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Abstract

Traumatic brain injury (TBI) is a major cause of death in the young age group and leads to 

persisting neurological impairment in many of its victims. It may result in permanent functional 

deficits because of both primary and secondary damages. This review addresses the role of 

oxidative stress in TBI-mediated secondary damages by affecting the function of the vascular 

unit, changes in blood-brain barrier (BBB) permeability, posttraumatic edema formation, and 

modulation of various pathophysiological factors such as inflammatory factors and enzymes 

associated with trauma. Oxidative stress plays a major role in many pathophysiologic changes 

that occur after TBI. In fact, oxidative stress occurs when there is an impairment or inability 

to balance antioxidant production with reactive oxygen species (ROS) and reactive nitrogen 

species (RNS) levels. ROS directly downregulate proteins of tight junctions and indirectly 

activate matrix metalloproteinases (MMPs) that contribute to open the BBB. Loosening of the 

vasculature and perivascular unit by oxidative stress-induced activation of MMPs and fluid 

channel aquaporins promotes vascular or cellular fluid edema, enhances leakiness of the BBB, 

and leads to progression of neuroinflammation. Likewise, oxidative stress activates directly the 

inflammatory cytokines and growth factors such as IL-1β, tumor necrosis factor-α (TNF-α), 

and transforming growth factor-beta (TGF-β) or indirectly by activating MMPs. In another 

pathway, oxidative stress-induced degradation of endothelial vascular endothelial growth factor 

receptor-2 (VEGFR-2) by MMPs leads to a subsequent elevation of cellular/serum VEGF level. 

The decrease in VEGFR-2 with a subsequent increase in VEGF-A level leads to apoptosis and 

neuroinflammation via the activation of caspase-1/3 and IL-1β release.
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Introduction

Traumatic brain injury (TBI) is characterized by physical brain injury that temporarily 

or permanently impairs cognitive function and is a major cause of death and disability 

worldwide, particularly among the young population. TBI causes approximately 1.5 million 

deaths and hospitalizations annually in the USA. TBI is classified based on the origin of 

mechanical forces as blast, blunt, and ballistic. In ballistic injury, the penetrating object 

pierces the skull and enters to the brain. Then the penetrating object may be expelled 

out, depending on the kinetic energy at the time of contact, from the opposite side along 

with some attached brain tissues or stuck inside the brain [1]. In blunt injury, the head of 

the victim collides with stationary or moving object. During the process of collision, the 

head encounters a directional force in a local region. Furthermore, the head and the brain 

translate or rotate depending on the magnitude and direction of the impacting force. The 

blast injury is complex and the facets of the injuries include components of both blunt 

and ballistic injuries. Based on the severity of TBI, patients are typically categorized into 

mild, moderate, and severe by using the Glasgow Coma Scale, a system used to assess 

coma and impaired consciousness [2]. The Glasgow Coma Scale is divided into three 

components—eye opening, verbal response, and motor responses. These are usually added 

together to produce a total score. A Glasgow Coma Scale score of 13–15 is defined as 

mild, 9–12 as moderate, and 3–8 as severe [2]. The mechanisms of brain tissue injury 

associated with TBI have been classified as primary and secondary. Primary injury is the 

result of mechanical forces applied to the skull and brain at the time of impact, which is 

believed to be irreversible [3]. The primary injury leads to skull fractures, brain contusions, 

axonal injuries, rupturing of blood vessels, and intracranial hemorrhages [4]. Secondary 

injury, on the other hand, evolves over time [5]. These are characterized by a complex 

cascade of biochemical events that lead to elevated intracranial pressure, blood-brain barrier 

(BBB) disruption, neuroinflammation, brain edema, cerebral hypoxia, ischemia, and delayed 

neurodegeneration [6-8]. Furthermore, a series of molecular, neurochemical, cellular, and 

pathophysiological mechanisms contribute to secondary injury. Secondary brain injury 

may be reversible; therefore, therapeutic intervention can be targeted. We and some other 

investigators showed that oxidative stress plays a pivotal role in secondary brain injury 

[9-11].

Oxidative stress is the biochemical and physiological stress or damage caused by the free 

radicals and can be neutralized by antioxidants. Free radicals contain unpaired electrons that 

are formed when oxygen is partially reduced and these free radicals attack cell components. 

Free radicals can then form long-lasting toxic materials that can make effects even beyond 

its site of production [12]. These toxic species and free radicals are collectively called 

reactive oxygen species (ROS) and reactive nitrogen species (RNS). The excitotoxicity and 

enervation of the endogenous antioxidant system (e.g., superoxide dismutase, glutathione 
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peroxidase, and catalase) favors the production of a high level of ROS/RNS that induces 

peroxidation of cellular and vascular structures, protein oxidation, cleavage of DNA, 

and impairment of the mitochondrial electron transport chain [13]. These mechanisms 

are adequate to contribute to neuroinflammation, early or late apoptotic programs, and 

immediate cell death. In this review, we discuss about oxidative stress in TBI and its effect 

on BBB dysfunction, neuroinflammation, neurodegeneration, and impairment of cognitive 

function. In addition to these, a prior description on the major biomarkers of TBI is essential 

as they are the primary measures of brain damages.

