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Abstract

Quantitative thoracic dynamic magnetic resonance imaging (QdMRI), a recently developed 

technique, provides a potential solution for evaluating treatment effects in thoracic insufficiency 

syndrome (TIS). In this paper, we integrate all related algorithms and modules during our work 

from the past 10 years on TIS into one system, named QdMRI, to address the following questions: 

(1) How to effectively acquire dynamic images? For many TIS patients, subjects are unable to 

cooperate with breathing instructions during image acquisition. Image acquisition can only be 

implemented under free-breathing conditions, and it is not feasible to use a surrogate device for 

tracing breathing signals. (2) How to assess the thoracic structures from the acquired image, such 

as lungs, left and right, separately? (3) How to depict the dynamics of thoracic structures due to 

respiration motion? (4) How to use the structural and functional information for the quantitative 

evaluation of surgical TIS treatment and for the design of the surgery plan? The QdMRI system 

includes 4 major modules: dynamic MRI (dMRI) acquisition, 4D image construction, image 

segmentation (from 4D image), and visualization of segmentation results, dynamic measurements, 

and comparisons of measurements from TIS patients with those from normal children. Scanning/

image acquisition time for one subject is ~20 minutes, 4D image construction time is ~5 minutes, 

image segmentation of lungs via deep learning is 70 seconds for all time points (with the average 

DICE 0.96 in healthy children), and measurement computation time is 2 seconds.
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1. Introduction

Thoracic insufficiency syndrome (TIS) is a serious childhood disorder with the inability 

of the thorax to support normal respiration or lung growth [1, 2]. Much of the morbidity 

in untreated TIS is due to progressive restrictive respiration, leading to respiratory failure 

and increased risk of early mortality [3]. Surgical management of TIS can substantially 

limit respiratory decline. Vertical Expandable Prosthetic Titanium Rib (VEPTR), an FDA-

approved TIS treatment approach, was designed to adjust the thoracic bone structure to 

facilitate lung growth and further improve respiration [4]. Image-based approaches for TIS 

treatment evaluation and surgery planning suffer from the challenges of image acquisition 

and analysis as follows: (1) How to effectively acquire dynamic images that capture 

3D structural and dynamic information? For many TIS patients, subjects are unable to 

cooperate with breathing instructions during image acquisition. Image acquisition can only 

be implemented during free-breathing, and it is not feasible to use a surrogate device 

for tracing breathing signals. (2) How to assess the thoracic structures from the acquired 

image, such as lungs, left and right, separately? (3) How to depict the dynamics of thoracic 

structures due to the respiration motion? (4) How to use the structural and functional 

information for the quantitative evaluation of surgical TIS treatment and for the design of the 

surgery plan?

Quantitative thoracic dynamic magnetic resonance imaging (QdMRI), a recently developed 

technique [5–8], provides a potential solution to the above questions. For pediatric patients 

with TIS, computed tomography (CT) or hyperpolarized gas magnetic resonance imaging 

(MRI) have not been widely utilized in clinical practice due to the heavy radiation concerns 

and difficulties in clinical implementation with specialized equipment, respectively. QdMRI 

is a purely image-based approach that is designed to utilize images acquired under free tidal 

breathing conditions, making it non-invasive and practical for implementation in clinical 

practice. QdMRI allows one to build one 4D image within one breathing cycle, and thoracic 

structures can be segmented from the 4D image by applying deep learning based automatic 

segmentation approaches, such that it is feasible to make measurements of properties such 

as tidal volume and tissue parenchymal properties for quantitative analysis. By combining 

it with our existing open-source software, CAVASS (computer-assisted visualization and 

analysis software system, http://www.mipg.upenn.edu/Vnews/mipg_software.html), QdMRI 

can generate visualizable 3D surface renditions for each 3D volume in one breathing cycle. 

QdMRI has been utilized to depict changes in regional thoracic dynamic function for TIS 

patients [7] and healthy children [8] via assessment of volumes at end of inspiration (EI) 

and end of expiration (EE) for each lung, hemi-diaphragm, and chest wall during one free-

breathing cycle. QdMRI has also been applied to study the relationships between thoracic 

component tidal volumes and spinal curve type for TIS patients [9]. We have recently also 

utilized QdMRI to quantify respiratory function in patients with early onset scoliosis (EOS) 

and to assess the effects of placement of rib-based anchors in terms of impairment of chest 

wall motion [10, 11]. As such, we believe that this system will be useful for clinical and 

research application purposes, and as far as we know, no such system exists. The purpose of 

this paper is to introduce our software system from the image processing aspect, namely a 
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quantitative dynamic MRI based software system for the comprehensive analysis of regional 

and global thoracic dynamics.

