERALL Stage 1+2 TOTALS 27021 102305

Stage 1 COHORT: HISPANICS

MVP 6378 94.7 60.9 (9.8) 24270 77.6 56.1 (15.6)

Stage 2 COHORTS: HISPANICS

 BioME all 1230 50 65.1 (11.4) 8793 35 49.9 (15.8)

  BioME MEGA 702 50 65.0 (11.2) 4860 35 50.3 (15.9)

  BioME non-MEGA 528 52 65.2 (11.7) 3933 36 49.4 (15.8)

 MEC all 3174 4530

  PAGE2 MEGA diabetes 516 46 70.1 (7.1) 394 36 65.6 (6.6)

  PAGE2 MEGA controls 250 50 70.3 (6.3) 781 38 67.0 (6.3)

  Breast CA study - cases 145 0 69.0 (6.8) 292 0 64.5 (7.5)

  Breast CA study - controls 144 0 67.3 (7.0) 288 0 62.5 (7.7)

  Prostate CA study - cases 404 100 71.0 (6.6) 453 100 69.0 (7.0)

  Prostate CA study - controls 363 100 71.7 (6.8) 418 100 67.7 (7.6)

  T2D 2.5M study - cases 760 46 69.5 (6.5) 638 44 66.6 (6.8)

  T2D 2.5M study - controls 460 50 70.9 (6.6) 1026 40 67.1 (6.8)

  Hecht Smokers 132 62 66.6 (6.4) 240 49 64.5 (6.1)

 WHI (MEGA) 397 0 62.5 (6.8) 4229 0 60.1 (6.7)

 eMERGE 938 44.7 61.0 (12.7) 3031 30.6 49.4 (17.0)

TOTAL Stage 2 cohorts 5739 20583

OVERALL Stage 1+2 TOTALS 12117 44853

PAGE: Population Architecture through Genomics and Environment Study (funded by the National Institutes of Health 
- NHGRI). ARIC: Atherosclerosis Risk in Communities Study (funded by the National institutes of Health - NHLBI). 
MEC: Multiethnic Study (funded by the National Cancer Institute). WHI: Women’s Health Initiative study (funded by 
the National institutes of Health - NHLBI). MEGA (WHI): PAGE substudy in the WHI genotyped with the Illumina Multi-
Ethnic Genotyping Array. SHARE: SNP Health Association Resource substudy in WHI genotyped using Affymetrix 6.0 
array. GARNET: Genomics and Randomized Trials Network substudy in WHI genotyped using Illumina HumanOmni1-
Quad v1–0 B. BioVU: Vanderbilt’s biorepository of DNA extracted from discarded blood collected during routine clinical 
testing and linked to de-identified medical records in the Synthetic Derivative. CHS: Cardiovascular Health Study (funded 
by the National institutes of Health - NHLBI). Health ABC: The Health, Aging and Body Composition Study (funded by 
the National institutes of Health - NIA). HANDLS: The Healthy Aging in Neighborhoods of Diversity across the Life Span 
study (funded by the National Institutes of Health - NIA). JHS: The Jackson Heart Study (funded by the National Institutes 
of Health - NHLBI and NIMHD). eMERGE: The electronics Medical records and Genomics consortium (funded by the 
National Institutes of Health - NHGRI). Penn Biobank: The Penn Medicine BioBank (Institute for Translational Medicine 
and Therapeutics at the University of Pennsylvania). UK-Biobank: The UK Biobank Study. BioME: The BioME Biobank 
Program (The Institute for Personalized Medicine at the Icahn School of Medicine at Mount Sinai).
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Extended Data Table 4

Loci reaching genome wide significance after two-stage meta-analysis in Blacks and 

Hispanics.