Biomarkers of Traumatic Brain Injury

The use of markers for tissue damage in the central nervous system (CNS), such as S100 

calcium-binding protein β (S100β) and neuron-specific enolase (NSE), has been proposed 

as potentially useful in order to quantify the severity of the TBI early in the process [14]. 

S100β is a calcium-binding protein having a molecular mass of 21 kDa. It is mainly released 

by glial cells, but it is also released by some other cells such as adipocytes, bone marrow, 

skeletal muscle, and melanocytes [15, 16]. NSE is a glycolytic protein having a molecular 

mass of 78 kDa. It is mainly released by neurons and some other cells like smooth muscle, 

adipose tissue, platelets, and red blood cells. NSE is widely used to assess neuronal damage 

[17]. The release of S100β and NSE from the CNS into peripheral circulation is believed 

due to disturbed membrane integrity of brain cells and increased permeability of the BBB 

after a traumatic event [15, 18]. However, the exact mechanism of cellular release is not yet 

fully studied. The serum measurements for S100β and NSE within 6 h of TBI would give 

a clear picture of the severity of brain injury and can be correlated with clinical outcome 

[16]. In our analysis, significantly higher levels of S100β and NSE were found in the blood 

samples of mild traumatic brain injury (mTBI) shock wave-exposed animals when compared 

with controls. The maximum level of S100β was found at 6 h, whereas leaking of NSE 

across the damaged BBB into the bloodstream continued to increase even at 24 h after the 

primary blasts [9].

Cleaved-tau (C-tau) protein is another important biomarker for TBI. Tau is a microtubule-

associated phosphoprotein predominantly expressed in axons of neurons within the CNS. 

TBI results in the proteolysis of tau, producing a cleaved product called C-tau [19]. Serum 

C-tau levels are dependent on both compromised BBB as well as the degree of neuronal 

damage in the brain. A number of investigators reported the elevated levels of tau protein 

in CSF and serum following TBI [20-22]. A significant increase in the level of C-tau at 

6 h of posttrauma in the serum of cortical contusion injury rats has been reported [19]. 

However, some studies suggested that tau protein is a poor biomarker for mild TBI [23]. 

Recently, Goldstein et al. [24] reported the high level of phosphorylated tau protein in TBI 

patients. Phosphorylation of tau protein is developmentally regulated such that fetal tau is 

more phosphorylated than adult brain tau [25]. Phosphorylation inhibits the ability of tau 

to bind to microtubules making them less stable. A few other biomarkers have also been 

reported in TBI, viz. glial fibrillary acidic protein (GFAP), isozyme of creatine kinase, and 

myelin basic protein (MBP) (see review [26]).
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Oxidative Stress in Traumatic Brain Injury

The secondary injury of TBI is primarily due to oxidative stress. It has a significant role 

in the etiology of progressive neuropathology in TBI. ROS and RNS are the main sources 

of oxidative stress in brain injury. ROS includes superoxide (O2•−), hydroxyl radical (HO•), 

hydrogen peroxide (H2O2), and hypochlorous acid (HOCl). RNS refer to various nitric oxide 

(NO)-derived compounds, such as peroxynitrite (ONOO−) and nitrogen dioxide (NO2). RNS 

have different reactivities and the half-lives of RNS are generally longer than O2•−and HO• 

[27]. There are a number of enzymes involved in free radical generation, viz. the NADPH 

oxidase family, inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase 

(eNOS), cytochrome P450 (CYP450), cyclooxygenase (COX), lipoxygenase (LOX), and 

xanthine oxidase (XO). The role of these enzymes has been reviewed extensively [28-31], 

and the mechanisms of their activation and inhibition are beyond the scope of this review.

The most common free radical in TBI is superoxide (O2•−). It is produced when oxygen 

molecules gain an electron from other molecules. This superoxide causes tissue damage 

by promoting hydroxyl radicals from hydrogen peroxide (H2O2) and peroxynitrite when 

combined with NO. The power house organelle, mitochondria, is the major source of 

O2•−in brain injury [32]. In addition, the enzyme NADPH oxidase is a major contributor 

to posttraumatic cellular ROS production [11, 33]. In the cell, NADPH oxidase produces 

superoxide by transferring electrons from NADPH across the membrane and combining 

these to molecular oxygen to produce superoxide anion [34]. Another prooxidant enzyme, 

iNOS, has a significant role in the production of RNS by catalyzing the generation of 

NO from L-arginine. Several authors extensively studied the role of NO in generating 

oxidative stress in TBI [35-37]. NO has both neurodestructive and neuroprotective roles 

[36, 38]. In TBI, the neurodestructive role of NO is its involvement in the generation 

of toxic free radicals by lipid peroxidation and protein nitration. RNS are produced by 

coupling this NO with superoxide to form peroxynitrite (ONOO−). Recently, we have 

reported that the biochemical damage of the CNS is induced by the upregulation of these 

free radical-generating enzymes such as NADPH oxidase 1 (NOX1) and iNOS in TBI 

rats [9]. Induction of these enzymes by shock wave exposure paralleled the signatures of 

oxidative and nitrosative damage (4-hydroxynonenal (4-HNE)/3-nitrotyrosine (3NT)) [9]. 

