
Blood-brain barrier permeability in response to caffeine 
challenge

Zixuan Lin1, Dengrong Jiang1, Peiying Liu1, Yulin Ge2, Abhay Moghekar3, Hanzhang Lu1,4,5

1The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins 
University School of Medicine, Baltimore, Maryland, USA

2Department of Radiology, New York University, NY, USA

3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 
USA

4Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, 
Maryland, USA

5F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, 
Baltimore, Maryland, USA

Abstract

Purpose: Caffeine is known to alter brain perfusion by acting as an adenosine antagonist, but 

its effect on blood-brain barrier (BBB) permeability is not fully elucidated. This study aimed to 

dynamically monitor BBB permeability to water after a single dose of caffeine tablet using a 

non-contrast MRI technique.

Methods: Ten young healthy volunteers who were not regular coffee drinkers were studied. 

The experiment began with a pre-caffeine measurement, followed by four measurements at the 

post-caffeine stage. Water-extraction-with-phase-contrast-arterial-spin-tagging (WEPCAST) MRI 

was used to assess the time dependence of BBB permeability to water following the ingestion 

of 200mg caffeine. Other cerebral physiological parameters including cerebral blood flow (CBF), 

venous oxygenation (Yv), and cerebral metabolic rate of oxygen (CMRO2) were also examined. 

The relationships between cerebral physiological parameters and time were studied with mixed-

effect models.

Results: It was found that after caffeine ingestion, CBF and Yv showed a time-dependent 

decrease (p<0.001), while CMRO2 did not change significantly. The fraction of arterial water 

crossing the BBB (E) showed a significant increase (p<0.001). In contrast, the permeability-

surface-area product (PS), i.e. BBB permeability to water, remained constant (p=0.94). 

Additionally, it was observed that changes in physiological parameters were non-linear with 

regards to time and occurred at as early as 9 minutes after caffeine tablet ingestion.
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Conclusion: These results suggest an unchanged BBB permeability despite alterations in 

perfusion during a vasoconstrictive caffeine challenge.

Introduction

Caffeine, as the most widely used neurostimulant, is known to have a multifaceted effect on 

the human brain, especially through its role as an antagonist of adenosine (1). By binding 

to the adenosine receptors (mainly A1, A2A and A2B) of the neurons, caffeine can block the 

inhibitory effect of adenosine on synaptic vesicle release and in turn increase neural activity 

and improve vigilance (2). On the other hand, caffeine can also constrict cerebral blood 

vessels by binding to the A2A and A2B receptors on the cerebrovascular smooth muscle, 

which leads to a profound change in brain hemodynamic parameters (3,4). Previous studies 

have reported that caffeine can cause a reduction in cerebral blood flow (CBF) and venous 

oxygenation (Yv) (4–9). Through its vascular effects, caffeine has also been shown to alter 

temporal dynamics of BOLD response and lead to a widespread decrease in functional 

connectivity (10–14).

Blood-brain barrier (BBB), formed by endothelial tight junctions, astrocyte and pericytes, 

is a selective barrier that regulates the blood-brain exchange of substances and maintains 

constant microenvironment (15). All types of adenosine receptors were demonstrated to be 

expressed on brain capillary endothelial cells, but whether and how the adenosine receptor 

activation regulates BBB permeability remain unknown (16–18). As a broad-spectrum 

adenosine antagonist, it is useful to understand the impact of caffeine ingestion on BBB. 

Several prior studies have investigated the chronic effect of caffeine uptake (19,20) on BBB 

but not its acute effect. Furthermore, the previous studies were performed in animal models 

and focused on BBB permeability to large molecules such as Evan’s blue dye (19,20). 

From a normal physiological point-of-view, it is also interesting to examine whether BBB 

permeability can remain stable when brain perfusion is altered by factors in daily life 

including breathing pattern, perspiration, or consumption of beverage containing vasoactive 

substances such as caffeine.