Genomic 
locus

locus rsID chr pos EA NEA EAF OR P SNP 
annotation

Distance 
from 

nearest 
gene

Gene 
symbol

Blacks

1 3p25.1 rs76838170 3 14959209 T C 0.92 0.9 3.32E-08 intronic 0 FGD5

2 6q26.3 rs575962368 6 1.61E+08 T G 0.02 1.28 4.28E-11 intergenic 13591 LPA

3 8p21.3 rs13702 8 19824492 T C 0.46 1.06 4.60E-09 UTR3 0 LPL

3 8p21.3 rs58625286 8 19894289 C G 0.07 0.87 1.50E-10 intergenic 71175 LPL

8p22* rs7012408 8 13624936 A G 0.85 0.89 3.93E-09 intergenic 24646 DLC1, 
SGCZ

4 13q34 rs9515203 13 1.11E+08 T C 0.72 1.06 4.81 
E-08

intronic 0 COL4A1

5 19q13.3 rs72654473 19 45414399 A C 0.17 0.93 1.73E-08 intergenic 1750 APOE

Hispanics

6 15q25 rs7164479 15 79123054 T C 0.53 1.11 1.44E-10 intergenic 19282 ADAMTS7

7 11q23.3 rs9326246 11 1.17E+08 C G 0.16 1.13 4.84E-08 intergenic 100000 APOA5

8 6q24.1 rs9349379 6 12903957 A G 0.66 0.90 1.72E-09 intronic 0 PHACTR1

*
The 8p22 locus among Blacks was carefully examined for the possibility of a false positive association as was not even 

a hint of a genetic signal in this region among Whites despite more than adequate power due to much larger sample 
size and a substantially higher frequency of the lead SNPs. There was no obvious link between the signal and the 
status of the inversion in the immediately adjacent 8p23 region which we called using principal component analyses of 
SNPs within the inversion site. The region reached genome wide significance in MVP Blacks based solely on imputed 
genotypes. We determined that neighboring genotypes in the region were not reliably called due to an unrecognized African 
specific deletion in the region subsequently reported by the gnoMAD consortium. The deletion also affected the reliability 
of the imputed SNPs. Even after recalling the genotypes in this region taking into consideration the presence of the 
deletion, no genotyped SNPs were genome wide significant for CAD. P values are derived from inverse variance weighted 
meta-analysis using METAL and are two-sided.

Extended Data Table 5

Derivation of the VA Clinical Assessment Reporting and Tracking (CART) sub cohort for 

genome wide association study.

Severity of 
disease

Normal Non-
Obstructive

1V 
Obstructive

2 V 
Obstructive

3V/LM 
Obstructive

Missing Other Total

all procedures 9804 17806 18800 12578 17053 2101 475 78617

remove 
“Missing” or 
“Other”

9804 17806 18800 12578 17053 0 0 76041

restrict to 
procedures 
from 
individuals 
with genetic 
data and 

7366 13449 14385 9642 13138 0 0 57980
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Severity of 
disease

Normal Non-
Obstructive

1V 
Obstructive

2 V 
Obstructive

3V/LM 
Obstructive

Missing Other Total

age/sex 
covariates

 subjects with 
1 proc only

5806 8413 7466 4671 6089 0 0 32445

 subjects with 
>1 proc but 
severity same

  all 
Normal*

281 0 0 0 0 0 0 281

  all not 
normal**

0 659 859 497 1329 0 0 3344

 subjects with 
>1 proc but 
severity NOT 
same

  single 
instance of 
most severe 
disease

0 344 1101 1488 2172 0 0 5105

  >1 
instance of 
most severe 
disease***

0 46 251 292 708 0 0 1297

# of individuals 
in each 
category of 
severity after 
assignment to 1 
category

6087 9462 9677 6948 10298 0 0 42472

remaining 
subjects after 
removal of 
subjects with a 
history of 
cardiac 
transplant, age 
discrepancy, or 
undefined 
HARE 
assessment****

5957 9304 9534 6819 10124 0 0 41738

  HARE 
assignment 
white/European

3704 6767 7496 5470 8221 0 0 31658

  HARE 
assignment 
black/African 
American

1867 1952 1454 908 1132 0 0 7313

  HARE 
assignment 
Latino/Hispanic

359 551 534 399 693 0 0 2536

  HARE 
assignment 
East/South 
Asian

27 34 50 42 78 0 0 231

FINAL cohort 
for GWAS after 
removing Asian 
HARE category 
due to small 
numbers

5930 9270 9484 6777 10046 0 0 41507
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1V = 1 vessel >50% obstruction, 2V = 2 vessels with >50% obstruction, 3V/LM = 3 vessels and/or left main disease >50% 
obstruction.
*
age assigned to last procedure.

