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Hepatocellular carcinoma (HCC) represents the most important type of liver cancer, the 5-year survival
rate for advanced HCC is 2%. The heterogeneity of HCC makes previous models fail to achieve satisfactory
results. The role of Cholesterol-based metabolic reprogramming in cancer has attracted more and more
attention. In this study, we screened cholesterol metabolism-related genes (CMRGs) based on a system-
atical analysis from TCGA and GEO database. Then, we constructed a prognostic signature based on the
screened 5 CMRGs: FDPS, FABP5, ANXA2, ACADL and HMGCS2. The clinical value of the five CMRGs was
validated by TCGA database and HPA database. HCC patients were assigned to the high-risk and low-risk
groups on the basis of median risk score calculated by the five CMRGs. We evaluated the signature in
TCGA database and validated in ICGC database. The results revealed that the prognostic signature had
good prognostic performance, even among different clinicopathological subgroups. The function analysis
linked CMRGs with KEGG pathway, such as cell adhesion molecules, drug metabolism-cytochrome P450
and other related pathways. In addition, patients in the high-risk group exhibited characteristics of high
TP53 mutation, high immune checkpoints expression and high immune cell infiltration. Furthermore,
based on the prognostic signature, we identified 25 most significant small molecule drugs as potential
drugs for HCC patients. Finally, a nomogram combined risk score and TNM stage was constructed.
These results indicated our prognostic signature has an excellent prediction performance. This study is
expected to provide a potential diagnostic and therapeutic strategies for HCC.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Liver cancer is a common malignant digestive system cancer
type, in which ranks sixth in morbidity and third in mortality
worldwide. Hepatocellular carcinoma (HCC), as the main type of
liver cancer, comprises 75–85% of liver cancer cases [1]. The 5-
year survival rate of early-stage HCC exceeds 70%, while that of
advanced-stage HCC is 2% [2,3]. Unfortunately, only a few HCC
patients can be diagnosed in their early stage [4]. Surgery and liver
transplantation remain the most effective treatment for HCC. How-
ever, the high metastasis/recurrence rate (�50%–70%) within five
years after operation restricts the outcome of patients [5]. Classical
clinical models use TNM staging, microvascular invasion and other
indicators to predict the prognosis of HCC, but the heterogeneity of
HCC makes these models fail to achieve satisfactory results [6].
Therefore, new models are needed for the therapy and prognosis
of HCC patients.

Metabolic reprogramming has become one of the important
signs of cancer. Metabolic enzymes and metabolites are involved
in various aspects of tumor formation [7]. Cholesterol-based meta-
bolic reprogramming has been ignored in previous studies, but in
recent years, more and more studies regard it as an integral part
of tumor progression [8]. Cholesterol is essential for maintaining
tumor cell homeostasis and critical cellular structure. Studies have
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demonstrated that cholesterol metabolism is associated with the
growth and migration of cancer cells [9,10]. In addition, studies
have shown that cholesterol was involved in tumor-associated
macrophage (TAM) polarization and T cell exhaustion [11,12].
Actually, previous studies have shown that statins, as a class of
compounds inhibiting HMG-CoA reductase, have good anti-tumor
effects in mouse models [13]. However, the effect of statin in clin-
ical trials is still controversial [14,15]. Therefore, elucidating the
mechanism of cholesterol in tumors will help to better understand
the tumorigenesis, guide the therapy and improve the prognosis of
tumor patients.

Here, we identified 5 prognostic cholesterol metabolism-related
genes (CMRGs) in HCC. We constructed a signature based on
CMRGs, and further validated the clinical application value and
related mechanisms of the signature. Our findings are expected
to provide a latent diagnostic and therapeutic strategies for HCC.

