1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Org Biomol Chem. Author manuscript; available in PMC 2022 August 28.

-, HHS Public Access
«

Published in final edited form as:
Org Biomol Chem. 2021 August 05; 19(30): 6697—6706. doi:10.1039/d10b00742d.

Discrimination of Enantiomers of Amides with Two Stereogenic
Centers Enabled by Chiral Bisthiourea Derivatives Using ‘H NMR
Spectroscopy

Hanchang Zhang?, Hongmei ZhaoP, Jie Wen?, Zhanbin Zhang?, Pericles Stavropoulos®,
Yanlin Li&, Lin Ai?, Jiaxin Zhang?
a.College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.

b-State Key Laboratory of Information Photonics and Optical Communications, School of Science,
Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China

¢-Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409,
USA

Abstract

Enantiomers of a few new amides containing two stereogenic centers have been derived from

D- and L-a-amino acids as guests for chiral recognition by TH NMR spectroscopy. A variety

of chiral amides with two or more stereogenic centers often exist in products of catalytical
asymmetric synthesis, natural products or its total synthetic products, and chiral drugs. It

would be a challenging and meaningful work to explore the their chiral recognition. For this
purpose, a class of novel chiral bisthiourea derivatives 1-9 has been synthesized from (1S5,
25)-(+)-1,2-diaminocyclohexane, D-a-amino acids, and isothiocyanates as chiral solvating agents
(CSAs). CSAs 1-9 proved to afford better chiral discriminating results towards most amides

with two stereogenic centers, which have been rarely studied as chiral substrates by 1H NMR
spectroscopy. Especially, CSAs 7, 8 and 9, featuring 3,5-bis(trifluoromethyl)benzene residues,
exhibit outstanding chiral discriminating capabilities towards all amides, providing well-separated
1H NMR signals and sufficiently large nonequivalent chemical shifts. To test their practical
application in determination of enantiomeric excess, H NMR spectra of chiral amides (G16) with
different optical purities were measured in the presence of CSAs 7 and 8, respectively. Their ee
values (up to 90%) were accurately calculated by intergation of the A/H proton of the CONAHPh
group of G16. To better understand the chiral discriminating behavior, Job plots of (+)-G16 with
CSA 7 and (£)-G17 with CSA 8, the association constants (Kj) of (5,/)-G16 and (R,S)-G16

with CSA 7 were evaluated, respectively. In order to further reveal any underlying intermolecular
hydrogen bonding interactions, theoretical calculations of enantiomers of (S,/)-G16 and (R, S)-
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G16 with CSA 7 were performed by means of the hybrid density functional theory (B3LYP) with
the standard basis sets of 3-21G of the Gaussian 03 program, respectively.

Graphical Abstract

Enantiomers of amides with two stereogenic centers have been effectively discriminated in the
presence of chiral bisthiourea derivatives as chiral solvating agents by 1H NMR spectroscopy.
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Introduction

The determination of enantiomeric excess (ee) of chiral compounds is among the most
fundamental undertakings of chirality and related studies, in various fields such as in
catalytic asymmetric chemistry, biology and pharmaceutical science.! For this purpose,
various methods and techniques have been developed and utilized. Among them, high
performance liquid chromatography (HPLC) is the most classic and traditional technique
for separation of enantiomers and determination of enantiomeric excess.? In addition,
other methods and techniques, such as NMR spectroscopy,? circular dichroism (CD),*
mass spectrometry (MS),5 X-ray crystallography,8 UV/vis and fluorescence spectroscopy,’
have also been developed to explore discrimination of enantiomers, separately or in
tandem. Especially, 1H NMR spectroscopy has been advanced more rapidly in the field
of chiral recognition due to several apparent advantages, including fast and accurate
application, convenient measurements, as well as employment of low amounts of hosts
and guests.® Of course, excellent and efficient chiral auxiliaries play a key role in the
study of chiral recognition by means of 1H NMR spectroscopy. As a result, various
chiral derivatizing agents (CDAs),? and chiral solvating agents (CSAs), including chiral
bisurea and bisthiourea derivarives,10 have been synthesized and evaluated for establishing
highly effective chiral auxiliaries. Herein, a class of novel chiral bisthiourea derivatives
has been synthesized as chiral solvating agents for chiral recognition, engaging various
kinds of readily interchangeable, 0-a-amino acids (phenylglycine, phenylalanine and
valine), (15,25)-(+)-1,2-diaminocyclohexane, and phenylisothiocyanate (or its respective
derivatives).
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In the field of chiral recognition, chiral substrates with only one stereogenic center, such as
chiral amines,!! amino alcohols,2 alcohols,3 carboxylic acids,# carbonyl compounds,®
amino acids and their derivatives,1® have been often used as guests in the presence

