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rediction and design of
mechanical properties of porous graphene with
a uniform nanopore array†

Anran Wei, a Han Ye, *b Zhenlin Guoc and Jie Xiong *de

Mechanical properties of porous graphene can be effectively tuned by tailoring the nanopore arrangement.

Knowledge of the relationship between the porous structure and overall mechanical properties is thus

essential for the wide potential applications, and the existing challenge is to efficiently predict and design

the mechanical properties of porous graphene due to the diverse nanopore arrangements. In this work,

we report on how the SISSO (Sure Independence Screening and Sparsifying Operator) algorithm can be

applied to build a bridge between the mechanical properties of porous graphene and the uniform

nanopore array. We first construct a database using the strength and work of fracture calculated by

large-scale molecular dynamics simulations. Then the SISSO algorithm is adopted to train a predictive

model and automatically derive the optimal fitting formulae which explicitly describe the nonlinear

structure–property relationships. These expressions not only enable the direct and accurate prediction

of targeted properties, but also serve as a convenient and portable tool for inverse design of the porous

structure. Compared with other forecasting methods including several popular machine learning

algorithms, the SISSO algorithm shows its advantages in both accuracy and convenience.
1. Introduction

Introducing nanopores or nanoholes on the two-dimensional
graphene surface can efficiently control the electrical,1

thermal,2 and mechanical properties3 of graphene. With the
improvement of fabrication technology, several experimental
methods, such as electron-beam-drilling,4 nanoscale lithog-
raphy,5 and chemical synthesis,6 have been developed to
precisely tailor the size and arrangement of nanopores on porous
graphene, so that nanopores can be designed into an array with
customizable geometries.7,8 Porous graphene with a prepared
nanopore array has great potential in diverse applications, such
as eld-effect transistors,7 electrochemical capacitors,9 thermal
rectiers,10 and DNA sequencing technology.11
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As one of the most attractive applications, porous graphene
has been recently highlighted as a promising material for next-
generation ltration systems for seawater desalination12,13 and
gas separation.14,15 For ltration applications, a large pressure
difference is usually applied between both sides of the membrane
to drive the directional motion of molecules. Therefore, porous
graphene is required to be strong and tough enough to survive the
high-pressure environment. It is well known that the mechanical
properties of graphene are degenerated by the introduction of
nanopores,3,16,17 although defect-free graphene has ultrahigh
elastic modulus and tensile strength.17 Understanding the rela-
tionship between the geometries of the nanopore array and the
overall mechanical properties of porous graphene can provide
signicant guidance to the design of porous graphene-based lter
membranes with high performance and durability. Traditionally,
the expressions of the structure–property relationship can be
tted from the experimental or computational results using some
empirical methods and function forms. Although this estimation
method using the tting law is easy to be used in practical
applications, errors are unavoidably induced for some problems
with high nonlinearity as it is difficult to predene an optimal
function form for ttings. A state-of-the-art approach with high
efficiency, reliability, and portability is thus required to nd the
structure–property relationship for this material.

Considering the diversity of the geometries of a nanopore array,
it is very costly to experimentally characterizemechanical properties
for all the possible congurations of porous graphene in the design
space. Thus, it is desired to nd a convenient approach for the
Nanoscale Adv., 2022, 4, 1455–1463 | 1455
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Fig. 1 Framework of the proposed SISSO-assisted approach for the
prediction and design of mechanical properties of porous graphene.

Nanoscale Advances Paper
efficient prediction of mechanical properties of porous graphene
with arbitrary structural designs. All-atom molecular dynamics
(MD) simulation, which tracks interactions of each atom in
a system over time, can calculate the detailed mechanical proper-
ties of graphene-based materials with validated accuracy. Several
studies have explored the effects of pore size, pore density, and
grain boundaries on the elastic properties and fracture behaviors of
porous graphene using the MD simulation method.3,16–18 However,
MD simulation as a computational method is normally resource-
and time-consuming, which is hard to adapt to the demand of
rapid iteration in the design ow. In addition to the forward
prediction, another challenge is how to conduct an efficient reverse
design, i.e. determine the geometries of the nanopore array for
targeted mechanical properties. Recently, Chen et al. proposed
a nano-topology optimizationmethod to design the nanostructures
with atom-by-atom control.19 This method is still based on MD
simulations and integrated with other relatively tedious processes,
restricting its applications on the efficient reverse design of porous
graphene. Theoretical models in fracture mechanics such as Grif-
th theory can describe the tensile strength of materials with
a preexisting aw, e.g., a hole or a notch, as a function of structural
factors, which can directly guide the reverse mechanical design.20