**
age assigned to earliest procedure.

***
age assigned to the earliest procedure showing the most severe disease.

****
n with history of a cardiac transplant = 137, major age discrepancy between CART and CDW derived age = 2, and 

undefined HARE assignment = 595.

Extended Data Table 6

Age and sex characteristics of VA Clinical Assessment Reporting and Tracking (CART) 

subcohort by Harmonizing Genetic Ancestry and Self-identified Race/Ethnicity algorithm 

(HARE) assigned populations and severity of disease.

Severity of 
disease

Normal Non-Obstructive 1V Obstructive 2V Obstructive 3V/LM 
Obstructive

Count 
(%)

age 
(SD)

Count 
(%)

age 
(SD)

Count 
(%)

age 
(SD)

Count 
(%)

age 
(SD)

Count 
(%)

age 
(SD)

HARE 
Whites

  Males 3335 
(90)

62 
(10)

6503 
(96.1)

66.1 
(8.7)

7331 
(97.8)

66.6 
(8.6)

5390 
(98.5)

67.3 
(8.4)

8149 
(99.1)

67.9 
(8.4)

Females
369 
(10)

57.7 
(9.6)

264 
(3.9)

62.5 
(10)

165 
(2.2)

63.4 
(9.2)

80 (1.5) 63.9 
(10.2)

72 (0.9) 67.9 
(11)

HARE 
Blacks

  Males 1637 
(87.7)

59.1 
(9.2)

1834 
(94)

62.3 
(8.9)

1409 
(96.9)

63.3 
(8.8)

880 
(96.9)

63.3 
(8.5)

1113 
(98.3)

64.3 
(8.5)

Females
230 

(12.3)
54.5 
(8.2)

118 (6) 56.6 
(7.6)

45 (3.1) 56.1 
(8)

28 (3.1) 57.9 
(8.4)

19 (1.7) 63.1 
(12)

HARE 
Hispanics

  Males 329 
(91.6)

58.7 
(10.9)

540 
(98)

63.2 
(8.8)

528 
(98.9)

64.2 
(9.3)

397 
(99.5)

64.6 
(9)

687 
(99.1)

65.9 
(8.2)

Females
30 

(8.4)
52.7 
(8.2)

11 (2) 60.7 
(9.9)

6 (1.1) 54.5 
(5.7)

2 (0.5) 66.8 
(1.7)

6 (0.9) 63.4 
(6.1)

HARE 
Asians*

  Males 27 
(100)

54.6 
(11.7)

34 
(100)

62.7 
(10.2)

48 (96) 61.4 
(8.6)

42 
(100)

64.6 
(9)

77 
(98.7)

69.3 
(10.3)

Females
0(0) -- 0(0) -- 2(4) 61.8 

(5.2)
0(0) -- 1 (1.3) --

*
did not proceed with genetic association in this group because of low numbers.
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Extended Data Table 7

Odds ratio of CAD per standard deviation increase of the externally derived LDPred and 

metaGRS scores in the MVP White, Black, and Hispanic cohorts followed by relative 

efficiency estimates based on ratios of betas.

Prevalent disease 
(at enrollment) + 
Incident (post-

enrollment)

Incident (post 
enrollment)

Estimated 
Relative 

efficiency**** 
compared to

Cohort Race/
Ethnic

Outcome*** PRS non-
Cases

Cases OR 
(95%CI)

Cases OR 
(95%CI)

UK 
Biobank

MVP 
Whites

UK 
Biobank*

white AMI / 
Revasc

LDPred 116317 3963 1.72 
(1.67–
1.78)

not 
reported

not 
reported

MVP white AMI / 
Revasc

LDPred 197091 28512 1.51 
(1.49–
1.53)

9320 1.46 
(1.43–
1.49)

0.76 1

MVP Hispanic AMI / 
Revasc

LDPred 24263 2216 1.52 
(1.45–
1.59)

725 1.49 
(1.38–
1.61)

0.77 1.01

MVP Afr. 
Amer.

AMI / 
Revasc

LDPred 59482 5358 1.17 
(1.14–
1.21)

2121 1.15 (1.1–
1.2)

0.29 0.39

MVP white All CAD LDPred 197091 95151 1.36 
(1.35–
1.37)

18831 1.26 
(1.24–
1.28)

n/a n/a

MVP Hispanic All CAD LDPred 24263 6378 1.32 
(1.28–
1.36)

1451 1.22 
(1.15–
1.29)

n/a n/a

MVP Afr. 
Amer.