The increased level of NOX activity in the cerebral cortex and hippocampal CA1 regions 

with an early peak at 1 h has been reported [11]. The significantly high levels of 4-HNE and 

3NT at 3 h post-exposure and returned to control levels at 24 h post-exposure have also been 

reported [10]. In situ localization using oxidized hydroethidine and the neuronal marker, 

NeuN, reveals that the O2•−induction occurs in neurons at 1 h after TBI. By using the NOX 

inhibitor, apocyanin, oxidative stress damage can be minimized [11]. Oxidative/nitrosative 

stresses modify proteins via carbonylation, nitration, and peroxidation. Synaptic proteins 

also may be affected through these modifications [39].

Hydrogen peroxide (H2O2) is a relatively stable molecule and it is formed by dismutation of 

superoxide radicals. It is generated from nearly all sources of oxidative stress and can diffuse 

freely in and out of cells and tissues [40]. It aggravates cell proliferation and induces cell 

death either via apoptosis or necrosis. Monoamine oxidase is another important source of 
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H2O2 [41]. H2O2 can be activated by transition metals in their reduced states to hydroxyl 

radical (HO•), which is a potent oxidant and aids to excess tissue damage [40].

Mitochondria are well involved in the generation of ROS. They themselves are targets 

of oxidative stress and also important in redox signaling from the organelle to the rest 

of the cell [42]. In 1966, Jensen first reported that ROS produced through mitochondrial 

respiratory chain [43]. Later, Chance and colleagues showed that the isolated mitochondria 

produce H2O2 [44-46]. During the Q cycle, it has been shown that electron “leakage” to 

O2 yields superoxide anion radical (O2•−) and hydrogen peroxide (H2O2). Thus, it appears 

that the cytochrome bc1 complex may be a significant source of ROS during TBI wave 

induction. An additional source of mitochondrial ROS generation may be the NADH 

dehydrogenase complex, in which O2•−is produced during autooxidation of the flavin 

mononucleotide (FMN) [47]. Therefore, mitochondrial electron transport constitutes the 

major intracellular source of ROS. Formation of mitochondrial ROS promotes inappropriate 

activation of the mitochondrial permeability transition, leading the cells to proapoptotic 

pathways [48].

Biomarkers of Oxidative Stress

ROS can be measured either directly or indirectly following the formation of oxidative by-

products of lipids, proteins, or nucleic acids. Different types of oxidative stress biomarkers 

have been extensively reviewed recently [49, 50]. However, here we discuss about the major 

biomarkers of oxidative/nitrosative stress briefly.

4-HNE, isoprostanes (IsoPs), and malondialdehyde (MDA) are the major by-products of 

lipid peroxidation. 4-HNE is one of the most abundant and active lipid peroxides and is 

derived from the peroxidation of n-6 polyunsaturated fatty acids such as arachidonic and 

linoleic acids. IsoPs are a family of stable, prostaglandin-like compounds generated from 

the peroxidation of arachidonic acid [51]. MDA is potentially atherogenic lipid peroxide 

and generated in vivo via peroxidation of polyunsaturated fatty acids [52]. Another lipid 

biomarker of oxidative stress is 8-epi-PGF2a. This derivative is produced in vivo by free 

radical peroxidation of arachidonyl-containing lipids [51].

Nitrosative stress, mainly detected by the presence of 3NT, has been demonstrated in 

TBI [9]. Protein tyrosine nitration is mediated by RNS such as peroxynitrite (ONOO−) 

and nitrogen dioxide (NO2) and results in a nitro group adduct on susceptible tyrosine 

residues [53]. S-glutathionylation is another protein modification marker of oxidative stress. 

S-glutathionylation is the formation of a disulfide bridge between a reactive cysteine residue 

and the abundant cellular tripeptide glutathione [54]. Bursell and King have been reported 

S-glutathionylation of hemoglobin as a potential marker of oxidative stress [55].

Oxidative stress damages nucleic acids either by DNA fragmentation (single- and double-

stranded DNA breaks) or modification and loss of bases due to oxidative stress [56]. 

8-Hydroxy-2′-deoxyguanosine (8-OHdG) is widely used as an index of DNA oxidative 

damage.
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ROS can be detected directly by electron paramagnetic resonance (EPR; or electron spin 

resonance). Using EPR, the superoxide can be detected with superoxide-specific spin probes 

[57]. In our previous study, we used 4-HNE and 3NT (Fig. 1a) as major biomarkers of 

oxidative/nitrosative stress in TBI rats besides the direct measurement of ROS (cumulative 

detection of both hydroxyl and superoxide free radicals) using EPR [9]. In the next section, 

we discuss BBB permeability and neuroinflammation in TBI.

Blood-Brain Barrier Impairment in TBI

The blood-brain barrier (BBB) is a regulating interface between the peripheral blood 

circulation and the CNS. In 1885, Paul Ehrlich first studied the existence of the BBB. The 

BBB is composed of brain microvascular endothelial cells (BMVEC), astrocytes, basement 

membrane, and pericytes and neurons and are constituting a “neurovascular unit” [58, 59]. 