Unfortunately, it is usually difficult to analyze the effect of multiple
pores arranged in an array by using these theoretical models.
Moreover, previous studies found that the classic Griffith theory
partially fails for a pore diameter smaller than 8 Å.3,18

In recent years, the machine learning (ML) method has been
applied to accelerate the design and discovery of materials.21–25 It
is conrmed to be extremely efficient inmaterial design problems
with high complexity compared with traditional experimental and
computational methods. For example, Wan et al. applied ML to
search for porous graphene with optimized thermal conduc-
tivity.26 Ye et al. utilized a deep neural network to predict the
mechanical properties of composites with arbitrary component
distributions.27 Xiong et al. extracted descriptions of the
mechanical properties of steels based on ML.28 Various ML algo-
rithms have been applied to automatically extract the structure–
property relationship. However, to the best of our knowledge, the
popular ML algorithms, such as support vector regression, deci-
sion tree, random forest regression, and convolutional neutral
network, cannot provide explicit expressions for the structure–
property relationship as a clear guidance. In this paper, the SISSO
(Sure Independence Screening and Sparsifying Operator) algo-
rithm proposed by Ouyang et al.29 is used for the prediction and
design of mechanical properties of porous graphene with a peri-
odic pore array. It is one of the ML algorithms with the same
processes of data training and testing as other popular ML
approaches. It can automatically derive the tting formulae
without predened function forms for the structure–property
relationship, which can break through the restrictions above.

2. Database construction
2.1. Atomic model generation for porous graphene with
a uniform nanopore array

In this paper, we focus on porous graphene with circular
nanopores that are uniformly arranged into a square lattice
1456 | Nanoscale Adv., 2022, 4, 1455–1463
pattern, as shown in Fig. 1. The geometry of such a nanopore
array is determined by two independent structural variables,
d and l. d is the pore diameter, and l is the ratio between d and
lattice period a, as depicted in Fig. 1. We here choose l as one
feature since it can be regarded as the measurement of porosity
that is more frequently used in porous material systems. For
pores arranged in a uniform square array, the porosity can be
represented by l as pl2/4. Moreover, the ratio between the pore
radius and strip width is adopted in the expression of the
Griffith model developed for the fracture strength of a strip with
a central hole.20 Using the geometry ratio l as a variable of the
SISSO-derived formula can maintain the formal similarity to
this classic model. Initially, atomic models of pristine mono-
layer graphene with a xed size of 20 nm � 20 nm are con-
structed with periodic boundary conditions applied, which are
as large as possible to satisfy the requirement of a representa-
tive volume element (RVE) for innite materials. Then pores
with diameter d are introduced by calculating the coordinates of
the pore centers and then removing the carbon atoms around
the pore centers within circular domains of the diameter d. The
connectivity of the remaining domains is guaranteed and no
crack is allowed in the initial congurations. For the n � n pore
array, the lattice number n can be calculated by using L/a¼ Ll/d,
where L is the length of the square simulation area. We make
grids on the lattice number and porosity instead of d and l to
generate a database for the convenience of atomic model
construction due to the xed width of atomic models. Then
corresponding values of d and l can be derived from the above
relationships. The intervals of lattice number and porosity in
the sampling grids are 1 and 0.05, respectively. The lattice
number and porosity are distributed between [1, 10] and [0.05,
0.5], respectively. Thus, d varies from �0.5 nm to �16 nm and l

varies from �0.25 to �0.8 in the database.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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2.2. Calculations of mechanical properties by molecular
dynamics simulations

MD simulations are performed via the Large-scale Atomic/
Molecular Massively Parallel Simulator (LAMMPS)30 to calculate
the mechanical properties of porous graphene samples generated
above. The interactions between carbon atoms are described by
the adaptive intermolecular reactive empirical bond order (AIR-
EBO) potential,31 which has been widely used and conrmed in
graphene-based material systems.32–34 The original parameter of
the carbon–carbon cutoff distance in the potential is modied to
be 2.0 Å to avoid a known non-physical post-hardening phenom-
enon.35,36 The timestep is set at 0.5 fs during the overall simulation.
The graphene sheet is initially aligned in an atomic plane. All the
atomic models are rst optimized by using the conjugate gradient
minimization algorithm, followed by the equilibrium process
under an NPT ensemble at 300 K and 0 atm for 100 ps. The
uniaxial elongation is performed along the armchair direction of
graphene. During the uniaxial tension process, the simulation box
deforms along the tensile direction with a given strain rate of 10�4