of chiral auxiliaries for ee determination by H NMR spectroscopy. In contrast, chiral
recognition of chiral substrates with two or more stereogenic centers has been rarely
reported.1” However, such chiral substrates often exist in products of catalytic asymmetric
synthesis, and also participate in the total synthesis of natural products and preparation

of chiral drugs.18 Importantly, different enantiomers may have different biological and
pharmacological activities, and even result in the opposite physiological effects.1® Thus,
analysis of optical purity and differentiation of enantiomers of these chiral analytes, are
highly important undertakings, to be used therapeutically in the context of the clinical chiral
drugs. Among them, the amide group is one of the most essential and important moieties2?
and also the basic building block in proteins, associated with the formation of peptide
bonds.21 For example, an analysis of chemical reactions used in current medicinal chemistry
(2014) revealed that the most frequently used chemical reactions were amide bond formation
methodologies, accounting for 16% of all reactions. 22 In this paper, enantiomers of several
chiral amides with two stereogenic centers (SR and RS) were prepared by using D- and
L-a-amino acids as chiral sources, and their chiral recognition was studied in the presence
of chiral bisthiourea derivatives by means of 1H NMR spectroscopy.

Results and discussion

Synthesis of chiral bisthiourea derivatives 1-9 as CSAs.

Chiral bisthiourea derivatives 1-9 as chiral solvating agents were synthesized by the
corresponding chiral diamines 10 with phenylisothiocyanate or its respective derivatives
11 in 55-67% yields (Scheme 1).23 The detailed synthetic procedures are available in the
ESI.

Synthesis of enantiomers of chiral amides 16—-27 as guests.

First, enantiomers (S,R)-GX and (R,S)-GX (X = 16-24) of amides with two stereogenic
centers were prepared by an amidation reaction of (S)- and (R)-/N-Ts-a-amino acids 12
and corresponding (R)- and (S)-amines 13 containing an amino acid residue, respectively
(Scheme 2).23a—c.24

To evaluate the chiral discriminating capabilities of CSAs 1-9, nine samples of (x)-G16
were first prepared in the presence of CSAs 1-9 (molar ratio = 1:1, [(+)-G16] =5

mM) in CDCls, respectively. Their 1H NMR spectra were recorded on a 400 MHz NMR
spectrometer. The results show that two enantiomers of (+)-G16 can be clearly discriminated
by the split 1H NMR signals of the corresponding protons of various groups in the presence
of CSAs 1-9. The preliminary results indicate that CSAs 1-9 possess more sensitive and
effective chiral discriminating capabilities towards enantiomers of (+)-G16. Subsequently,
1H NMR spectra of enantiomers (S,R)-G16 and (R,S)-G16 with CSAs 1-9 (molar ratio
=1:1, [(§R)-G16] = [(R,S)-G16] = 2.5 mM) were recorded in CDCls, respectively.

The assignment of enantiomers of (+)-G16 was easily determined by comparing the 1H
NMR signals and chemical shift values with the corresponding split protons. The number
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of protons of the split 1H NMR signals of enantiomers of (+)-G16 and the maximum
nonequivalent chemical shift values (AAS) are summarized in Fig. 1.