2. Materials and methods

2.1. Data collection pre-processing

A total of 5 databases were incorporated into this study. The
mRNA expression data from GEO database was downloaded
through 3 microarray data sets (GSE14520, GSE62232,
GSE102079). The mRNA expression data were processed by GEO2R,
an online analysis tool based on R (Version 3.2.3). Clinical and
expression data from TCGA-LIHC cohort was regarded as training
set. Clinical and expression data from ICGC-LIRI-JP cohort was
regarded as validation set. TCGA-LIHC cohort was downloaded
from TCGA (https://portal.gdc.cancer.gov/). ICGC-LIRI-JP cohort
was downloaded from HCCDB (https://lifeome.net/database/hc-
cdb/home.html). The CMRGs (n = 140) were downloaded from
the Molecular Signatures Database (https://www.gsea-msigdb.
org/gsea/msigdb/index.jsp) [16,17]. For details of the GEO datasets
and gene list, see Supplementary Table S1 and S2.

2.2. Differentially expressed CMRGs

Differentially expressed genes (DEGs) were screened from GEO
dataset with threshold of |log2FC| > 1 and adjusted P < 0.05. Differ-
entially expressed CMRGs (DECMRGs) were defined as the inter-
section of DEGs and CMRGs. Further cox analysis with P < 0.05
and differential expression was performed in TCGA-LIHC to screen
final CMRGS for subsequent analysis.

2.3. Gene-Gene and Protein–Protein interaction network for CMRGs

GeneMANIA (https://genemania.org/) is a website for functional
analysis of genes [18]. In this study, GeneMANIA was used to per-
form gene-gene interaction network for CMRGs. The protein–pro-
tein interaction network was obtained from the STRING database
[19].

2.4. Identification and validation of prognostic signature

We used least absolute shrinkage and selection operator
(LASSO) regression algorithm [20] to construct a signature of
CMRGs in TCGA-LIHC cohort by the R package ‘‘glmnet”. The coef-
ficients corresponding to the optimal k value were incorporated
into the prognostic signature formula as following:

RiskScore ¼ Pn
i¼1ðCoefi� GeneiÞ. Coefi is the coefficient, Genei is

the transcripts per million reads (TPM) value of each selected gene.
HCC Patients with a risk score above the median risk score were
assigned to the high-risk group, and those with a risk score below
the median risk score were assigned to the low-risk group. Survival
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analysis was conducted by R packages ‘‘survival” and ‘‘survminer”.
The nomogram model was constructed by R package ‘‘rms”. The
receiver operating characteristic (ROC) curve, calibration curve
and detrended correspondence analysis (DCA) were performed to
evaluate the performance of the signature. Immunohistochemistry
information of CMRGs was downloaded from HPA (https://www.
proteinatlas.org/), a pathology atlas of the human cancer transcrip-
tome [21].
2.5. Function and somatic mutations analysis

Gene set enrichment analysis (GSEA) was used to explore the
intrinsic function associated with risk score by R package ‘‘clus-
terProfiler” [22]. In GSEA, p-value (P) < 0.05 and false discovery rate
(FDR) < 0.05 were considered statistically significant. Somatic
mutation analysis was conducted to explored the mutation rates
associated with risk score by R package ‘‘maftools” [23].
2.6. Immune infiltration analysis

The evaluation of tumor immune infiltration includes immune
cell infiltration, immune-related score and immune checkpoint
expression. Immune cell infiltration is calculated by xCell [24]
and MCPCOUNTER [25] algorithms. The immune-related score
was calculated by xCell algorithm, and the immune checkpoint
was from the published literature [26]. The results of this section
are downloaded from TIMER 2.0 website [27].
2.7. Therapeutic response and drug prediction

The immunophenoscore (IPS) obtained from The Cancer
Immune Atlas (TCIA) was used to assess the response to
immunotherapy [28]. For the purpose of drug prediction, the DEGs
was identified from the high-risk and low-risk groups. Then the
DEGs were uploaded to L1000FWD (https://maayanlab.cloud/
L1000FWD/), a web application that provides interactive visualiza-
tion of drug induced gene expression signatures [29]. The structure
of drug was obtained from PubChem (pubchem.ncbi.nlm.nih.gov).
2.8. Statistical analysis