All CAD LDPred 59482 17202 1.1 
(1.08–
1.12)

4454 1.1 (1.07–
1.14)

n/a n/a

UK 
Biobank**

white AMI / 
Revasc

metagrs 460387 22242 1.71 
(1.68–
1.73)

12513 1.58 
(1.55–
1.61)

MVP white AMI / 
Revasc

metagrs 197091 28512 1.54 
(1.52–
1.56)

9320 1.47(1.44–
1.5)

0.8 1

MVP Hispanic AMI / 
Revasc

metagrs 24263 2216 1.62 
(1.54–
1.71)

725 1.5 (1.38–
1.63)

0.9 1.13

MVP Afr. 
Amer.

AMI / 
Revasc

metagrs 59482 5358 1.2 
(1.17–
1.24)

2121 1.17 
(1.12–
1.22)

0.35 0.43

MVP white All CAD metagrs 197091 95151 1.38 
(1.36–
1.39)

18831 1.27 
(1.25–
1.29)

n/a n/a

MVP Hispanic All CAD metagrs 24263 6378 1.39 
(1.34–
1.43)

1451 1.24 
(1.17–
1.32)

n/a n/a

MVP Afr. 
Amer.

All CAD metagrs 59482 17202 1.12 
(1.1–
1.14)

4454 1.1 (1.07–
1.14)

n/a n/a

*
LDPred score for CAD as previously described22

**
metaGRS for CAD as previously described23
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***
AMI / Revasc: subset of cases with evidence of discharge diagnosis of acute myocardial infarction or revascularization 

procedure in the EHR. All CAD: further include subjects with CAD codes that are not AMI or revascularization
****

Relative efficiency: ratio of log ORs (beta coefficients) between MVP and UK Biobank. n/a: not applicable as this 
broader phenotype not reported in the LDpred and metaGRS reports. glm function in R for logistic regression covariates: 
age, sex, genotyping batch and top 10 genotype-based PCs. p-value corresponding to the z ratio based on a Standard 
Normal reference distribution, 2-sided.
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Fig. 1: Design of multi-population genome wide association study (GWAS) of coronary artery 
disease (CAD) and estimates of heritability (h2) of CAD using GREML-LDMS-I for four 
populations
a, Study design. GWAS was first performed stratified by population group. GWAS for 

Whites was then meta-analyzed with 2 existing GWAS for initial discovery among Whites. 

The GWAS for MVP Hispanics and MVP Blacks as well as the Biobank Japan GWAS 

of CAD was further incorporated into a single multi-population meta-analysis. Two-stage 

joint meta-analysis of the most promising SNPs was performed for the Hispanics and 

Blacks with multiple external cohorts for population-specific discovery. b-d, Heritability 
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(h2) analyses for CAD in four major racial groups using GREML-LDMS-I. b. Principal 

component analysis of MVP participants combined with 1000 genomes was first performed 

to identify a random subset of 19,395 Hispanics with the highest proportion of Indigenous 

American ancestry (pink). A random subset of the 19,392 least admixed Whites (dark green) 

and the 19,392 least admixed Blacks (dark blue), respectively, were then matched 1:1 on 

case-control status, age of first EHR evidence of CAD, type of CAD presentation, and 

age of controls to the Hispanics. Similar matching was performed for 18,747 participants 

from the Biobank Japan study. c, Observed narrow-sense h2 within each cohort defined in 

b using a multi-component model, GREML-LDMS-I, implemented in GCTA, with age, sex, 

and a genetic relatedness matrix as covariates. h2 estimate and respective standard error 

(SE) of that estimate is shown for each of 24 bins of imputed SNPs defined by linkage 

disequilibrium score quartiles and six minor allele frequency thresholds (top panel) with the 

corresponding absolute number of SNPs contributing to this h2 shown on the bottom panel. 