Pericytes and endothelial cells are encircled by the basal lamina; a thin basement membrane 

supports the abluminal surface of the endothelium and is composed of collagen type IV, 

heparin sulfate proteoglycans, laminin, fibronectin, and other extracellular matrix proteins 

[60]. Astrocytes are adjacent to the endothelial cell with astrocytic end feet sharing the basal 

lamina. In addition to astrocytes, the microglia are also closely associated with the brain 

endothelium and are involved in the integrity of the BBB. These glial and endothelial cells 

functionally interact with each other in a paracrine manner.

Under physiological conditions, the BBB ensures constant supply of nutrients (oxygen, 

glucose, and other substances) for brain cells and guides the inflammatory cells to respond 

to the changes of the local environment. BMVEC possess unique barrier functional 

properties and are connected by tight junctions (TJ), which are composed of transmembrane 

proteins occludin/claudin-5 and intracellular zonula occludens (ZO-1, ZO-2, and ZO-3) [59]. 

TJ provides structural integrity and low permeability of the monolayer. Several intrinsic 

signaling pathways are involved in the modulation of expression and subcellular localization 

of TJ proteins [61].

The BBB compromise or damage leads to several neurodegenerative diseases and other 

neurological complications. Signs of BBB compromise are seen in neurological disorders 

including stroke [62], Alzheimer’s disease [63], HIV-1 encephalitis [64], multiple sclerosis 

[65], and TBI [66]. Besides the pathological conditions or diseases, drug or alcohol abuse 

compromises the integrity of the BBB [67-69]. This review addresses the neurological 

complications induced by oxidative stress and other neuroinflammatory agents associated 

with TBI.

In our recent study, we have shown that oxidative stress induces cerebral vascular injury 

(BBB damage) and neuroinflammation via activation of matrix metalloproteinases in single 

(one time only shock wave pressure exposure) or repeated (more than one shock wave 

pressure exposure on the same animal) exposures to low-intensity blast over pressure 

[9]. In 123-kPa shock wave pressure-induced mTBI in rats, the immunofluorescence and 

Western blotting methods showed the diminished expression of tight junction proteins in 

the brain microvessels of treated rats when compared with controls [9]. The peroxidation of 

membrane lipids is one of the consequences of oxidative stress in TBI, which would affect 
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the permeability of the BBB [70]. Hydroxyl radicals (•OH) may play an important role in 

peroxidation of membrane lipids in the formation of 4-HNE that increases the permeability 

of the BBB [71]. The role of lipid peroxidation has been proven by administrating an 

inhibitor of lipid peroxidation that blocks posttraumatic damage of the BBB [72]. These 

pathological processes can contribute to long-term neurological disorders.

Infiltration and accumulation of immune cells into brain parenchyma in acute posttraumatic 

injury is another consequence of BBB damage [73]. Intercellular adhesion molecule 

(ICAM-1) helps the migration of immune cells into the damaged tissue by mediating the 

adhesion of these cells to the endothelium. Upregulation of ICAM-1 has been reported in 

several experimental TBI models [74, 75]. A number of studies have been addressed to study 

the BBB disruption by analyzing the level of S100β in CSF [76-78]. The BBB permeability 

has been proven by injecting intravenously the visible tracers biotin-dextrin-amine 3000 

(BDA-3 K, 3 kDa) and horseradish peroxidase (HRP, 44 kDa) at 4 h or 3 or 7 days post-TBI, 

in which both small and large molecular weight tracers were detected in the contusion 

area and even in remote regions of the injury. However, the larger tracer molecule (HRP) 

was not detected at later posttraumatic time periods [6]. In another study, the passive BBB 

dysfunction has been proven by analyzing the CSF-plasma albumin quotient in TBI patients 

[79].

Several authors showed evidence of BBB disruption following TBI by using 

pharmacological inhibitors and some other agents, in which they could attenuate TBI-

mediated BBB breakdown, upregulation of matrix metalloproteinases (MMPs), aquaporins 

(AQPs), and other inflammatory agents. Tail intravenous injection ofpoloxamer 188 (anti-

inflammatory drug) in TBI mice could reduce TBI-induced brain edema and restored BBB 

integrity, suppressed TBI-induced neural cell death, and improved neurological function 

[80]. Neutrophil depletion with an antipolymorphonuclear leukocyte antibody (anti-PMN) 

before inducing intracerebral hemorrhage in the rat striatum reduces neutrophil infiltration, 

BBB breakdown, and expression of MMP-9 [81]. In another study, Lopez et al. [82] showed 

that treatment with orexigenic hormone ghrelin decreases BBB permeability and the level of 

perivascular AQP-4 and S100β following TBI in mice.

Role of Matrix Metalloproteinases in BBB Permeability

MMPs are zinc-dependent endopeptidases, collectively called matrixins, that participate 

mainly in extracellular matrix (ECM) degradation. Under normal physiological conditions, 

the activities of MMPs are precisely regulated at the level of transcription, activation 

of the precursor zymogens, interaction with specific ECM components, and inhibition 

by endogenous inhibitors [83, 84]. The regulation of MMP expression and activation is 

complex and tightly controlled, and loss of this control may result in diseases such as 

arthritis, cancer, atherosclerosis, aneurysms, nephritis, tissue ulcers, and fibrosis [85, 86]. 