Statistical Analysis were conducted by R (Version 4.0.5).The
unpaired Student’s t-test and Wilcoxon test was used for compar-
ing normal or nonnormal data, respectively. The log-rank test was
used for Kaplan-Meier curve. The clinical characteristics among
groups were assessed by v2 test or Fisher’s exact test. In this study,
P < 0.05. was considered as statistically significant.
3. Results

3.1. Identification of differentially expressed prognostic CMRGs

The workflow of the present study was illustrated in Fig. S1.
Table 1 summarized the baseline characteristics of the HCC
patients enrolled in present study. DEGs were screened from three
GEO datasets with threshold of |log2FC| > 1 and adjusted P < 0.05
(Fig. 1A). Then 12 DECMRGs were obtained in the intersection of
the DEGs and 140 CMRGs (Fig. 1B). Further cox analysis with
P < 0.05 and differential expression was performed in TCGA-LIHC
to screen final CMRGS for differentially expressed prognostic
CMRGs (Fig. 1C, D). The protein–protein interaction network and
correlation network among these differentially expressed prognos-
tic CMRGs were shown in Fig. 1E, F.
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Table 1
The baseline characteristics of the HCC patients enrolled in this study.

Characteristic TCGA-LIHC ICGC LIRI-JP

Total 374 203
Age, median (rage) 61 (16, 90) 69(31,86)
Sex, n (%)
Female 121 (32.4 %) 50 (24.6 %)
Male 253 (67.6 %) 153 (75.4 %)
TNM stage, n (%)
I 172 (46.0 %) 33 (16.3 %)
II 88 (23.5 %) 96 (47.3 %)
III 85 (22.7 %) 59 (29.1 %)
IV 5 (1.3 %) 15 (7.4 %)
Unknown 24 (6.4 %) 0 (0 %)
Histologic grade, n (%)
G1 55 (14.7 %) NA
G2 178 (47.6 %) NA
G3 124 (33.2 %) NA
G4 12 (3.2 %) NA
Unknown 5 (1.3 %) NA

Fig. 1. Identification of Differentially Expressed Prognostic CMRGs. (A) Screening of DEG
three datasets. Cox analysis revealed 8 prognostic related genes (C), and 7 genes were
network and correlation network among these differentially expressed prognostic CMRG
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3.2. Establishment of prognostic signature based on CMRGs in TCGA-
LIHC

Based on 7 differentially expressed CMRGs, we developed a
prognostic signature by LASSO regression analysis and finally
screened five genes: FDPS, FABP5, ANXA2, ACADL and HMGCS2
(Fig. 2A, B). The coefficients and correlation network of the five
CMRGs were displayed in Fig. 2C, D. The risk score of patients
was calculated by the formula: risk score = (0.1216*FABP5) +
(0.0757*ANXA2) + (0.1984*FDPS) + (�0.0979*HMGCS2) +
(�0.0142*ACADL). The prognostic value of the five CMRGs was
evaluated in TCGA-LIHC cohort. The prognosis of HCC patients with
low expression of FDPS, FABP5 and ANXA2 was better than that of
HCC patients with high expression of FDPS, FABP5 and ANXA2.
While the prognosis of HCC patients with highly expressed
HMGCS2 and ACADL was better than that of HCC patients with
lowly expressed HMGCS2 and ACADL (Fig. 2E). In the HPA data-
base, the expressions of ACADL and HMGCS2 in tumor tissues were
s in three GEO datasets. (B) The 12 overlapping genes differentially expressed in all
differentially expressed in TCGA-LIHC (D). (E, F) The protein–protein interaction
s. Ns: not significant, * P < 0.05, ** P < 0.01, *** P < 0.001.