In humans, BBB permeability to gadolinium (21) can be measured with contrast agent 

based MRI methods, such as dynamic contrast-enhanced (DCE). Recently, there has been 

an increasing interest in examining the BBB permeability to water, a small molecule that 

may be more sensitive to subtle changes in BBB. Several non-contrast MRI techniques 

have been proposed by separating intravascular and extravascular spins based on their 

difference in spatial location, T1, T2 or diffusion properties (22–29). Water-extraction-with-

phase-contrast-arterial-spin-tagging (WEPCAST) MRI is one of such techniques which 

aims to measure global water extraction fraction (E) and BBB permeability-surface-area 

product (PS) by selectively measuring arterial spin labeling (ASL) signals in the venous 

system (24,25). This method can provide an estimation of BBB permeability at around 

5 min with a good test-retest reproducibility (24). Therefore, in this study, we aimed to 

utilize WEPCAST MRI to investigate dynamic changes in BBB permeability following a 

single-dose of caffeine ingestion in young healthy adults.
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Methods

Participants

Ten young healthy volunteers were recruited (age 29.1±9.3 years old, 6 females and 4 

males). The participants were carefully screened and did not report any health issues. 

None of the participants were regular coffee drinkers. The subjects reported an average of 

1.1 cups of caffeine-containing drink per week. All experiments were performed on a 3T 

Siemens MRI system (Prisma, Siemens Healthcare, Erlangen, Germany). The experimental 

procedures in this study have been approved by the Institutional Review Board of the Johns 

Hopkins University School of Medicine. Each participant gave informed written consent 

before participating in the study.

Experimental Procedures

The subject was instructed to avoid any caffeine uptake for 4 hours prior to the study. 

The study design was: 1) baseline measurement of WEPCAST, 4 phase contrast (PC), T2-

Relaxation-Under-Spin-Tagging (TRUST) (10 min) was performed; 2) participant was taken 

out of the scanner, sat up on the table, ingested a 200mg caffeine tablet (equivalent to 2 cups 

of regular coffee) and was quickly put back into the scanner; 3) WEPCAST/PC/TRUST 

measurement was performed immediately after caffeine ingestion (10 min); 4) T1-weighted 

MPRAGE structural scan (4 min); 5) Three further repetitions of WEPCAST/PC/TRUST 

(10 min each). A diagram of these procedures is shown in Supporting Information Figure 

S1.

MRI protocols

WEPCAST MRI was performed to estimate water extraction fraction and BBB permeability 

index, PS. Details of WEPCAST MRI can be found in Lin et al (24,25). Briefly, a pseudo-

continuous ASL module is used to label the incoming arterial blood at the cervical region. A 

fraction of the labeled blood is exchanged into tissue at capillary-tissue interface through 

BBB while the non-extracted water is drained into the venous system. By selectively 

measuring the ASL signal in the main draining veins of the brain, e.g. superior sagittal 

sinus (SSS), using a phase-contrast-encoded acquisition, a global water extraction fraction, 

E, can be estimated. Together with CBF (f) measurement, PS can be obtained (30):

PS =   − ln 1 − E ⋅ f . [1]

WEPCAST MRI was conducted in mid-sagittal plane with a labeling duration (τ) of 

4000ms and a post-labeling delay (PLD) of 3000ms. Other imaging parameters were as 

follows: single-shot gradient echo planar imaging (EPI) readout, field of view (FOV) = 

200×200mm2, single slice, matrix = 64×64, voxel size = 3.13×3.13mm2, slice thickness = 

10mm, GRAPPA factor = 3, flip angle = 90°, repetition time (TR) = 9200ms, echo time (TE) 

= 9.5ms, encoding velocity (Venc) = 20cm/s, number of control/label pairs = 10 and scan 

duration = 6min54s. An additional M0 image with same TE and Venc and a long TR = 10s 

was also acquired for normalization.

Lin et al. Page 3

Magn Reson Med. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Global CBF was estimated with PC MRI. PC MRI was performed at four major feeding 

arteries (left/right internal carotid arteries and left/right vertebral arteries) to quantify global 

CBF. The following parameters were used (31): TR=16.0ms, TE=10.2ms, flip angle=15°, 

FOV=200×200×5mm3, voxel size=0.5×0.5×5mm3, single slice, Venc=40cm/s and scan 

duration=13s.

