Skip to main content
. 2022 Aug 10;29(8):932–941. doi: 10.1089/cmb.2021.0606
Algorithm 1: 2D-to-3D framework for semantic segmentation
Input: Segmented projection tilt series {seg(V,θ)|θΘ}
Initialization: M=zeros(L,W,H)
Procedure Backward projection
  For each θΘ do
   M=M+BP(seg(V,θ))
  end
Procedure Threshold autoselection
  For each proposed threshold T(i) do
   MT(i)=1(M>T(i));
   score(i) = θΘIoU(seg(V,θ(i)),FP(MT(i),θ))
  end
return segmented tomogram M3D=MT(i) with the highest score(i).