Fig. 2. Establishment of a prognostic signature based on CMRGs in TCGA-LIHC. (A, B, C) Identification of nonzero coefficient genes by LASSO regression analysis. (D)
Correlation network of 5 genes. (E) Survival analysis of 5 genes. (F) Immunohistochemical analysis of 5 genes.
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lower compared with those in normal tissues. While the expres-
sions of FDPS, FABP5 and ANXA2 were significantly higher in tumor
tissues compared with those in normal tissues (Fig. 2F).
3.3. Evaluation and validation of prognostic signature

We divided the HCC patients in TCGA-LIHC cohort into high-risk
(n = 187) and low-risk (n = 187) groups based on median risk score
(1.3013). Similarly, HCC patients in the validation cohort ICGC LIRI-
JP were separated into high-risk (n = 101) and low-risk (n = 102)
groups based on median risk score (1.6224). The risk survival sta-
tus chart showed that survival time of HCC patients in the low-risk
group was longer than that of HCC patients in the high-risk group
(Fig. 3A, D). The 2-year, 3-year and 4-year area under curve (AUC)
values were calculated to evaluate the sensitivity and specificity of
the signature. They were 0.660, 0.667 and 0.657 in TCGA-LIHC
(Fig. 3B) and 0.650,0.687 and 0.680 in ICGC LIRI-JP (Fig. 3D). The
5-year survival probability of HCC patients in the low-risk group
significantly higher than that of HCC patients in the high-risk
group (Fig. 3C, F). In addition, we investigated the universality of
the signature in different clinical subgroups (Fig. 4A, B). we found
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that advanced HCC (TNM stage III or IV) predominate in high-risk
patients, while early HCC (TNM stage I or II) predominate in low-
risk patients (Fig. 4C, E). Compared with the low-risk group,
patients in the high-risk group had significantly higher expression
level of FDPS, FABP5 and ANXA2 and significantly lower expression
level of HMGCS2 and ACADL (Fig. 4D, F). Finally, we performed a
clinical stratified analysis on different clinical factors including
age, sex and TNM stage. We found that even in different clinical
subgroups, the survival probability of HCC patients in the high-
risk group was significantly lower than that of HCC patients in
the low-risk group (Fig. 5). The results above revealed that our sig-
nature had high specificity and sensitivity in predicting the prog-
nosis of HCC patients.
3.4. Function and somatic mutations analysis of signature

To elucidate the potential function and pathways related to our
prognostic signature, we performed GSEA analysis which anno-
tated by KEGG databases in the TCGA cohort. Altogether 12,066
DEGs, identified between the high-risk and low-risk groups, were
included in the GSEA analysis (Table S3). The results showed that



Fig. 3. Evaluation and validation of prognostic signature. Evaluation the prognostic signature in TCGA-LIHC by (A) risk survival status chart, (B) ROC curve, and (C) Kaplan-
Meier curve. Validation the prognostic signature in ICGC LIRI-JP by (D) risk survival status chart, (E) ROC curve, and (F) Kaplan-Meier curve.
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the high-risk group was mainly enriched in Cell adhesion mole-
cules, Cytokine-cytokine receptor interaction, ECM-receptor inter-
action and other pathways (Fig. 6A), while the low-risk group was
mainly enriched in Drug metabolism-cytochrome P450, Fatty acid
degradation, PPAR signaling pathway and other pathways (Fig. 6B).
Table S4 listed the detailed results of GSEA analysis.

Next, we performed somatic mutations analysis to reveal the
relationship between risk score and mutation. We identified the
top 15 genes with the highest mutation rate in both groups, and
missense mutations were the most common mutation type
(Fig. 6C, D). The gene with the highest mutation rate was TP53 in
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the high-risk group, while in the low-risk group was TTN. The
mutation rates of TP53, TTN and CTNNB1 were > 20 % in both
groups.