We measured global venous oxygenation, Yv, using T2-Relaxation-Under-Spin-Tagging 

(TRUST) MRI (32,33). The following parameters were used: TR = 3000 ms, TE = 3.9 

ms, TI=1022 ms, flip angle = 90°, FOV = 220 × 220 × 5 mm3, voxel size = 3.4 × 3.4 × 5 

mm3, four effective TEs (eTE = 0, 40, 80, and 160 ms) with a τCPMG of 10 ms, labeling 

thickness = 100 mm, and scan duration = 1min27s.

A 3D T1-weighted magnetization-prepared-rapid-acquisition-of-gradient-echo (MPRAGE) 

scan was acquired with the following parameters: TR=8.8ms, TE=3.8ms, shot 

interval=2100ms, inversion time (TI)=1100ms, flip angle=12°, FOV=208×256×160mm3, 

voxel size=1×1×1mm3, number of slices=160, sagittal orientation, and scan 

duration=4min3s.

Data Analysis

All MRI data were processed using in-house MATLAB (version R2016a, MathWorks, 

Natick, MA) scripts. Details of WEPCAST processing can be found in Lin et al. (24). 

Briefly, pairwise subtraction of the velocity-encoded images for control and label conditions 

yields arterially labeled venous signal (∆M):

ΔM = 2α 1 − E M0e−
δv

T1b , [2]

where E is water extraction fraction, α is labeling efficiency (assume to be 86%) (34), M0 is 

the equilibrium magnetization and was measured from the M0 scan mentioned above, T1b is 

venous blood T1 (assumed to be 1584ms) (35), δv is the bolus arrival time to the vein and, 

for the location where ΔM/M0 reaches the peak, it is PLD + τ
2 .

For PC-MRI, region of interest (ROI) was drawn manually on the complex difference 

images to trace the targeted arteries. Integration of the velocity, after accounting for phase 

foldover, within the ROI yielded flow in the units of mL/min. The summation of flux across 

all feeding arteries yielded total blood flow. The MPRAGE images were segmented using 

an automatic processing tool, MRICloud (www.MRICloud.org, Johns Hopkins University, 

MD) for total brain volume quantification (36). Then the global CBF was calculated as total 

blood flow divided by total brain volume. BBB permeability to water, i.e. PS value, was then 

obtained using Eq. [1].

For TRUST MRI, subtraction between control and label images yields pure labeled blood 

signal at SSS, which was mono-exponentially fitted as a function of eTEs to generate venous 

blood T2. Blood T2 was then converted to Yv using an established calibration curve (37). 

Cerebral metabolic rate of oxygen (CMRO2) was also calculated based on Fick’s principle 

(38):
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CMRO2 = CBF ⋅ Y a − Y v ⋅ Cℎ, [3]

where Ya is arterial oxygenation (assumed to be 98%), Ch represents the oxygen carrying 

capability of hemoglobin and calculated as Ch=20.4*hematocrit based on previous literature. 

Here the hematocrit value was assumed to be 42% for male and 40% for female (39).

The time dependence of the physiological parameters (i.e. E, PS, CBF, Yv and CMRO2) 

was studied with a mixed-effect model. The model started with a linear term of time to 

examine whether the parameter changed with time. A quadratic term, time2, was added to 

the model to investigate whether time-change was non-linear. Additionally, we compared 

each post-caffeine time point to the value during baseline with paired t-tests. A Bonferroni 

corrected p<0.05 was considered statistically significant.

Results

Figure 1 shows representative WEPCAST control, label and difference images at baseline 

and difference images at different time points after caffeine ingestion. As can be seen, 

due to the phase-contrast flow-encoded acquisition scheme, tissue signals are successfully 

suppressed, and vessel signals are selectively measured. At baseline, prominent signal can 

be seen at the SSS, representing the labeled water spins that were not extracted by the 

tissue and drained directly to the venous system. After caffeine uptake, WEPCAST signal 

decreased gradually with time, indicating that a larger fraction of water was extracted by 

the tissue. Peak signal along the SSS was then used to calculate water extraction fraction. 

