Physical Signals |
Mechanical loading |
HDMECs, DPSCs, hSkMCs, PDL |
0.5 ml/min flow induction for 48 h, 25% 1 Hz cyclic stretch for 48 h |
CD9, CD63, CD81 |
RhoG, ITGAV, CAPZA2, CKAP5, CDH13, ARPC2/4, MYH11, TUBB ↑ |
11 to 150 fold |
+++ |
drug delivery platform, neuronal regeneration, muscle regeneration |
(Guo et al., 2021) |
Geometry |
MSCs, DPSCs |
3D aggregates, 3D constructs support by polymeric scaffold |
CD9, CD63, CD81 |
miR-210 ↑, miR-134, miR-137, miR-184↓ |
3 to 10 fold |
+++ |
pro-angiogenic properties |
(Cha et al., 2018; Guo et al., 2021) |
Acoustic stimulation |
U87-MG human glioblastoma cells and A549 adenocarcinomic human alveolar basal epithelial cells |
7 repeated cycles of 10 min SRBWs stimulation (4 W, 10 MHz) followed by 30 min of cell incubation |
CD63, Alix |
syntenin-1 |
8 to 10 fold |
+ |
drug delivery platform |
(Ambattu et al., 2020) |
Electric stimulation |
murine melanoma and murine fibroblast |
0.34 mA/cm2 electrical field for 60 min |
CD9, HSP70, and CD81 |
− |
ca. 1.7 fold |
+ |
beneficial effects of transcranial direct current stimulation (tDCS) in the brain |
(Fukuta et al., 2020) |
|
Molecular Interference |
Glycolysis & oxidative phosphorylation inhibition |
cancer cell lines: UMSCC47, PCI-13 and MEL526, |
10 μM IAA/DNP for over 48 h |
TSG101 |
− |
3 to 16-fold |
++ |
− |
(Ludwig et al., 2020) |
Endolysosomal trafficking |
SKOV-3 cells, cardiac progenitor cells |
NDRG1 knocked down |
Alix, TSG101, CD9, CD81 |
− |
up to 2 fold |
++ |
Myocardial ischemia and ischemia/reperfusion injury. |
(Ortega et al., 2019) |
Adiponectin |
MSCs |
20 mg/ml HMW-APN for 48 h |
Syntenin, MFG-E8, Alix, CD63, TSG101 |
↑ miRNAs: let-7 family, miR-21, −100, −148a, −10, −26, and − 199, and others |
ca. 3 fold |
++ |
Pressure-overload heart failure |
(Nakamura et al., 2020) |
Small molecule modulators |
MSCs |
100 μM NE/MeDA for 48 h |
CD9, CD63, Hrs, TSG101, Stam1, Alix |
↑ proteins: COL15A1, COL11A1, LOXL2, AGRN, NID2, HSPG2, COM |
ca. 3 fold |
++ |
Ischemic or inflammatory diseases |
(Wang et al., 2020) |
|
Environmental Factors |
Hypoxia |
Breast cancer cell lines |
1% for 48 h or 0.1% O2 for 24 h |
CD63, TSG101, CD9 |
miR-210 ↑ |
up to 2 fold |
+++ |
− |
(Hamish W. King et al., 2012) |
|
Pancreatic cancer cell lines |
1% O2 for 48-72 h |
CD63 |
circZNF91↑, miR-23b-3p ↓ |
up to 2 fold |
+++ |
− |
(Zeng et al., 2021) |
|
MSCs |
1% O2 for 48 h |
CD63, TSG101, CD9, CD81 |
miR-126 ↑ |
ca. 1.5 fold |
+++ |
bone fracture healing |
(Liu et al., 2020) |
Acidity |
metastatic prostate carcinoma LNCaP, metastatic melanoma Me30966, SaOS2 osteosarcoma, SKBR3 metastatic breast adenocarcinoma, and HCT116 colorectal carcinoma |
pH 6.5 for 5 days |
CD9, CD63, CD81, TSG101, Alix |
− |
sKBR3–6 fold, LNCaP - 9 fold, SaOS2–14 fold, HTC116–52 fold, Me30966–102 fold |
+++ |
− |
(Logozzi et al., 2018) |
|
metastatic melanoma cells |
pH 6 for 4 days |
Lamp-2, CD81, and Rab 5B |
caveolin-1 ↑, membrane rigidity ↑, sphingomyelin/ganglioside GM3 (N-acetylneuraminylgalactosylglucosylceramide) content ↑, exosome fusion ↑ |
up to 4 fold |
+++ |
delivery system for paracrine diffusion of tumor malignancy |
(Parolini et al., 2009) |
|
HEK 293 |
pH 4 for 3 days |
CD9, CD63, HSP70 |
− |
up to 6 fold |
+++ |
− |
(Ban et al., 2015) |
Starvation or hyperglycemia |
immortalized H9C2 cardiomyocytes |
glucose starved for 48 h |
CD9, CD63, CD81 |
22 different miRs ↑ |
ca. 3 fold |
+++ |
pro-angiogenic properties |
(Garcia et al., 2015) |
|
First-trimester trophoblast cells |
1% O2, hyperglycemia (25 mM glucose) for 48 h |
CD63 |
− |
ca. 3 fold |
+++ |
induction if cytokine release |
(Rice et al., 2015) |
|
External Inducers |
Liposomes |
cancer cell lines:C26, B16BL6, MKN45, DLD-1 |
0.5-2 mM PEGylated/NL/CL1 for 48 h |
TSG101, CD63 or CD81 |
− |
up to 3-fold |
++ |
tumor metastasis |
(Emam et al., 2018) |
Nanoparticles |
MSCs |
5-20 μg/ml PLGA-PEI PCS NPs (+) for 24 h |
CD63, CD9, and CD81 |
mmu-miR-2137, mmu-miR-3473b, mmu-miR-3473e, mmu-miR-3960, mmu-miR-5126, mmu-miR-5126, mmu-miR-455-3p ↑ |
5 to 20-fold |
++ |
tissue regeneration or antioxidant efficacy |
(Park et al., 2020) |