3.5. Immune infiltration analysis

To investigate the immune infiltration in between the high-risk
and low-risk groups, we first performed xCell algorithm to calcu-
late the immune-related score in TCGA-LIHC. The results showed
that compared with the low-risk group, the high-risk group had
significantly higher stromal score (Fig. 6E, P < 0.001), immune



Fig. 4. Explore the relationship between risk score and different clinical features. Heatmap presented the correlation between risk score and sex, TNM stage, grade, age and
AFP in (A) TCGA-LIHC, and (B) ICGC LIRI-JP cohort. (C, E) The distribution of TNM stage in two risk groups was showed in the histogram. (D, F)Expression levels of the 5 CMRGs
between two risk groups. * P < 0.05, ** P < 0.01, *** P < 0.001.
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score (Fig. 6F, P < 0.05) and microenvironment score (Fig. 6G,
P < 0.001).

Next, we used xCell (Fig. 7A) and MCPCOUNTER (Fig. 7B) algo-
rithms to evaluate the immune cell infiltration in TCGA-LIHC. We
found that compared with the low-risk group, the high-risk group
had significantly higher infiltration abundances of myeloid den-
dritic cell, monocyte, B cell, memory CD4+ T cell, CD8+ T cell etc.
and significantly lower infiltration abundances of endothelial cell,
macrophage M2, T cell regulatory (Tregs). Finally, we explored
the differential expression of immune checkpoints between the
high-risk and low-risk groups (Fig. 7C). The results showed that
there was no difference in CTLA4 and TIGIT expression between
the high-risk and low-risk groups, while the expression of OX40
(P < 0.001), PD-L1 (P < 0.001), TIM3 (P < 0.001), LAG3 (P < 0.001)
and PD-1 (P < 0.001) in the high-risk group were significantly
higher than those in the low-risk group.
3.6. Therapeutic response and drug prediction

Given that mutation and immune infiltration characteristics
were different between the high-risk and low-risk groups, we fur-
4407
ther compared the response to immunotherapy between the two
groups by TCIA, a database providing immune analysis based on
cancer patients in TCGA. To our surprise, there was no difference
in IPS-CTLA4 blocker score, IPS-PD1/PD-L1/PD-L2 blocker score
and IPS-CTLA4 plus PD1/PD-L1/PD-L2 blocker score between the
two groups (Fig. 8B-D). However, we found that the total IPS score
in the low-risk group was significantly higher than that in the
high-risk group (Fig. 8A, P < 0.01). These results suggested that risk
score may be related to immunotherapy.

In order to predict potential drugs for HCC, we uploaded the top
150 DEGs identified from the high-risk and low-risk groups to the
L1000FWD database. We identified 25 most significant small mole-
cule drugs as potential drugs (Fig. 8E). HLI-373 was predicted as
the most potential drug. The 2D and 3D structure of HLI-373 were
visualized by the PubChem website (Fig. 8F, G).
3.7. Construction and validation of the risk Score-Related nomogram

To construct a nomogram for predicting the survival probability
of HCC patients, we performed univariate Cox regression in TCGA-
LIHC and the parameters of P < 0.05 were included for multivariate



Fig. 5. Stratified analysis of the signature by TCGA-LIHC and ICGC LIRI-JP cohort. Kaplan-Meier curve under different clinical subgroups: (A, D) age, (B, E) Sex, and (C, F) TNM
stage.
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Cox regression. The results indicated that only TNM stage and risk
score were independent risk factors for overall survival (Table S5).
Then, we constructed a nomogram model combining with TNM
stage and risk score to predict the survival probability of HCC
patients (Fig. 9A). The 1-year, 3-year and 5-year AUC values of
the nomogram model in TCGA-LIHC were 0.750, 0.731 and 0.709,
respectively (Fig. 9B). The 1-year, 3-year and 5-year AUC values
of the nomogram model in ICGC LIRI-JP were 0.935, 0.952 and
1.000, respectively (Fig. 9E). We further performed calibration
plots and DCA curve to evaluate the nomogram model in TCGA-
LIHC (Fig. 9C, D) and ICGC LIRI-JP (Fig. 9F, G), respectively. The
results indicated that risk score was a better prognostic indicator
than traditional TNM stage, even better performance was obtained
by combining with TNM stage and risk score.
4. Discussion