As shown in Fig. 1, CSAs 7, 8 and 9 with a trifluoromethyl group on the phenyl ring exhibit
superior chiral discriminating capabilities towards (+)-G16 by comparison to other CSAs
(1-6). For example, the split 1H NMR signals of eight types of protons of (+)-G16 were
observed in the presence of CSA 7, and their AAS values are found to be 0.025 and 0.006
(CH(CHs),), 0.058 (CHs(Ala)), 0.054 (CH;(Ts)), 0.069 (a-H(Val)), 0.191 (TsA/H), 0.038
(ArH), and 0.184 (CONHPh) ppm, respectively. Among them, AA6 values of AVH protons
of Ts\WH and CONAHPh groups exceed 0.1 ppm (0.191 and 0.184 ppm), featuring better
baseline resolution and absence of any overlaps (Fig. 2).

In order to obtain better chiral discriminating conditions, such as a better baseline resolution
and more clearly split IH NMR signals with as fewer overlapping peaks as possible,

several chiral discriminating conditions were tested. First, samples of (+)-G16 with CSA

7 were prepared in different deuterated solvents, including CDCl3, CDCIl3/CgDg (5%),
CDCl3/CD3COCD3; (5%), CDCl3/CD30D (5%), and CDCl3/DMSO-dg (5%). Their 1H
NMR spectra were measured on a 400 MHz spectrometer at room temperature. The AAS
values of the corresponding protons of CHs (Ts), TsNH and CONAHPh groups of (£)-G16 in
different deuterated solvents are summarized in Table 1.

As shown in Table 1, the intermolecular interaction between CSA 7 and (+)-G16 were
weakened (CDCl3/CD3COCD3 (5%)), and even disappeared (CDCl3/CD30D (5%) or
DMSO-a; (5%)) upon enhancement of solvent polarity. The AAS values of the related
protons of (x)-G16 are slightly better in CDCI3/CgDg (5%). Based on these results, CDCl3
alone, as a commonly used deuterated solvent, is more suitable for chiral recognition by 1H
NMR spectroscopy.

Subsequently, to explore the effects of concentration on chiral recognition, samples of
(¥)-G16 with various concentrations (1, 2, 5 and 10 mM) were prepared in the presence of
CSA 7 (molar ratio 1:1) in CDCls, and their 1H NMR spectra were measured on a 400 MHz
spectrometer at room temperature. The overlaid 1H NMR spectra of protons of CHs (Ts) and
CONHPh of (£)-G16 are shown in Fig. 3.

As shown in Fig. 3, the results show that the AAS values of the protons of the CH; (Ts)
group of (+)-G16 exhibit an increasing trend from 0.020 (1 mM) to 0.062 ppm (10 mM)

as the concentration gradually increases. Similarly, the AAS values of the AVH proton of the
CONHPh group of (+)-G16 are also observing the same trend. Based on (i) the solubility of
amides and CSAs, (ii) the general requirements for concentration in 1H NMR spectroscopy,
and (iii) the more clear display of the separated 1H NMR signals, a concentration of 5 mM
was deemed to be optimal and used in most cases.

Finally, samples of (+)-G16 and CSA 7 with different molar ratios, including 1:3, 1:2, 1:1,
2:1 and 3:1, were prepared at a constant concentration (5 mM) of (x)-G16 in CDCls, and
their IH NMR spectra were recorded on a 400 MHz spectrometer at room temperature. The
results show that the AAS values of the protons of CHj; (Ts) of (£)-G16 were gradually
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increasing as CSA 7 increased from 0.029 (3:1) to 0.053 ppm (1:3). Similarly, the AAS
values of the NVH proton of CONAHPh group of (x)-G16 were also gradually increasing from
0.087 (3:1) to 0.298 ppm (1:3). Their overlaid 1H NMR spectra and AAS values of the
protons of CHs (Ts) and NVH of CONAHPh groups of (x)-G16 are shown in Fig. 4.