MMPs are broadly divided into two general classes: the secreted MMPs and membrane-

type MMPs [87]. To date, 24 different vertebrate MMPs have been identified, of which 

23 are found in humans. MMPs can be grouped according to their domain structure 

into collagenases, gelatinases, stromelysins, and matrilysin. The actions of MMPs are 

strictly controlled by endogenous MMP inhibitors (MMPIs) and tissue inhibitors of MMPs 
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(TIMPs). TIMPs are specific inhibitors of matrixins that participate in controlling the 

local activities of MMPs in tissues [88]. Overexpression of MMPs results in an imbalance 

between the activity of MMPs and TIMPs that can lead to a variety of pathological disorders 

[85]. There are four types of TIMPs: TIMP-1, TIMP-2, TIMP-3, and TIMP-4.

Activation of MMPs due to oxidative stress degrades basement membrane proteins resulting 

in loss of brain endothelium stability and increases BBB permeability in vivo [89-91] 

and in vitro [92]. Studies have revealed that activation of MMPs and degradation of 

microvascular basement membrane play an important role in stroke [93-95]. An increase in 

the activity of MMPs also degrades basement membrane proteins and disrupt TJ assembly, 

thus enhancing BBB permeability [96, 97]. Hanumegowda et al. [98] have reported that the 

loss of TJ function in brain endothelium is associated with the increase in activity of MMP-2 

or MMP-9. Moreover, activation of MMPs leads to brain-blood microvessel disruption, 

featuring leukocyte infiltration and activation of resident brain macrophages (microglia) 

[94]. Recently, Reijerkerk et al. [99] reported that diapedesis and transendothelial migration 

of monocytes due to MMP mediated occludin protein degradation in rat brain endothelial 

cell line (GP8/3.9).

In TBI, several investigators have reported the involvement of MMPs in degrading various 

types of ECM proteins and TJ proteins of the BBB [100, 101]. MMP has a critical 

role in the pathophysiology of synaptic loss and BBB breakdown in TBI, alcohol abuse, 

stroke, and neurodegeneration [68, 102, 103]. We also demonstrated that the induction of 

free radical-generating enzymes causes oxidative damage, impairment of the BBB, and 

neuroinflammation via activation of matrix metalloproteinases and fluid channel activator 

aquaporin-4 in mTBI [9]. As depicted in Fig. 1b for MMP-2, in our study, the level of 

expression of the three types of MMPs (MMP-2, MMP-3, and MMP-9) was increased in 

mTBI rats [9]. There are several reports on the upregulation of MMPs, particularly MMP-2, 

MMP-3, and MMP-9 and their role in causing acute disruption of the BBB, leading to 

vasogenic edema and following cell death in TBI [104, 105]. Recently, Ranaivo et al. [106] 

showed the high level of MMP-9 in combination with mild stretch followed by IL-1β 
treatment in in vitro model of cell stretch to investigate the effects of mild mechanical 

insult on astrocyte injury. Higashida et al. [107] reported that when inhibiting MMP-9, the 

permeability of the BBB significantly ameliorated in TBI rats.

Role of Vascular Endothelial Growth Factor in BBB Disruption

Vascular endothelial growth factor (VEGF) is a heparin-binding protein that is considered 

the most potent proangiogenic growth factor involved in vascular permeability, vascular 

dilation, endothelial proliferation, and angiogenesis [108, 109]. Three high-affinity tyrosine 

kinase receptors exist for VEGF, viz. VEGFR-1 (fms-like tyrosine kinase-1), VEGFR-2 

(fetal liver kinase-1/kinase domain region), and VEGFR-3 (fms-like tyrosine kinase-4), 

all of which are expressed almost exclusively on endothelial cells [110]. The vascular 

endothelial growth factor receptor-2 (VEGFR-2) plays a central role in the proliferation and 

apoptosis of vascular endothelium [111, 112]. VEGFR-2 (also known as KDR or Flk-1), 

is a 200–230-kDa high-affinity receptor for VEGF-A, the processed forms of VEGF-C 

and VEGF-D, and VEGF-E. It is expressed in both vascular endothelial and lymphatic 
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endothelial cells; its expression has also been demonstrated in several other cell types such 

as megakaryocytes and hematopoietic stem cells [113]. Vegfr-2−/−embryos die by embryonic 

days 8.5–9.5, exhibiting defects in the development of endothelial and hematopoietic 

precursors, indicating that the receptor is crucial for vascular development [114].

Previous studies suggested that BBB disruption is due to the proteolytic degradation of 

the vascular membrane. Among proteases, MMPs, in particular MMP-2 and MMP-9, 

are able to digest the endothelial basal lamina and, therefore, may play a major role in 

promoting BBB permeability [115-117]. Valable et al. [118] reported that in ischemic 

animals, administration of VEGF leads to BBB permeability as to an induction of MMP-9 

activity. The elevation of MMP-9 levels in stroke is also reported [119].