2. Materials and methods

A simplified architectural diagram of the QdMRI system is shown in Figure 1, which 

includes 4 major modules: dynamic MRI acquisition, 4D image construction, image 

segmentation (from 4D image) and visualization of segmentation results, dynamic 

measurements, and comparisons of measurements from TIS patients with those from normal 

children to assess patient status pre-operatively or change post-operatively.

Image data:

88 dynamic MR images through the thorax and upper abdomen were obtained from 44 

TIS patients before and after surgery among a cohort of 61 TIS patients. TIS patients with 

insufficient clinical or radiographic data were excluded. We also collected 124 dynamic MR 

images from normal children with the following exclusion criteria: (i) history of thoracic 

surgery; (ii) history of asthma or other lung disease; (iii) respiratory tract illness within 

the last 30 days; and (iv) history of scoliosis or other congenital skeletal abnormality. 

We included normal children in our study so that we can quantify and describe changes 

in normal thoracic dynamics during childhood maturation via QdMRI and to create a 

normative reference database to help assess patients with TIS.

QdMRI system modules:

a. Dynamic MR image acquisition: The thoracic dMRI protocol was performed 

as follows: 3T MRI scanner (Verio, Siemens, Erlangen, Germany), True-FISP 

(bright-blood) sequence, TR=3.82 ms, TE=1.91 ms, voxel size ~1×1×6 mm3, 

320×320 matrix, bandwidth 258 Hz, and flip angle 76°. For each sagittal location 

across the thorax, 80 slices were obtained over several tidal breathing cycles at 

~480 ms/slice. The image acquisition module provides scans (in DICOM format) 

for use by the 4D image construction module. A sparse dMRI imaging approach 

is also investigated, where we sample fewer image signals in both time and space 

but without significant loss of the ability to depict or quantify thoracic dynamics 

[12]. The scanning time can be reduced from 45 minutes for the above full scan 

to 15–20 minutes per subject for the sparse approach.

b. 4D Image construction: Supposing that the dynamic MR image from step (a) 

covers ~35 locations in the sagittal plane, with 80 sampling slices in temporal 

space for each location, we would have 2800 (35×80) 2D sampled slices for 

one subject. A subset (around 175–315) of all spatio-temporally sampled 2D 

MRI slices of the dynamic thorax are chosen to construct one representative 4D 

image comprising one full breathing cycle for each individual subject. One cycle 

might have 5 to 9 time points/ respiratory phases. The QdMRI system includes 

our recently developed optical-flux-based 4D image construction approach [6], 

which is a purely image-based and fully automated algorithm. Overall tested data 

sets and cycles for all subjects, the temporal disorderliness of this method is less 

than 0.1, and the objective non-smoothness factor is less than 1-pixel unit. The 
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input for this module is DICOM format files, and the output is one 4D image. 

More details of 4D image construction can be found in [6].

c. Lung segmentation from 4D image: A 2D U-Net [13] type deep learning (DL) 

network was implemented to segment each lung in the constructed and intensity 

corrected/standardized 4D image [14,15]. Intensity standardization, which has 

been recently referred to as image harmonization [16] or image normalization 

[17], allows MR intensity values to attain tissue-specific numeric meaning. 

Previous research has shown that these operations are vital for quantitative 

analysis of MR images [15]. In this study, calibration parameters for intensity 

standardization were estimated based on normal children data set and were 

utilized to standardize both normal-subject and patient data sets. More details of 

intensity standardization can be found in [15].

The input for the lung segmentation module is a 4D image and the output 

is binary masks of each lung at EE and EI. The lung segmentation network 

includes a localization neural network to catch the ROI (region of interest) of 

the lung using a 2D bounding box, and a delineation neural network to detect 

the boundary of the lung [18]. The cross-entropy and L1 loss functions were 

combined together to define the loss function in the localization network, and a 

false positive and false negative plus DICE loss function [19] was used to train 

the lung segmentation network. More details can be found in another one of our 

SPIE conference papers [18].

d. Dynamic measurements: Based on lung segmentation from the 4D image, the 

QdMRI system can output the volumes of the lungs at EE and EI, and chest wall 

and hemi-diaphragm excursion volumes from EE to EI can be derived [7, 8]. 

Furthermore, lung standardized signal intensity measurements can be performed 

for lung parenchymal analysis [20]. As a side-product, the respiratory rates for 

individual patient breathing cycles can also be estimated.

e. Statistical analysis: Using volumetric and intensity-based measures from TIS 

patients (before and after surgery) and normal children obtained via QdMRI, 

one can compare TIS patients to normal children to obtain regional and global 

quantitative markers of the deviation of thoracic respiratory function from 

normal. For example, the Mahalanobis distance may be used to evaluate the 

difference of measurements from TIS patients before and after surgery, or to 

evaluate the difference of measurements from TIS patients with those of healthy 

children [21].