ps�1. Meanwhile, the simulation box shows uctuating sizes
perpendicular to the tensile direction according to the barostat (0
atm), which releases stress to simulate the typical uniaxial tension
process. All atomic coordinates are remapped with the deforma-
tion of the simulation cell as the periodic boundary condition. No
restrictions are applied to themovement of atoms in any direction.
The overall temperature of the simulation systems remains at 300
K during the uniaxial stretch. The atomic-level tensile stress is
calculated via the virial theorem and averaged over the entire
simulation cell. In the stress calculation, the thickness of gra-
phene is assumed to be 3.4 Å based on the literature.37

Stress–strain (s–3) curves are obtained with increasing uniaxial
tension until the porous graphene samples are destroyed and
completely lose their load-bearing capacities, where s and 3 are
the normal stress and engineering strain (i.e. the ratio of the
elongation to the initial length) along the tensile direction.
Strength and work of fracture are chosen as the targeted proper-
ties in this study. As shown in Fig. 1, the strength ss is taken from
the peak value of the s–3 curve, and the work of fractureWc can be
evaluated by using the area under the s–3 curve as Wc ¼

Ð 3f
0 sd3.

Here, 3f is the ultimate fracture strain where porous graphene is
destroyed by tension. The higher strength and work of fracture
indicate stronger and tougher porous graphene, which is desir-
able in many applications. Mechanical properties of pristine
graphene without defects and holes are rst examined. The
calculated strength and ultimate strain along the armchair
direction are 94 GPa and 0.12, respectively, showing good agree-
ment with reported MD results.38 Besides, the simulation results
agree well with the reported experimental values of strength of
60–99 GPa39,40 and Young's modulus of �1 TPa,39 respectively.
This indicates that our model settings and the potential le
adopted in MD simulations are reliable for the following
mechanical simulations of porous graphene.
2.3. Database structure

Aer atomic model generations and MD simulations, we
construct a database containing 95 data samples for the SISSO
© 2022 The Author(s). Published by the Royal Society of Chemistry
model training, limited by our computing resource. Each data
sample comprises two independent variables, d and l, as well as
two associated targeted properties, the strength and work of
fracture of porous graphene. The two variables are also termed
as two features in ML.
3. SISSO algorithm and
implementation
3.1. Multi-task SISSO algorithm

Multi-task SISSO algorithm29 is employed to efficiently provide the
appropriate tting formulae without predened function forms
for the nonlinear structure–property relationship. Using these
formulae obtained, prediction and inverse design tasks can be
easily achieved. The formulae automatically derived by the SISSO
model are highly portable, showing great convenience in practical
engineering applications. Here we focus on the effect of the
structural geometries of the square pore array on the mechanical
properties of porous graphene, including the two independent
features d and l. More variables can be generated by the combi-
nations of d and l and added into the SISSO model. For
conventional ML analysis, we should perform the feature (vari-
able) selection before model training when too many variables
exist to avoid overtting. In fact, here we manually screen the two
independent variables from a geometrical view, which is equiva-
lent to the feature selection process. Many previous studies have
veried the applicability of SISSO algorithm for diverse problems
with multiple variables.29,41 More variables that determine the
mechanical properties, such as the size of graphene sheets42 and
temperature,43 could be considered in future studies.

The SISSO algorithm combines sure independence
screening (SIS) with the sparsifying operator (SO) to select
a subspace of descriptors with the largest linear correlation with
the targeted property. SIS constructs descriptors by iteratively
applying a set of algebraic operators Q on the two primary
features (termed J0), and then the SO evaluates all possible
combinations of SIS-constructed descriptors and yields the
optimal solution relying on the L0 regularization, which penal-
izes the number of nonzero coefficients. Multi-task SISSO
algorithm can search for descriptors that predict multiple
targets. Detailed parameter settings of these algorithms are
discussed in the next section.
3.2. k-fold cross-validation