Based on (i) the solubility of amides and CSAs in different ratios, (ii) the more clearly
separated 1H NMR signals, and (iii) the more appropriate AAS values, an 1:1 molar ratio of
(£)-G16-G27 with CSAs 1-9 was used for chiral recognition.

To further explore chiral recognition of other amides in the presence of CSAs 1-9 under
the optimized chiral discriminating conditions, 99 samples of (£)-G17-G27 were prepared
in the presence of CSAs 1-9, respectively, and their 'H NMR spectra were recorded on

a 400 MHz spectrometer. The split 1H NMR signals of the related protons of 86 samples
were distinctly observed in their spectra. For the remaining 13 samples, the split 1H NMR
signals cannot be clearly detected. The assignments of enantiomers of the differentiated
samples were achieved in the manner noted above. Similarly, CSAs 7, 8 and 9 show
excellent chiral discriminating capabilities towards amides (£)-G17-G27 (AAS, up to 0.407
ppm), presumably due to the presence of the 3, 5-trifluoromethyl moieties (CF3) as a strong
electron-withdrawing group, increase the AAS values, by resulting in an increasing in the
acidity of NH proton of the thiourea group. The AAS values of representative protons of
(+)-G16-G27 in the presence of CSAs 7, 8 and 9, along with their partial 1H NMR spectra,
are summarized in Table 2.

The AAS values of the split protons of (£)-G16—G27 in the presence of CSAs 1-9, with
the exception of AAS values of the representative protons in the presence of CSAs 7-9, are
summarized in Table 3. In addition, their spectra are available in the ESI.

To further evaluate any underlying intermolecular interactions, theoretical calculations of
enantiomers (S,R)-G16 and (/,S)-G16 with CSA 7, as a representative example, were
carried out by the hybrid density functional theory (B3LYP)/6-31G, respectively.28 The
proposed models show that the intermolecular hydrogen bonds were formed between CSA
7 with (5,R)-G16 (CONH(Ph):-OCNH (2.061 A), (CH3),CH(NH)CO:--NHCS (2.259 A
and 4.094 A)), and (R,S)-G16 (CONH(Ph)--OCNH (1.955 A), (CH3),CH(NH)CO:-NHCS
(2.377 A and 4.232 A)), respectively (Fig. 6).

As shown in Fig. 5, (5,/)-G16 and (R,S)-G16 with CSA 7 formed three intermolecular
hydrogen bonds, respectively. The results exhibit that (S,/)-G16 and (R,S)-G16 with CSA 7
may form differential tight diastereomeric complexes according to the number and distances
of their hydrogen bonds on the whole.

In addition, the calculated & values of NH proton (CONHPh group) of (S,/)-G16 and
(R,5)-G16 in the presence of CSA 7 were obtained according to the above theoretically
calculated models, and were shown to be in keeping with the observed values (Table 5).

To investigate the behavior of intermolecular interactions, Job plots of (S,R)-G16 and
(R,S)-G16 were constructed in the presence of CSA 7. The Job plots of (£)-G16 showed
a maximum value (X*A6 = 0.069 ppm, X*Aé = X*A5(5/;>)_(316 - )(*A‘S(R,.S)-Glﬁ =0.054 -

Org Biomol Chem. Author manuscript; available in PMC 2022 August 28.
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(-0.015)) at a molar fraction of X = 0.5, which suggests that a pair of diastereoisomeric
complexes with 1:1 stoichiometry was established between (S,/)-G16 and (R, 5)-G16

with CSA 7, respectively. Among them, To further verify the above results, Job plots of
(S,R)-G17 and (R,S)-G17 were carried out in the presence of CSA 8. The similar results
(1:1 complexes) were obtained because a maximum value (X*Aé = 0.041 ppm, X*AS =
X*D(sR)-G17 — X*A8(R 9)-G17 = 0.025 — (-0.016)) was observed at a molar fraction of X'=
0.5 (Fig 5).