3. Results

Figure 2 shows the graphic user interface (GUI) of the QdMRI system, with the input of 

dMRI DICOM files. There are display windows to show the slice at a specific location 

in a single image or in a cine/continuous mode. After clicking the button of “Construct” 

or “Segment”, another separate window will show the progress of image construction and 

segmentation.
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The QdMRI system can generate lung segmentation results and 3D surface renditions for 

a subject at EE and EI as shown in Figure 3. The 3D surface rendition can be visualized 

via the open-source software, CAVASS [22], or can be saved in STL file format and 

then utilized by other 3D graphic software programs. Table 1 displays some representative 

QdMRI volumetric parameters of the left and right lungs, left and right lung tidal volumes, 

and left and right excursion volumes of chest wall and hemi-diaphragm in a healthy 8.2 year 

old female and with body mass index (BMI) 23.5 kg/m2, including the symmetry measure of 

α(RLtv, LLtv) = (RLtv − LLtv) / (RLtv + LLtv). We also report chest wall and diaphragm 

tidal excursion volumes as well as the symmetry between left and right components for chest 

wall and diaphragm.

Our current platform for the QdMRI system runs on a computer with i9 CPU, 64 GBytes 

CPU RAM, Ubuntu 18.04 with Nvidia RTX2080, CUDA 10.2, and TensorFlow 2.0.0. The 

time cost for the whole procedure is as follows: The scanning time/image acquisition for 

one subject is around 15–20 minutes, 4D construction is around 5 minutes, segmentation via 

deep learning is 70 seconds for all time points, and measurements take around 2 seconds. 

We designed image construction in a parallel mode with multithread programming on more 

CPUs to further reduce the image construction time. Of course, higher level GPUs can also 

save time in image segmentation. In the current version of QdMRI, the auto-segmentation 

for lungs in normal children performs well with an average DICE of 0.96±0.01. Lung 

auto-segmentation in TIS patients is more challenging with an average DICE of 0.87±0.06, 

which is still being improved.

4. Conclusions

In this paper, we introduce QdMRI as a software system from the image processing aspect. 

The system provides a comprehensive analysis of global and regional thoracic dynamics 

by including image acquisition, 4D image construction, 4D segmentation, and quantitative 

measurements for both TIS patients and normal children. Such a system does not currently 

exist for the analysis of pediatric or adult patient thoracic dynamics.

Although lung segmentation in TIS patients is still challenging due to thoracic deformity 

and low MR image quality, we obtained acceptable results and are developing a minimally 

interactive deep learning approach for this purpose. Once we finish building a normative 

pediatric QdMRI database across ages 6–18 years for both boys and girls, the data sets and 

parameters will be available to quantitatively assess regional lung function during childhood 

maturation. The QdMRI system can be utilized for scoliosis-related applications not only 

in children but also in adults, as well as in numerous other scenarios where a dynamic 4D 

image analysis technique is needed. Furthermore, it will enable new opportunities to better 

understand TIS and other conditions that affect thoracic function in individual patients, as 

well as the effects of therapeutic interventions, both in children and in adults.
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Figure 1. 
A schematic representation of the QdMRI system.
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Figure 2. 
Graphic User Interface of QdMRI system with one subject dMRI scan as input.
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Figure 3. 
Top row: Lung segmentation and 3D surface rendition results at end expiration (EE) and end 

inspiration (EI) for a normal child. Bottom row: 3D renditions of the surfaces at EE and EI 

before surgery (left) and after surgery (right) for a TIS patient of comparable age and same 

gender.
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Table 1.

Representative QdMRI parameters from the healthy subject shown in Figure 3.

LL RL LCW RCW LD RD

EE 307.684 cc 448.061 cc - - - -

EI 378.401 cc 553.343 cc - - - -

Tidal volume (tv) 70.716 cc 105.282 cc 16.002 cc 28.116 cc 41.492 cc 68.411 cc

Bilateral tv (Bxtv) 159.510 cc 44.118 cc 109.903 cc

%Lxtv, %Rxtv 43.14% 56.86% 36.27% 63.73% 37.75% 62.25%

α(Rx, Lx) 0.15 0.27 0.24

EE: end expiration, EI: end inspiration.

LL: left lung, RL: right lung, LCW: left chest wall, RCW: right chest wall, LD: left hemi-diaphragm, RD: right hemi-diaphragm.

%Lxtv = Lxtv/Bxtv, %Rxtv = Rxtv/Bxtv with x= L (lung), CW (chest wall), or D (hemi-diaphragm).

α(Rx, Lx) = (Rx − Lx) / (Rx + Lx), with x= L (lung), CW (chest wall), or D (hemi-diaphragm).
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