For the general implementation of ML, a dataset should be split
into two groups, a training set to t the model and a testing set
to evaluate the model, which avoids overtting. However, the
train-test-split method is not suitable for the small database in
this study that only contains 95 samples. The material data that
can be obtained in the actual problems are commonly limited
(only a hundred or even dozens). Thus, it is a big issue to nd
a fundamental interplay and establish a predictive model using
a small database viaML approaches. The k-fold cross-validation
test is thus adopted to avoid overtting for the following
implementation of SISSO algorithm.
Nanoscale Adv., 2022, 4, 1455–1463 | 1457



Fig. 2 Schematic of the k-fold cross-validation test.
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The idea of the k-fold cross-validation test is illustrated in
Fig. 2. A small dataset is randomly and evenly divided into k
groups of samples, termed folds. (k� 1) folds are selected as the
training set to train a SISSO model, and the one fold remaining
serves as the testing set to evaluate the trained model. This
process will be repeated k times and each time a different fold is
selected as the testing set. The cross-validation performance is
measured by nally averaging the R2 for these k-times trained
models. R2 is expressed as

R2 ¼ 1�
Pn

i¼1

ðyi � ŷiÞ2

Pn

i¼1

ðyi � yÞ2
(1)

where yi and ŷi are the real value and predicted result of the
sample i, respectively, and �y is the average of all the real values.
A higher R2 means better performance, and the R2 for a perfect
model is equal to 1. By using this method, each data point in the
small database can be fully utilized for model training andmore
information can be gained from the limited data, which
enhances the performance of the trained SISSO model in our
study. Such processing has widely been conrmed to achieve
effective and accurate MLmodels with a small database (dozens
to hundreds of data points) in many previous studies.44,45 10-
fold cross-validation suggested by the empirical evidence is
utilized here. Since strength and work of fracture are considered
in this work, the averaged R2 of two targets is used for
comprehensive performance evaluation of SISSO model in the
following discussion.
4. Results and discussion
4.1. Atomic simulation results

The strength and work of fracture obtained from MD simula-
tions for all porous graphene samples are shown in Fig. 3. It is
observed that introducing the pores causes the degeneration of
strength when compared with the value of pristine graphene as
revealed by many experimental studies.46 Overall, the strength
and work of fracture increase with decreasing d and l, but show
more variability at a lower d and l. For example, the strength
varies over a wide range from �10 GPa to �53 GPa with the
variation as high as �430% at d ¼ �2 nm. The largest and
1458 | Nanoscale Adv., 2022, 4, 1455–1463
smallest work of fracture are �0.9 GPa and �2.8 GPa at l ¼
�0.25, respectively, showing a signicant variation of �211%.
Decreasing d or l individually may not always enhance the
mechanical performance of porous graphene. This indicates
that the mechanical properties of porous graphene strongly
depend on the integrated geometries of the nanopore array,
motivating the present study to explore a convenient and
accurate tool for the prediction and description of the struc-
ture–property relationship.
4.2. Performance of SISSO model for predictions of
mechanical properties

The SISSO algorithm29 is introduced to automatically generate
the optimal tting formulae which describe the relationship
between the geometries of the nanopore array and overall
mechanical properties. In this work, we applied

Q ¼ (+, �, �, O, exp, ln, O, �1, 2, 3) (2)

onJ0 one, two three, and four times to generate four descriptor
spaces J1, J2, J3 and J4, respectively. The size of the
descriptor space grows rapidly with the number of times of Q
application. Only 20 descriptors have been constructed by SIS in
J1, while around 645 million descriptors exist in J4. Besides,
SO searches for the U-tuples of descriptors in each space
maximize the value of R2. The values ofU are set as 1, 2, 3, and 4
for examinations in this work.

In general, a simpler model with smallerJ andU but greater
predictive power is preferred to avoid overtting, and it is easier
to use in practical applications. Based on comparisons between
the performance under differentJ and U shown in Fig. 4a,J¼
1 and U ¼ 4 are suggested to be sufficient for prediction accu-
racy, which are taken for the generation of tting formulae in
this study. The 10-fold cross-validation reveals that the best
descriptors for predicting strength and work of fracture are l,
ffiffiffi
l

p
, d�1, and l/d. The nal-obtained optimal tting formulae

follow the forms as

ss ¼ p1lþ p2
ffiffiffi
l

p
þ p3 þ p4l

d
þ p5 (3)

Wc ¼ q1lþ q2
ffiffiffi
l

p
þ q3 þ q4l

d
þ q5 (4)

The tting parameters pi and qi (i¼ 1,., 5) are listed in Table
1. To balance the dimensions between both the sides, these
tting parameters in eqn (3) and (4) should have units. Although
the physical meanings of these units of the tting parameters
remain unclear, the tting formulae obtained by the SISSO
model can be still of great signicance to the direct predictions of
targeted properties for practical engineering applications.