Total h2 is calculated by summing 24 estimates with SE for this estimate calculated by delta 

method. d, h2 on the liability scale for each population in c as a function of a range of 

presumed population prevalence of CAD. Error bars denote +/− one SE around each point 

estimate.
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Fig. 2: Population-specific GWAS and multi-population meta-analysis
a, Circos plot indicating the −log10(P) for association with CAD for population-specific and 

multi-population GWAS meta-analyses. See Figure 1a for sample sizes. P values are derived 

from inverse variance weighted meta-analysis using METAL or GWAMA and are two-sided. 

The inner track plots the 2-stage meta-analysis association results for Blacks in red and 

Hispanics (HISP) in green, while the middle track plots the results for the meta-analysis 

of Whites in black and the multi-population metanalysis further incorporating the GWAS 

of MVP Blacks, MVP Hispanics, and of Biobank Japan in blue. The red line indicates 

genome-wide significance (GWS) (P = 5.0 × 10−8). The outer track lists the nearest mapped 
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gene to the lead SNPs reaching GWS in each of these four meta-analyses including five loci 

in Blacks (red font), three loci in Hispanics (green font), 33 novel loci among Whites (black 

font), and 62 additional novel loci after the multi-population meta-analysis (blue font). b, 
Example of X-ray image from an angiogram of the right coronary artery used to estimate 

the burden of coronary atherosclerosis. The image shows 2 high-grade obstructions (arrows) 

as contrast agent is injected into the blood vessel (Adobe Stock FILE #: 413211903). 

Manhattan plot (right) of multi-population meta-analysis of GWAS (n=41,507) for burden 

of coronary atherosclerosis as estimated by the number of arteries with obstructions >50% 

on an angiogram. P values are derived from inverse variance weighted meta-analysis using 

METAL and are two-sided.
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Fig. 3: Local ancestry and haplotype analyses at the 9p21 susceptibility locus for CAD in the 
Million Veteran Program
a-c, Black (n=17,247 cases / 60,578 controls) and Hispanic (n=6,388 / 24,479) MVP 

participants were stratified into groups based on the degree of African ancestry at the 9p21 

locus for CAD as determined by RFMix. Whites (n=11,170 / 39,706) were analyzed as a 

single non-admixed group. The three subgroups among Blacks formed includes subjects 

with a high probability of having inherited two African (Black_AFR+/+, n=11,173 / 39,706) 

derived chromosomes in the 9p21 region, one African and one European (Black_AFR+/−, 

n=5,136 / 17,451), or two European chromosomes (Black_AFR−/−, n=654 / n=2,101). The 
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two subgroups among Hispanics included those with high probability of having either 1 or 

2 African chromosomes (Hisp_AFR+/−|+/+, n=985 / 3,943) vs. those without any African 

ancestry in this region (Hisp_AFR−/−, n=5,298 / 20,556). Among SNPs in the high-risk 

region of 9p21 that reached genome wide significance among Whites, six SNPs with a 

minor allele frequency >10% in Black_AFR+/+ were used to infer haplotypes in the region. 

Each column along the x-axis represents a haplotype, named by the alleles of the six 

defining SNPs. a, frequency of 17 observed haplotypes overall in each population and 

by subgroup of Blacks and Hispanics. b-c, odds ratio (OR) of CAD and −log10(p-value) 

obtained through a haplotype trend regression analysis where AACATT is the reference 

haplotype in b and AGTTCA is the reference haplotype in c.
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Fig. 4: Pleiotropic assessment of 95 novel loci through extended phenome wide association of lead 
SNPs
Network plot of genotype-phenotype associations reaching significance at FDR<0.05 among 

194,022 White participants in MVP without CAD for the lead SNPs in the 95 novel 

loci. Nodes are labelled either with the mapped gene for a lead SNP (purple font) or a 

phenotype tested in the PheWAS (black font). To highlight most pleiotropic SNPs and 

facilitate interpretation, the plot is restricted to lead SNPs associated with at least three 

distinct phenotypes. Distinct colors of nodes and edges represent a group of genotypes and 

phenotypes in the same dominant network. The thickness of the edges is correlated with the 

strength of the SNP-phenotype association (z-score). The size of the labels is dictated by the 

number of connections to phenotypes or genes and the strength of association. Network plot 

was created using Yifan Yu proportional and Atlas 2 layout algorithms as implemented in 