There are reports on the cleavage of VEGFR-2 by MMP-7 and MMP-9, where it cleaves 

VEGFR-2 at multiple positions (e.g., Leu-Ser/Met-Leu, Leu-Ser/Ile-Arg) [120]. Tran et 

al. [121] reported that the plasma MMP activity causes cleavage of extracellular, but not 

intracellular, domain of VEGFR-2 on the endothelium. This cleavage reduces the ability 

of the cell to bind VEGF agonists and may be one of the reasons for the enhanced 

apoptosis [121]. The inhibition of MMP with doxycycline attenuates VEGFR-2 cleavage 

as well as endothelial apoptosis [121]. Lee and Agoston [122] reported that a blockade of 

VEGFR-2 signaling with a selective inhibitor, SU5416, abrogates prosurvival response and 

induced high activation of caspase-3/7 and leads to cell death in TBI. In our recent study, 

we found that alcohol-mediated upregulation of MMPs leads to VEGFR-2 degradation 

in rats. In correlation with this observation, we found profound elevation of VEGF-A in 

the bloodstream and that in turn activates caspase-1 and causes cell apoptosis. This was 

evidenced from the treatment of VEGFR-2 kinase inhibitor, ki8751, which induces cell 

apoptosis [68]. The increase in the level of VEGF after TBI causes edema formation and 

neutrophilic invasion to the brain [123]. The enhancement of the level of VEGF-A further 

increases the level of ROS [124]. However, there are reports on the neuroprotective role of 

VEGF, where VEGF increases neurogenesis and angiogenesis and reduces lesion volume 

after TBI [125]. To resolve this controversy of whether VEGF damages or protects the brain 

tissue after TBI will be a field for future study.

Neuroinflammation in TBI

Several studies have shown that cytokines, chemokines, and growth factors have significant 

roles in the pathophysiology of TBI. Shortly after brain injury, there is mass production of 

proinflammatory cytokines, such as IL-1β and tumor necrosis factor-α (TNF-α) as well as 

transforming growth factor-beta (TGF-β), which further exacerbates the trauma condition of 

the brain with oxidative stress and MMPs to cause delayed recovery [126, 127]. The mRNA 

and protein concentrations of these cytokines have been shown to increase markedly in the 

acute posttraumatic period following experimental brain trauma in rats [128-130]. These 

posttraumatic inflammatory cascades also contribute to BBB dysfunction, which eventually 

leads to the influx of inflammatory cells from the blood to the brain [73].

In the event of TBI, IL-1β is the most studied cytokine. IL-1β is produced by glial cells 

and can act on neurons and other brain cells. IL-1β triggers inflammatory reactions and 
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leads to recruitment of immune cells, disruption of the BBB and formation of edema, 

and loss of neurons [131-134]. The high level of IL-1β has been detected in CSF and 

brain tissue within early hours of brain injury in humans as well as in experimental 

animals [135, 136]. The role of IL-1β in the formation of brain edema, neuroinflammation, 

and neurodegeneration has been evidenced by using IL-1β inhibitor in experimental rats 

[137, 138]. Intracerebroventricular administration of an IL-1β-neutralizing antibody reduces 

cerebral edema and tissue loss and improves late cognitive outcome following TBI in 

mice [137]. Active caspase-1 is essential for the cleavage of pro-IL-1β into its mature, 

biologically active forms [139-141]. There are several reports on the activation of caspase-1 

in TBI [142, 143]. Similarly, there are few reports on the upregulation of other types of 

interleukins such as IL-6, IL-8, IL-10, IL-12, and IL-18 in post-TBI [128, 144, 145]. Some 

of these interleukins have neuroprotective actions against injury [146-148].

TNF-α has important roles in neuronal development, cell survival, synaptic plasticity, and 

ionic homeostasis in the CNS. The dysregulation of TNF-α signaling has been implicated 

in the pathophysiology of several CNS conditions, specifically relating to immune cells 

infiltration [149] and increased BBB permeability [150]. TNF-α has been detected in the 

CSF and serum of patients with TBI [144, 151]. Several authors proved the increased 

activity of TNF-α in association with the loss of sensorimotor and cognitive functions in 

TBI models by pharmacologically or genetically inhibiting its activity [129, 152, 153].

Several in vivo studies showed that TGF-β is a major regulator of injury response [154]. 

This growth factor can be synthesized by nearly all cells of the CNS [155, 156] and its 

increased level has been detected in several CNS disorders including TBI [157, 158]. The 

high level of TGF-β in CSF has been detected within initial days of head-injured patients 

[158]. This high level of TGF-β in CSF than in serum may be as a result of damaged BBB. 

In 2009, Cacheaux et al. [159] made a striking investigation wherein rats treated with a drug 

that blocks TGF-β, it prevents epilepsy after brain damage.

Traumatic Brain Injury and Edema Formation

The formation of cerebral edema is one of the major factors leading to high mortality and 

morbidity in TBI. Cerebral edema may account for up to half of the mortality in all victims 

of TBI [160]. There are two types of edema: cellular and vasogenic [161]. Cellular edema 

is characterized by an increase in water content in the intracellular compartment. Vasogenic 

edema results from the breakdown of the BBB and this allows intravascular proteins and 

fluid to penetrate into the parenchymal extracellular space [162]. Usually, vasogenic edema 

forms in the first few hours after TBI, followed by cellular edema that develops more slowly 

over the next few days and prolongs up to 2 weeks [163]. TBI may lead to swelling of the 

brain tissue and elevate intracranial pressure (ICP), which may also lead to edema formation 

and BBB disruption [164].