Representative images of other physiological MRI sequences, PC MRI and TRUST MRI, 

are shown in Supporting Information Figure S2 and S3.

Time courses of the water extraction fraction, BBB permeability and other brain 

physiological parameters were shown in Figure 2. Table 1 summarizes results from 

linear mixed model analyses. When studying the linear relationship between physiological 

parameters and time, it was found that caffeine ingestion had a time-dependent effect Yv, 

CBF, and E, but not on CMRO2 or PS. Upon further adding a quadratic term, time2, to 

the model, Yv, CBF, and E, but not CMRO2 or PS, showed a significant effect (Table 1), 

suggesting that these physiological changes are non-linear with time. At the last time point 

of our measurements (approximately 45 minutes after caffeine ingestion), Yv was found 

to decrease by 19%, CBF decreased by 29%, E increased by 6%. Results of paired t-tests 

between post-caffeine and baseline (i.e. pre-caffeine) values for physiological parameters are 

shown in Table 2. It can be seen that changes in physiological parameters, i.e. E, CBF and 

Yv, occurred as early as 9 minutes after caffeine tablet ingestion.

Discussion

Caffeine has a known effect on the neurovascular system, but its impact on the blood-brain 

barrier remains unclear. In this study, we dynamically measured the effect of caffeine on 

the BBB permeability to a small molecule, water, using a novel non-contrast technique, 

WEPCAST MRI. Our findings suggested that water extraction across the BBB increased 

after caffeine uptake. On the other hand, BBB permeability to water remained unchanged. 
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We also found that CBF and venous oxygenation reduced after caffeine ingestion, consistent 

with its known vasoconstriction effect.

BBB prevents the entry of pathogens and neurotoxins into the brain parenchyma, thus an 

intact BBB function is crucial for the health of the nervous system (15). Abnormalities of 

BBB has been implicated in a number of brain diseases, such as Alzheimer’s disease (40), 

Parkinson’s disease (41) and multiple sclerosis (42). In order to evaluate the feasibility of 

BBB permeability as a disease-specific marker, it is important to examine, in the healthy 

brain, whether BBB permeability may change with physiological maneuvers that are known 

to alter hemodynamics. In the present report, we used caffeine, a substance contained in 

many common beverages, as a physiological challenge and observed its expected effects 

on CBF and venous oxygenation. However, we found that BBB permeability to water 

remained unchanged, indicating that the permeability of a healthy BBB is relatively stable. 

We did observe that the amount of water molecules that were extracted across BBB, E, 

was increased. Although we cannot rule out other possible factors such as change in neural 

activity, we postulate that the increase in E was primarily attributed to a reduced CBF (see 

Eq. [1]), thereby longer exchange time (43,44).

One implication of our findings is that patients or participants receiving BBB MRI do not 

need to refrain from caffeine consumption before the exam. In many physiological MRI 

exams such as CBF, CBV, venous oxygenation, cerebrovascular reactivity imaging, it is 

often necessary to instruct the subject not to take caffeine beverages several hours before 

the scan in order to avoid potential biases. It appears that this is not needed for BBB 

MRI. Furthermore, our findings suggest that CBF can alter without corresponding changes 

in BBB permeability. Technically, this characteristic may be exploited for improving the 

reliability of BBB MRI measurement. For example, it may be possible to use hypercapnia 

or acetazolamide to increase CBF and enhance the BBB MRI signal, without biasing the 

accuracy of the PS estimation.