The strength and work of fracture predicted from eqn (3) and
(4) are plotted against theMD-calculated results in Fig. 4b and c,
respectively, which are uniformly distributed within a narrow
range near the diagonal in a dashed line representing the
perfect prediction. The R2 for the predictions of strength and
work of fracture are 0.9695 and 0.8236, respectively. The average
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 3 Strength (ss) and work of fracture (Wc) calculated by molecular dynamics (MD) simulations versus (a) d and (b) l. Here, d and l describe the
geometry of porous graphene with a square pore array and circular pores. d is the pore diameter and l is the ratio between pore diameter and
lattice period.
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R2 of the SISSO model is 0.8966. Hair et al. proposed a rule of
thumb that R2 values of 0.75, 0.50 and 0.25 are described as
substantial, moderate and weak, respectively.47 Thus, the SISSO
model with R2 > 0.8 here can guarantee the performance inmost
application scenarios. It is believed that these equations
generated from the SISSO model provide accurate descriptions
of the nonlinear structure–property relationship for the design
of porous graphene.
Fig. 4 (a) Performance of the SISSOmodel with different values ofJ and
the fitting formulae derived from the SISSO model against real values ca

© 2022 The Author(s). Published by the Royal Society of Chemistry
We depict the function surfaces of eqn (3) and (4) in Fig. 5a
and b, respectively, which agree well with the distributions of
the original data points. It is observed that the strength and
work of fracture are not monotonic functions of d or l, and the
effects of d and l are coupled due to the existence of l/d in their
expressions. Since the parameters p3, p4 and q3, q4 have opposite
signs, ss and Wc decrease with increasing d at a small l, while
they show inverse evolutions at a large l. At l z 0.48 and l z
U. Predictions of (b) strength (ss) and (c) work of fracture (Wc) by using
lculated by molecular dynamics (MD) simulations.

Nanoscale Adv., 2022, 4, 1455–1463 | 1459



Table 1 Parameters of fitting formulae generated by the SISSO model

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5

pi �226.1 GPa 263.3 GPa 20.86 GPa nm �43.50 GPa nm �37.61 GPa
qi �12.82 GPa 17.36 GPa 1.585 GPa nm �2.477 GPa nm �4.679 GPa

Fig. 5 Function surfaces of (a) strength (ss) and (b) work of fracture (Wc) generated from the SISSO model. The distributions of the original data
points are also plotted. Here, d is the pore diameter and l is the ratio between the pore diameter and pore period.

Nanoscale Advances Paper
0.64, the d-involved terms are eliminated from the expressions
of ss and Wc, respectively. For these cases, ss and Wc are
insensitive to the varying pore size. In addition, ss and Wc

increase with l at a small d, while they show optimized values
within the l ranging from 0 to 1 at a large d. It can be clearly
seen from Fig. 5 that ss and Wc show their peaks at the regions
with small d and l, while roughly exhibiting decreasing
tendencies with d and l in general. This phenomenon revealed
by the two formulae is reasonable since many studies have
veried that more pores/defects induced in graphene would
cause the deterioration of mechanical properties.3,46
Fig. 6 (a) Flow chart of the prediction of targeted properties and
inverse design of the array structure using the SISSO algorithm. (b and
c). Design parameters of the nanopore array obtained by the SISSO
model and the validation results calculated by molecular dynamics
(MD) simulations for targets ss ¼ 25 GPa and Wc ¼ 1 GPa (red lines),
respectively.
4.3. Applications of SISSO model for the inverse design of
mechanical properties