Gephi software.
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Fig. 5: Downstream analyses to prioritize systems, pathways, tissues, and cells relevant to CAD
a-c, MAGMA gene-property analyses to test relationship between expressed genes 

in specific cells or tissues and genetic associations (meta-analysis of Whites) as 

implemented in FUMA. The gene-property analysis is based on the regression model, 

Z∼β0+EtβE+AβA+BβB+ϵ where Z is a gene-based Z-score converted from the gene-based 

P-value, B is a matrix of technical confounders, Et is the gene expression value of a testing 

tissue type c and A is the average expression across tissue types in a data set. A one-sided 

test (βE>0) is performed testing the positive relationship between tissue specificity and 

genetic association of genes. Data in a are restricted to three mouse single-cell RNA-seq 
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(sc-RNA) datasets involving a broad range of cell types/organs while data in b are restricted 

to human datasets mostly involving the brain but also the pancreas and blood. Results show 

only independent cell-type associations based on within-dataset conditional analyses ordered 

by p-value across datasets. Data in c shows results for 54 specific tissue from the GTEx 

RNA-seq dataset v8 in order of p-value significance with red bars and font highlighting 

statistically significant tissues after adjusting for multiple testing (horizontal black dashed 

line) while remaining tissues are in blue. d-f, DEPICT following standard algorithm on 

the same GWAS used for MAGMA analyses in a-c. A tissue/cell type expression matrix 

was constructed by averaging gene expression levels of microarray samples with the same 

Medical Subject Heading tissue and cell type annotation. In this matrix, each column 

includes relative and normalized expression values of genes across 209 tissue/cell types. 

Enrichment in a tissue/cell type is then quantified by summing z-scores of the expression 

of genes with variants reaching genome wide significance in our meta-analysis of Whites. 

Z-scores are adjusted for confounding factors using 200 precomputed null GWAS in the 

Diabetes Genetics Initiative (DGI). Type 1 error rates were calculated by replacing null 

GWAS in DGI with simulated GWAS with positive signals but no underlying biological 

basis. DEPICT results are separated into d, cells e, tissues, and f, systems. −log10(p-value) 

for a false discovery rate (FDR) of <0.05 is demarcated by red dashed line while the FDR 

<0.2 threshold is shown in blue. Only cells/tissues reaching an FDR<0.2 are labelled.
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Fig. 6: Testing of externally derived polygenic risk scores and new multi-population scores in the 
Million Veteran Program
a, Performance of four externally derived and previously validated polygenic risk scores 

(PRS) in Whites, Blacks, and Hispanics, respectively, included in the MVP GWAS (see Fig. 

1a for sample sizes of the three cohorts and methods for details on the origins of these 

PRS). Odds ratios and 95% confidence intervals per standard deviation (SD) increase in PRS 

are shown derived from logistic regression. In addition to all cases combined, subgroups 

of incident only cases (after enrollment), severe cases with evidence of either a myocardial 

infarction (AMI) and/or a revascularization (Revasc) procedure, and younger vs older onset 

cases (divided by median age of onset) were tested. b, externally derived PRS were tested 

for burden of coronary atherosclerosis among 25,600 Whites who underwent coronary 

angiography using multinomial logistic regression. Subjects with normal coronaries on 

angiography serve as the reference group and are compred to each of four progressively 

higher burdens of disease including non-obstructive disease (‘Non-obs.’), 1-vessel disease 

(1V), 2-vessel disease (2V), and 3-vessel or left main disease (3V/LM). Odds ratio and 

95% confidence intervals are reported per SD increase in PRS. c, The best performing 

Tcheandjieu et al. Page 53

Nat Med. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



score in a and b, the metaGRS, was tested for association with Phecodes, clinical labs and 

anthropomorphic measures, as well as selected components of the baseline questionnaires 

among up to 164,534 Whites with no EHR evidence of atherosclerosis related complications 

at the end of EHR follow up. P-value are derived from a t-test implemented in the GLM 

and LM functions in R and are two-sided. d, New multi-population PRSs were developed 

using the pruning and thresholding strategy applied to the multi-population meta-analysis. 

These PRSs were tuned on an independent set of prevalent cases and controls in MVP, using 

population-specific tuning. Score performance of each score is shown in an independent set 

of incident cases and controls. Odds ratio and 95% confidence intervals are reported per SD 

increase in PRS and compared to performance of the metaGRS.
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