To evaluate the strength of intermolecular noncovalent interactions, the binding constants
(Ky) for (S,R)-G16 and (R,S)-G16 with CSA 7 were determined by 1H NMR titrations. The
K; values were calculated by means of the nonlinear curve-fitting method, respectively.?®
Detailed results are summarized in Table 4.

Now that CSAs 1-9 have been established to demonstrate excellent chiral discriminating
capabilities towards amides 16-27, to further explore their practical application in
determining enantiomeric excess (ee), 7 samples containing (S,/)-G16 with 90%, 85%,
65%, 45%, 25%, 10%, 0% ee were prepared in the presence of CSA 7 in CDCl3, and their
1H NMR spectra were recorded on a 400 MHz NMR spectrometer. Enantiomeric excess
for all samples were accurately calculated based on the integration of the A/H proton of the
CONHPh groups, featuring well-separated 1H NMR signals of (S5,/)-G16 and (R,S)-G16
(up to 90% ee) (Fig. 7 (a)). Excellent linear correlations between the theoretical (X) and
observed (Y) ee% values were obtained in the presence of CSA 7 (Fig. 7 (c)). To further
verify the practical applicability in determining ee values, another set of samples containing
(S,R)-G16 with 85%, 65%, 45%, 25%, 10%, 0% ee was also prepared in the presence

of CSA 8 in CDClI3, and their 1H NMR spectra were measured (Fig. 7 (b)). The linear
correlations between the theoretical (X) and observed ('Y) ee% values were obtained in the
presence of CSA 8 (Fig. 6 (7)).The results obtained proved to be accurate and feasible.

Conclusions

In summary, enantiomers of amides 16—27 with two stereogenic centers were prepared from
the corresponding D- and L-a-amino acids as initial chiral sources for chiral recognition by
1H NMR spectroscopy. Enantiomers of amides 16-27 were successfully differentiated in the
presence of CSAs 1-9 by IH NMR spectroscopy. Most importantly, during the execution

of this study, CSAs 7-9 with 3,5-trifluoromethyl moieties as a strong electron-withdrawing
group, were shown to exhibit highly sensitive and effective chiral discriminating capabilities
towards these chiral amides, leading to a better baseline resolution, larger nonequivalent
shift values and multiple detection windows. The Job plots of (S5,/)-G16 and (R,S5)-G16
with CSA 7, and (S,/)-G17 and (R, S)-G17 with CSA 8 were carried out, respectively.

The association constants (Kj3) of (S5,/)-G16 and (R,S5)-G16 with CSA 7 were evaluated.
Theoretical calculations of enantiomers of (£)-G16 with CSA 7 were performed by means
of the hybrid density functional theory (B3LYP) with the standard basis sets of 3-21G

of the Gaussian 03 program. Enantiomeric excesses (ee) of G16 with different optical
compositions (up to 90% ee) were calculated based on the integrations of 1TH NMR

signals of the split NH proton (CONAPh group) of G16 in the presence of CSAs 7

and 8, respectively, giving excellent and accurate experimental results, in agreement with

Org Biomol Chem. Author manuscript; available in PMC 2022 August 28.
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theoretical data. In conclusion, a practical strategy for chiral recognition of amides with two
stereogenic centers has been effectively established in the presence of CSAs 1-9 by using
1H NMR spectroscopy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.
Synthesis of chiral bisthiourea derivatives 1-9.