As long as the tting formulae are derived, inverse structural
design of the nanopore array could be convenient. Eqn (3) and (4)
describe the mechanical properties as the functions of geome-
tries of pore arrays, which can also help us to inversely nd the
specied geometries for the given targeted properties. By using
numerical methods, the solutions of l and d can be easily ob-
tained from the function surfaces of ss and Wc plotted in Fig. 5.
The ow chart of the inverse design is plotted in Fig. 6a. For
example, take ss ¼ 25 GPa or Wc ¼ 1 GPa as the targeted
mechanical properties. There exist multiple combinations of
d and l in the function surfaces that can satisfy the design
objectives. We choose three groups of geometrical parameters of
the pore array for each target. Then corresponding atomic
models are constructed and MD simulations are conducted to
verify the accuracy of the design parameters obtained. Fig. 6b
and c exhibit the detailed structural features designed for the
targets and the MD-calculated results for validations. Obviously,
all the porous graphene samples with pore arrays designed by the
SISSO model achieve the targeted ss and Wc. Slight errors are
1460 | Nanoscale Adv., 2022, 4, 1455–1463
observed, which can be accepted since a perfect design is almost
impossible in practical situations. This indicates the success of
inverse design using the tting formulae derived by the SISSO
model. Compared with some ML approaches for inverse design,
such as adaptive learning,21 convolutional neural network,25 and
backpropagation,23 the tting formulae generated by the SISSO
model possess tremendous advantages in portability and effi-
ciency, without limitations of the working environment and
computing resources.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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4.4. Comparison between SISSO algorithm and other
forecasting methods

Furthermore, we chose several other typical forecasting methods
available in the python library scikit-learn48 to compare with the
SISSO algorithm used in this study to examine the predictive
performance (see the ESI† for detailed settings and results of
these methods used for comparison).

Linear regression (LR),49 which is one of the most basic and
well-understood methods to build a relationship between
different quantities, is rst employed to t linear models based
on the least squared approximation. Fig. S1a and b† plot the
predicted results of LR models in all test sets against the MD-
calculated values of strength and work of fracture, respec-
tively. It is found that the linear models cannot predict targeted
properties with d and l well. The averaged R2 is 0.7294, in which
R2 ¼ 0.8974 for strength and R2 ¼ 0.5613 for work of fracture.
The performance of LR is much worse than that of SISSO
algorithm. In general, strong and tough porous graphene
materials are needed for many applications, while the proposed
linear models perform badly especially in predicting high
strength and high work-of-fracture, as observed from the scat-
tered data points in Fig. S1.† This also implies the nonlinear
nature of the structure–property relationship studied in this
work.

We further introduced four popular ML algorithms, support
vector regression with the linear function (SVR_lin) and radial
basis function (SVR_rbf), decision tree (DT), as well as random
forest regression (RF), to construct more powerful predictive
models. Fig. 7 shows the summary of averaged R2 for all the ML
algorithms given above and the SISSO model. The value of
averaged R2 of SISSO algorithm (0.8966) exceeds those of
SVR_lin (0.7162), DT (0.8385) and RF (0.8771), and it is slightly
behind that of SVR_rbf (0.8980). The feature importance of two
fed features can be given by the RF model. As shown in Fig. S4,†
the importance of l is higher than d in RF. Applying the SISSO
algorithm, we know from Fig. 5 that the mechanical properties
Fig. 7 Comparison between the averaged R2 of SISSO algorithm used
in this study and other forecasting methods, including support vector
regression with the linear function (SVR_lin) and radial basis function
(SVR_rbf), decision tree (DT), random forest regression (RF) as well as
linear regression (LR).

© 2022 The Author(s). Published by the Royal Society of Chemistry
are more sensitive to l than d in general, since varying l brings
larger uctuations in ss and Wc. Such contrast becomes more
signicant when d is large. The different feature importance of l
compared to d obtained from the SISSO model is similar to that
obtained from RF. Besides, the tting formulae derived by the
SISSO model can provide more detailed quantitative informa-
tion about the relationship between features and targets that
cannot be directly obtained by RF. The above comparisons
indicate that the SISSO algorithm not only serves as a more
convenient and portable tool for the inverse structure design of
a pore array, but also predicts mechanical properties with
comparable and even higher accuracy, when compared with
other ML algorithms.

5. Conclusions

In this study, we develop a SISSO-assisted approach for the
mechanical design of porous graphene, where strength and work
of fracture are set as the targeted properties. The optimal tting
formulae are automatically derived from the SISSOmodel for the
explicit description of the nonlinear structure–property rela-
tionship. These expressions not only provide direct and accurate
predictions of these targeted properties according to the
geometrical arrangement of nanopore array but also serve as
a useful guideline for the inverse design of porous structure.
Compared with other forecasting methods including several
popular ML algorithms, the SISSO algorithm is comparably
accurate, portable, efficient and convenient. With reliable data
gathered from experimental characterization studies and a larger
amount of data samples, the performances like accuracy can be
further improved. In addition, this proposed idea can be applied
to design other physical properties related to the geometries of
the nanopore array for porous two-dimensional materials.
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