Several mediators are involved in the formation of edema after TBI. Among them, AQPs are 

the key player in the development and resolution of cerebral edema [165]. AQPs are integral 

membrane proteins belonging to a larger family of major intrinsic proteins that form pores 

in the membranes of mammalian cells [166]. There are 13 known AQPs, and among these, 
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AQP-1, AQP-4, and AQP-9 are highly expressed in the brain [167]. AQP-4 is predominantly 

expressed in astrocytic end feet. In our study, we reported a high level of AQP-4 in 123 kPa 

wave pressure-induced mTBI (Fig. 1c) and these AQP-4 were seen to be co-localized with 

GFAP (astrocytic marker) in close proximity to intracerebral vessels in mTBI brain tissue 

[9]. Several studies have shown that AQP-1, AQP-4, and AQP-9 expression is clearly altered 

in both experimental and clinical brain injury [168-170]. Several investigators reported that 

upregulation of AQPs after brain injury promotes edema formation [171-173] and it is 

evidenced that pharmacological inhibition of AQP-4 can control the formation of edema in 

TBI [172, 174, 175]. Blocking of hypoxia-inducible factor-1 alpha (HIF-1α), a transcription 

factor known to activate the expression of AQP-4 and AQP-9, by 2-methoxyestradiol 

(2ME2) reduces water content or edema formation in injured animals [172]. Higashida et 

al. [107] reported that the formation of edema can be reduced after inhibition of AQP-4, 

MMP-9, or HIF-1α.

Another important mediator of edema formation is MMPs. We have discussed the role 

of MMPs in the pathogenesis of TBI in the previous section. The role of MMPs 

in edema formation has been proven by using a pharmacological inhibitor of MMPs 

such as minocycline or TIMP-1, in which reduced BBB disruption and edema, reduced 

inflammatory response, and improved cognitive function have been observed [176-178]. 

Some other vasoactive agents also cause BBB disruption and formation of cerebral edema. 

These vasoactive agents include kinins, such as bradykinins and tachykinins [162, 179]. 

Donkin and Vink extensively reviewed about these vasoactive agents that cause edema 

formation in TBI (reviewed in [162]).

In our recent study, we established that the biochemical cerebral vascular/brain injury 

occurs within a window of 6–24 h after exposure to low-frequency shock wave pressure. 

Oxidative/nitrosative stress initiates neurovascular injury via the induction of NOX1 and 

iNOS by blast wave. The signatures of oxidative/nitrosative damage (4-HNE/3NT) in the 

microvessels paralleled an induction of NOX1/iNOS. The association of cerebral vascular 

oxidative injury with the downregulation of TJ proteins and the perivascular units with the 

subsequently enhanced immune cell infiltration justified the BBB dysfunction. Loosening 

of this BBB by shock wave exposure is exacerbated by oxidative stress-induced MMPs 

and fluid channel aquaporin-4. Our findings suggest that impairment of the BBB and 

perivascular units by MMPs promotes BBB leakiness, vascular fluid cavitation, edema 

formation, neuroinflammation, and subsequently neurotrauma [9].

Antioxidant Defenses and Clinical Strategies in TBI

The living cell has several defense mechanisms to compete with constant exposure to 

oxidative stress. The antioxidant defense system, which is one of the major defense 

mechanisms, assists the living cell to cope directly with oxidative stress and to prevent 

oxidative damage. The brain cells, which are particularly susceptible to oxidative damage, 

contain various types of antioxidants in which some of them are exclusive to the brain. 

There are two major groups of antioxidant system, viz. enzymes and low molecular weight 

antioxidants [180]. Superoxide dismutase (SOD), catalase, peroxidases, peroxyredoxins, and 

thioredoxins are several of the major enzymes directly regulating the levels of ROS and 
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RNS. Ascorbic acid, glutathione (GSH), vitamin E, lipoic acid, and coenzyme Q are the 

low molecular weight antioxidants in the brain. Though the application of antioxidants is 

promising as therapeutic agents, there are limitations in the use of exogenous antioxidants. 

They are less amenable to the trafficking across the BBB; moreover, their instability and 

the fast rate of metabolism and toxicity at a higher dose are the major challenges for 

their therapeutic use [181]. Despite these limitations, targeted applications of natural and 

modified antioxidants are promising in developing therapeutic interventions.

Several researchers have been concentrating on neuroprotection in TBI patients or models 

by inhibiting or reducing oxidative/nitrosative stress and neuroinflammation. The ability of 

several agents or pharmacological inhibitors to attenuate oxidative stress and secondary cell 

death has been established in different models of TBI. The superoxide scavengers such 

as SOD [182], OPC-14117 [183], tempol (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl) 