R2
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CH,Cl,
it, N,

R'=R%2=H
CSA1:R=Ph
CSA2:R=Bn
CSA3:R=Pr
R'=CF; RZ=H
CSA4:R=Ph
CSA5:R=Bn
CSA6:R="Pr
R'=H,R2= CF,
CSAT7:R=Ph
CSA8:R=Bn
CSA9:R=Pr

CSAs 1-9 were characterized by IH NMR, 13C NMR, 1°F NMR (CSAs 4-9), and IR
spectroscopies, and by HRMS methods, and their spectra or data are available in the ESI.
As shown in Scheme 1, the outstanding features of CSAs 1-9 rely on the presence of two
thiourea units and two amide groups, as potential multiple hydrogen bonding sites with
chiral substrates, to facilitate formation of diastereomeric complexes for chiral recognition

by 1H NMR spectroscopy.
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N
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R o} =3

(S,R)-GX and (R,S)-GX

X =16-24 R' = CHs,,
G20: R?=Ph,R3=H
R = CH(CHa),, G21: R? = Ph, R® = OCHj,4
G16: R2 = CHy, R3 = H G22: R? = PhCH,, R®=H
G17: R2 = CH3, R® = OCHj4 G23: R? = PhCH,, R® = OCHj4
G18:R2=Ph, R®=H R" = PhCH,,
G19: R?=PhCH,, R®=H G24:R?=Ph,R®=H

Scheme 2.
Synthesis of enantiomers of chiral amides 16-24.

In addition, enantiomers (S,/)-GX and (R,S5)-GX (X = 25-27) of amides with two
stereogenic centers were derived from (5)- and (R)-A-Ts-Pro 14 with (R)- and (S)-amines 15
according to the aforementioned synthetic procedure (Scheme 3).
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R! o
COOH + 2 = -
Ts i HN@R EtOAc
14 15
Gfllj\ \©\R2 G25 R1 Ph R2_
(S,R)-GX and (R,S)-G G26: R' = Ph, R? = OCH;
x 25-27 G27:R'=PhCH,, R2=H

Scheme 3.
Synthesis of enantiomers of chiral amides 25-27.

The structures of all enantiomers (S,R)-GX and (R,S)-GX (X = 16-27) were characterized
by IH NMR, 13C NMR, IR and HRMS. In addition, IH-1H COSY and *H-13C HSQC
spectra of (S,R)-GX or (R,S)-GX were measured for the correct assignment of the related
protons of CONH and Ts/NVH groups of amides. The detailed procedures of synthesis of
enantiomers of (£)-G16-27, along with their spectra, are available in the ESI.
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Fig. 1.

Number (M) of protons of the split 'H NMR signals of (+)-G16 and the maximum

Page 12

nonequivalent chemical shift values (M), (AAS x 1072, ppm) in the presence of CSAs 1-9
(1:1, [(¢)-G16] = 5 mM) in CDCl3 (400 MHz) at room temperature, respectively. AAS =

|AS(s,R)-G16 ~ DS(R,5)-G16l: AE(SR)-G16 = O(5R)-G16 — Sfrees DO(R,5)-G16 = O(R,5)-G16 — Ofree
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Fig. 2.
(@) TH NMR spectrum of (+)-G16 in CDCl3 at room temperature (400 MHz), ([(+)-G16] =

5 mM); (b) 1H NMR spectrum of ()-G16 in the presence of CSA 7 (1:1, [(¥)-G16] =5
mM) in CDClI3 at room temperature (400 MHz). Different colors marks “@” and “O” stand
for different protons of the split 1H NMR signals of (S,R)-G16 and (R,S)-G16, respectively,
AAS = |AS(s,R)-G16 — AR 5)-G16l: A8(5R)-G16 = (S,R)-G16 — Sfrees AR 5)-G16 = O(R,.9)-G16 —
Sfree
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e

Overlaid 1H NMR spectra of the protons of CHs (Ts) (a), and CONAHPh (b) of (+)-G16
with different concentrations in the presence of CSA 7 in CDCl3 at room temperature (400
MHz).The molar ratio of (+)-G16 and CSA 7 is 1:1, AAS = |AS( s, r)-G16 ~ A(R,9)-G16l,