Liver cancer is a common malignant tumor which ranks third in
cancer-related mortality worldwide [1]. HCC is the main type of
liver cancer. Despite significant progress has been achieved in
recent years, the prognosis of HCC remains poor. Therefore, it is
urgent to find new strategies to guide the diagnosis and treatment
of HCC. Cholesterol, as a structural component of cells, has
attracted more and more attention in recent years. A previous
study showed that cholesterol accumulation can promote the pro-
gress of HCC [30]. Preclinical studies have shown that the combina-
tion therapy of statins and sorafenib has synergistic antitumor
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effects on HCC cells [31]. To date, the specific role of cholesterol
metabolism in HCC remains unclear. In this context, the present
study aimed to construct a novel cholesterol metabolism-related
prognostic signature for HCC patients.

In this study, we screened 7 CMRGs based on a systematical
analysis from TCGA and GEO database. Then, we constructed a
novel prognostic signature through LASSO regression analysis
and finally identified five genes: FDPS, FABP5, ANXA2, ACADL
and HMGCS2. The expression and prognostic value of the five
genes was validated by TCGA database and HPA database. Next,
We divided HCC patients above median risk score into high risk
group and HCC patients below median risk score into low risk
group. We evaluated the signature in TCGA-LIHC cohort and val-
idated in ICGC-LIRI-JP cohort. The results of ROC curve and
Kaplan-Meier curve revealed that the prognostic signature has
good performance in predicting the prognosis of HCC patients.
More importantly, the signature still yielded significant prognos-
tic performance among the patients with different clinicopatho-
logical factors. Further function analysis revealed that the DEGs
are enriched in Cell adhesion molecules, Cytokine-cytokine recep-
tor interaction, Drug metabolism-cytochrome P450, Fatty acid
degradation and other related pathways. The somatic mutations
analysis showed that there were different mutation modes
between the high-risk and low-risk groups. We found that
immune cell infiltration in the high-risk group were higher than
those in the low-risk group. Furthermore, based on the prognostic
signature, we identified 25 most significant small molecule drugs
as candidate drugs for HCC patients. Finally, we developed a risk
score-related nomogram for predicting the prognosis of HCC



Fig. 6. Function analysis, somatic mutations and immune-related score in TCGA-LIHC. (A) Main pathways enriched in the high-risk group. (B) Main pathways enriched in the
low-risk group. (C) Significantly mutated genes in the high-risk group. (D) Significantly mutated genes in the low-risk group. (E) Stromal score of both groups. (F) Immune
score of both groups. (G) Microenvironment score of both groups. * P < 0.05, ** P < 0.01, *** P < 0.001.
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patients. These results indicated our prognostic signature has an
excellent prediction performance.