[184], α-phenyl-N-tert-butyl nitrone (PBN) [185], etc. showed to protect the brain from 

the pathophysiology of TBI. The antioxidant α-tocopherol is hydrophobic and is able 

to prevent lipid peroxidation [186] and edema [187]. Melatonin is another hydroxyl and 

superoxide radical scavenger, which reduces brain edema, neuronal death, and memory 

deficits [188]. Resveratrol, an antioxidant found to be rich in grapes, has been shown to 

be a promising neuroprotectant in TBI models, possibly by inhibiting lipid peroxidation 

and minimizing other oxidative damages [189]. Kline et al. examined the neuroprotective 

effects of bromocriptine (BRO), a dopamine D2 receptor agonist with significant antioxidant 

properties, with results of reduced lipid peroxidation in a rodent model of focal brain 

trauma [190]. Tirilazad, a steroid, attenuates cerebral and vasogenic edema by inhibiting 

lipid peroxidation after TBI [191]. Cannabinoids, a natural psychoactive drug, prevent 

lipopolysaccharide-induced neurodegeneration in the rat substantia nigra in vivo through 

inhibition of microglial activation and NOX1 [192]. Likewise, there are myriads of reports 

on the use of an antioxidant drug against TBI in animals and humans, and several of them 

give better improvement physically and cognitively.

Similarly, several clinical and basic science trials have been conducted by using different 

novel treatment strategies to improve the consequences of TBI. The most recent clinical 

trials have investigated drugs such as steroids (e.g., progesterone) [193], calcium channel 

inhibitors (e.g., dantrolene) [194], vitamin E [195], amantadine [196], citicholine [197], 

dexanabinol [198], minocycline [199, 200], and magnesium sulfate [201]. Unfortunately, no 

interventions have been successful enough in practice to be implemented as standard care 

[202]. Development of standard care practice by integrating various therapeutic approaches 

has great significance especially in the scenario of increasing TBI incidents.

Conclusions

This review has highlighted the role of oxidative stress in the intricacy of BBB pathogenesis 

and cellular and molecular inflammatory cascades elicited after TBI. Figure 2 depicts the 

schematic representation of oxidative and inflammatory pathways in TBI. The physiological 

and biochemical responses to TBI, including MMP activation, VEGF accumulation, and 

neuroinflammation, have been discussed in this review. Furthermore, the development of 

cerebral edema and its possible reasons and its contribution to the high mortality and 
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morbidity associated with TBI have been addressed. However, while writing this review, 

we understood that the exact role of VEGF in trauma formation after BBB impairment 

and apoptosis is not yet fully elucidated. The therapeutic aspects by attenuating BBB 

impairment, blocking of MMP activation, and reducing neuroinflammation are other scopes 

of future study. Resolving the issue of whether VEGF damages or protects the cells or 

tissues after TBI will also be an area of focus for the field.

Normal functioning of the BBB is the key factor for brain repair and homeostasis. 

Attenuation of BBB permeability is a promising approach to control brain edema and 

associated neuroinflammation. Targeting on restoring BBB function after injury is the main 

objective for neuroprotection in TBI. It will allow a more reliable delivery of brain-targeted 

therapeutic agents/drugs. In terms of potential therapeutic strategies and interventions, 

future treatment of TBI will require a detailed understanding of cerebral physiology and 

function as well as the pathological and restorative responses toward therapeutic agents. The 

development of innovative research designs with antioxidants and other anti-inflammatory 

agents would provide a better therapeutic strategy to treat the pathophysiology of mTBI 

before advancing toward posttraumatic stress disorder (PTSD).
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Fig. 1. 
Induction of oxidative/nitrosative stress and activation of MMP-2 and AQP-4 in primary 

blast (123-kPa peak overpressure) induced mTBI rat brain microvessels. Immunofluorescent 

staining of nitrosative stress marker, 3-nitrotyrosine (3NT) in mTBI rat brain cortex 

(a); matrix metalloproteinases-2 (MMP-2) in mTBI rat in intact brain microvessels (b); 

aquaporin-4 (AQP-4) (red) and endothelial marker, GLUT1 (green) in brain microvessels of 

rats exposed to primary blast (c). Cell nuclei were counterstained with DAPI (blue) in c. 

Scale bar (yellow bar in last panel)=5 μm in all panels. For details, see Abdul-Muneer et al. 

[9]
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Fig. 2. 
Schematic representation of oxidative stress-induced BBB disruption and 

neuroinflammation in traumatic brain injury. Reactive oxygen species (ROS) and reactive 

nitrogen species (RNS) are the main sources of oxidative stress in brain injury. ROS 

include superoxide (O2•−), hydroxyl radical (HO•), hydrogen peroxide (H2O2), and 

hypochlorous acid (HOCl). RNS refer to various nitric oxide (NO)-derived compounds, 

such as peroxynitrite (−OONO) and nitrogen dioxide (NO2). Superoxide (O2•−) causes tissue 

damage by promoting hydroxyl radicals from hydrogen peroxide (H2O2) and peroxynitrite 

(−ONOO) when combined with nitric oxide (NO). ROS activate matrix metalloproteinases 

(MMPs) that further exacerbate the condition and lead to BBB disruption via degradation 

of the extracellular matrix and tight junction proteins. Further, MMPs are involved in 

degradation of vascular endothelial growth factor (VEGFR) and lead to an increase in 

the level of VEGF that in turn causes ROS and activates caspase-1/3, which leads to 

cell death. At the same time, ROS or RNS also activate different inflammatory cytokines 

and growth factors such as IL-1β, TNF-α, and TGF-β, which cause BBB disruption and 

neuroinflammation
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