A8(s R)-G16 = 8(5,R)-G16 — Sfrees AR 5)-G16 = O(R.9)-G16 — Ofree-
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Overlaid 1H NMR spectra of the protons of CHs (Ts) (a), and of NH of CONHPh (b) of
(+)-G16 with CSA 7 in different molar ratios (400 MHz).The concentration of (+)-G16 is 5
mM in CDCl3, unchangeable, AAS = |A5(.S‘,R)-616 - A5(R,.S)-G16|r AS(S,R)-GlG = 5(5,1‘?)—G16 -

Strees DS(R,9-G16 = 8(R.5)-G16 — Sfree
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Page 16

Job plots for complexes of (5,/)-G16 and (R,S)-G16 with CSA 7, (5,R)-G17 and (R,5)-G17
with CSA 8, respectively. As stands for chemical shift change of the MH proton (CONAHPh)
of enantiomers of (+)-G16 and G17 in the presence of CSAs 7 and 8, respectively. X stands
for the molar fraction of enantiomers of (+)-G16 and G17. A8 = &5 /)-G16 or G17 — Sfree A
= (R 9-G16 or G17 — Sfree The total concentration of enantiomers of (+)-G16 with CSA 7 or

(£)-G17 with 8 was 5 mM, respectively.
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Fig. 6.
Propoded bonding models for the hydrogen bonding interactions between CSA 7 and

enantiomers (S,/)-G16 (a) and (R,S)-G16 (b).
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Page 18

Determination of enantiomeric excesses of G16, ee (%) = [((S,/)-G16 — (R,S)-G16))/((S,R)-
G16 + (R,S)-G16))]x100%, Overlaid *H NMR spectra of the MH proton of CONAHPh group
of (5,R)-G16 (@) and (R,S)-G16 (O) in the presence of CSAs 7 (a) and 8 (b), [G16] =5
mM. Linear correlations between the theoretical (X) and observed (Y) ee % values of G16
with CSAs 7 (c) and 8 (d), respectively. AAS = |Ad (s /)-G16 — AR 9)-G16l: AS(5,R)-G16 =
8(5,R)-G16 — Sfree DE(R 5)-G16 = 6(R,.9-G16 — Sfree

Org Biomol Chem. Author manuscript; available in PMC 2022 August 28.



1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

Zhang et al. Page 19

Table 1.

Nonequivalent chemical shift values (AAS, ppm) of the related proton of (+)-G16 in the presence of CSA 7 in
different deuterated solvents at room temperature (400 MHz).

Solvent CONHPh  TsNH  CHj3(Ts)
CDCl; 0.184 0.191  0.054
CDCl4/CqDg (5%) 0.189 0.173  0.048
CDCI4/CD3COCD; (5%)  0.042 0.090  0.011
CDCI3/CD30D (5%) 0.0 0.0 0.0
CDCly/DMSO-ds (5%) 0.0 0.0 0.0

a
(+)-G16/ CSA 7 = 11, [(£)-G16] = 5 mM, AAS = |AS( S, R)-G16 ~ AJ(R,5)-G16l: A8(S,R)-G16 = &(S,R)-G16 — Sfree AS(R,5)-G16 =
5(R,S)-G16 — Sfree
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Table 4.

Association constants (Ky, ML) and AG (KJ mol™2) of (S,R)-G16 and (R,S)-G16 with CSA 7.7

Host Guest Ka -AG’

CSA7 (SR)-G16 (555+5.20)x103 18.7+43
CSA7 (RS)-G16 (5.98+556)x103 19.1+4.1

a . _
Ka values were calculated by the nonlinear curve-fitting method.
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Table 5.

Calculated and observed chemical shift values (&, ppm) and nonequivalent chemical shift values (A, ppm) for
the NH (CONHPh) proton of the (S,/)-G16 and (R,S5)-G16 in the presence of CSA 7.

S8Rl SRe-Gls A8

Obsd values 8.540 8.355 0.185
Calcd vaues 8.633 8.516 0.117
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