In present study, the prognostic signature integrated 5 CMRGs,
including FDPS, FABP5, ANXA2, HMGCS2 and ACADL. Among them,
FDPS, FABP5 and ANXA2 were associated with poor prognosis of
HCC, while HMGCS2 and ACADL were associated with good prog-
nosis of HCC. FDPS (farnesyl diphosphate synthase) is a pleiotropic
enzyme which is involved in cholesterol biosynthesis. Previous
studies have found that FDPS is highly expressed in various tumors
and associated with several malignancies, including prostate can-
cer, pancreatic, colon cancer, and glioma [32–35]. However, its role
in HCC remains unclear. FABP5 (fatty acid binding protein 5) trans-
ports lipids intracellularly for storage purposes. Wu et al. found
that knocking down of FABP5 in retinal pigment epithelial cells
leads to a decrease in cellular cholesterol levels [36]. Another study
showed that circulating FABP5 may directly regulate HDL function
independently of HDL cholesterol level and decrease cholesterol
efflux in macrophages [37]. FABP5 was shown to promote angio-
genesis in HCC [38]. These studies suggest a potential role of FABP5
in cholesterol homeostasis and HCC. However, how FABP5 affects
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HCC through cholesterol metabolism is still unclear, which
deserves further study. ANXA2 is a member of annexin family,
functions of which include vesicle transport, cell proliferation
and cell growth [39]. Multi-omics analysis showed that ANXA2
was involved in the development of HCC [40]. Kitamura et al. found
that ANXA2 possesses an essential function for the basal LDLR
expression in HepG2 cells [41]. Of course, more studies are needed
to elucidate the specific mechanism by which ANXA2 regulates
cholesterol metabolism. HMGCS2 (3-hydroxy-3-methylglutaryl
CoA synthase 2) is a mitochondrial enzyme primarily involved in
the ketogenesis pathway [42]. Also, it is essential in converting
acetoacetyl-CoA to HMG-CoA, a cholesterol precursor [43].
HMGCS2 was found to be downregulated in HCC and acts as a
tumor suppressor [44]. Wang et al. found that HCC cells with
HMGCS2 downregulation possess altered lipid metabolism that
increases cholesterol synthesis [45]. Therefore, we hypothesized
that HMGCS2 may affect HCC progression through cholesterol syn-
thesis, but further studies are needed to confirm this hypothesis.
ACADL (Long-chain acyl-CoA dehydrogenase) is a mitochondrial
enzyme that catalyzes fatty acid oxidation. Studies have shown



Fig. 7. The tumor immune infiltration between high-risk and low-risk groups in TCGA-LIHC. (A) Comparison of immune cell abundance by xCell algorithm. (B) Comparison of
immune cell abundance by MCPCOUNTER algorithm. (C) The differential expression of immune checkpoints between the low-risk and high-risk groups. Ns: not significant,
P > 0.05, * P < 0.05, ** P < 0.01, *** P < 0.001.
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that it also plays an important role in the regulation of triglycerides
and cholesterol [46]. ACADL acts as a tumor suppressor, which
inhibits the cell growth of HCC by targeting YAP pathway [47].
The YAP pathway is involved in HCC through cholesterol metabo-
lism [48]. This study further elucidates the important role of these
5 CMRGs in HCC, and the prognostic signature constructed by them
has good sensitivity and specificity in predicting the survival prob-
ability of HCC patients.

GSEA analysis suggested that KEGG pathways, including Cell
adhesion molecules, Cytokine-cytokine receptor interaction,
Drug metabolism-cytochrome P450, IL-17 signaling pathway,
PPAR signaling pathway, Primary bile acid biosynthesis and
other related pathways associated with cholesterol metabolism.
In fact, cholesterol serves as a crucial component of lipid rafts,
is involved in downstream processes such as proliferation, dif-
ferentiation, adhesion and apoptosis [49]. Ma et al. found that
IL-17 signaling pathway is involved in the activation of
SREBP1/2 to promote cholesterol synthesis and progression of
HCC [50]. Peroxisome proliferator-activated receptors a (PPARa)
4410
and c (PPARc) played an vital role in inhibiting cholesterol
biosynthesis [51]. Previous studies have shown that PPARa
and PPARc are involved in HCC progression [52,53]. Thus,
PPARa and PPARc are considered as potential drug targets for
cancer patients [54].

In this study, TP53 had the highest mutation rate in the high-
risk group, while TTN had the highest mutation rate in the low-
risk group. Indeed, TP53 is involved in all aspects of cholesterol
synthesis and transport [55]. Genome-wide analysis also indicated
that TP53 can affect cholesterol metabolism in HCC [56]. Lonetto
et al. have shown that TP53 mutations can affect tumor progres-
sion by mediating metabolic disturbance. Therefore, high TP53
mutations may be an important cause of poor prognosis in high-
risk patients. TTN also plays an important role in the progression
of HCC [57], but to our surprise, the mutation rate of TTN in the
two groups is similar.