In view of the intricate role that BBB plays in cell signaling systems and cerebrovasculature, 

some animal studies have investigated the potential effect of caffeine on BBB in the 

context of its therapeutic effect in neurodegenerative diseases (19,20,28,45,46). For example, 

Chen et al. suggested that chronic ingestion of caffeine can protect against BBB damage, 

including mitigating the leakage to Evan’s blue dye and the decrease in tight junction protein 

level, in animal models of Alzheimer’s disease and Parkinson’s disease (19,20). It has also 

been suggested that caffeine can help with amyloid-β clearance across the BBB (46). It 

was hypothesized that caffeine can control BBB permeability through blockade of adenosine 

receptors, inhibition of cAMP phosphodiesterase activity, and by mediating the calcium 

release from intracellular spaces (45). Hurtado-Alvarado et al. reported a recovery of BBB 

permeability to dextrans and Evan’s blue after A2A receptor antagonist administration in rat 

model of sleep deprivation (47). However, our study is different from these previous reports 

in several ways. First, our study mainly focused on the acute effect of caffeine challenge 

and all our participants were non-regular coffee drinkers, while the prior studies focused 

on chronic caffeine consumption. Acute ingestion of caffeine can inhibit intracellular levels 

of cAMP, while chronic exposure to caffeine can result in the up-regulation of adenosine 

receptors on endothelial cells, the activation of which can increase the cAMP level and 
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protect BBB against disruption (45,48,49). Second, the previous studies measured the BBB 

permeability to large molecules, which may be different from the permeability to water. 

Third, the prior reports were conducted on conditions where BBB was already leaky due to 

disease while our study examined normal BBB function in response to caffeine ingestion. 

Finally, the earlier studies were all performed in animals whereas the present report was 

conducted in humans.

Recently there has been a surging interest in the measurement of BBB permeability to 

water using MRI and some have studied the effect of caffeine challenge (25–28,50,51). 

For example, Wengler et al. proposed an intrinsic diffusivity based method and reported a 

decrease of BBB permeability to water after caffeine challenge (28). However, it should be 

pointed out that the method of Wengler et al. is sensitive to both tight junction integrity 

in endothelia and abundance of aquaporin-4 (AQP4) on the astrocyte endfeet, since the 

water spins have to reach the interstitial space to experience a major reduction in apparent 

diffusion coefficient (that is, apparent diffusion coefficient in perivascular space is quite 

large). The WEPCAST technique used in the present study, on the other hand, measures 

ASL signal in large veins, thus can differentiate perivascular signal from vessel signal. 

Therefore, different MRI methods on BBB permeability to water may be probing different 

aspects of the water exchange process. Note that there are some reports that caffeine may 

regulate the expression and polarity of AQP4 and may explain the observations reported in 

Wengler et al. (52,53).

The current study has several limitations. First, although WEPCAST MRI can estimate 

BBB permeability to water efficiently, it is a global method and cannot provide regional 

information of BBB. Previous study showed that CBF decreased at different rate in different 

brain regions after caffeine ingestion (5), suggesting that the caffeine effect can be region-

dependent. Further technical development on measuring regional BBB permeability can 

provide a better understanding of the spatial dependence of the caffeine effects. Second, 

we did not measure the caffeine concentration in blood and different people may react 

differently to caffeine. However, the measurement of CBF and Yv can be an indicator of the 

caffeine effect, and we did observe significant decrease for all our participants.

Conclusion

In summary, using a non-contrast technique, WEPCAST MRI, we investigated the effect 

of caffeine ingestion on BBB permeability to water. Our findings suggested that despite 

a pronounced alteration in blood flow and oxygenation, BBB water permeability remains 

unchanged after caffeine uptake, indicating a stable BBB function in the presence of 

hemodynamic changes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Representative WEPCAST dataset in a volunteer. (A) Control, label and difference 

WEPCAST images at baseline. (B) WEPCAST difference images as a function of time 

after caffeine ingestion.

Lin et al. Page 11

Magn Reson Med. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Time course of cerebral blood flow (CBF), venous oxygenation (Yv), cerebral metabolic 

rate of oxygen (CMRO2), water extraction fraction (E), and BBB permeability-surface-area 

product (PS). t=0 indicates baseline measurement (i.e. before caffeine tablet ingestion). 

Other time points are labeled with the measurement start time (t=9min, 25min, 35min and 

45min) after caffeine ingestion. Error bars denote standard errors across participants.
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