Immunotherapy has become the most promising treatment of
cancer, but the effect of immunotherapy is closely related to
immune infiltration [58]. CD8+ T cells are the main lymphocytes



Fig. 8. The immunotherapy response and potential drugs between high-risk and low-risk groups in TCGA-LIHC. (A-D) IPS score between two groups. (E) The potential drugs
for HCC treatment. (F) The 2D structure of HLI-373. (G) The 3D structure of HLI-373. Ns: not significant, P > 0.05, * P < 0.05, ** P < 0.01, *** P < 0.001.
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that kill HCC cells. Lack of recovery of CD8+ T cells is associated
with poor survival in HCC patients [59]. Tregs, a kind of
tolerance-inducing cells, are enriched in HCC microenvironment.
Sasaki et al. found that the high number of tumor-infiltrating Tregs
are associated with poor prognosis of HCC patients after hepatic
resection [60]. Consistent with these findings, our study revealed
that the high-risk group has higher CD8+ T cell infiltration and
lower Tregs infiltration than the low-risk group. In addition, we
found that immune checkpoint molecules are highly expressed in
the high-risk group. Recently, encouraging progress has been made
in the immunotherapy targeting immune checkpoint molecules
[61]. These results indicate that HCC patients in the high-risk group
may benefit from immunotherapy.

We identified 25 most significant small molecule drugs for HCC
treatment. The top 3 of them were HLI-373, medrysone and irbe-
sartan. Irbesartan has been found to have an anti-tumor effect in
colorectal cancer [62]. HLI373 is a Hdm2 ubiquitin ligase (E3) inhi-
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bitor which blocks Hdm2-mediated ubiquitylation, proteasomal
degradation of p53 and activates p53-dependent transcription. It
was found to induce apoptosis in tumor cell lines that express wild
type p53 [63]. Therefore, we speculate that HLI-373 inhibit HCC by
inhibiting Hdm2 and reducing the degradation of p53. As for
medrysone, there is currently few evidences of its effectiveness
in tumors. In short, we identified a series of potential drugs for
HCC patients, but the actual effects of these drugs need to be fur-
ther proved by more clinical trials.

Our study proposed a new prognostic signature based on
CMRGs in HCC. However, some limitations are inevitable in present
research. Firstly, this study was based on public database, more
prospective clinical studies are needed to verify the accuracy of
our model. But we have used external data to verify the reliability
of our model as much as possible. Secondly, some clinical data are
missing in the cohort, such as the etiology, grade and AFP level,
which may affect the predictive ability of our model. Thirdly, the



Fig. 9. Construction and validation of the risk score-related nomogram. (A) The nomogram to predict the 1-year, 3-year, and 5-year overall survival of HCC patients. The AUC
curve of time-dependent ROC curves verified the prognostic performance of the nomogram in (B) TCGA-LIHC cohort, or (E) ICGC LIRI-JP cohort. Calibration plots of the
nomogram in predicting the 1-year, 3-year, and 5-year overall survival of HCC patients in (C) TCGA-LIHC cohort, or (F) ICGC LIRI-JP cohort. DCA curves to assess the ability of
TNM stage, risk score, and their combination to predict the 1-year, 3-year, and 5-year overall survival of HCC patients in (D) TCGA-LIHC cohort, or (G) ICGC LIRI-JP cohort.

L. Tang, R. Wei, R. Chen et al. Computational and Structural Biotechnology Journal 20 (2022) 4402–4414
value of 5 CMRGs we identified need more in vitro and in vivo
experiments to verify.
5. Conclusions

In summary, we constructed and validated a prognostic signa-
ture based on 5 CMRGs, which can be used for survival prediction,
reflecting the tumor mutation and immune infiltration of HCC
patients. What’s more, it may play a critical role in HCC
immunotherapy. This study is expected to provide new insights
into the precision diagnosis and treatment of HCC.
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