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Vascular Aging and COVID-19

Ignas Badaras1 and Agnė Laučytė-Cibulskienė2,3

Abstract
Vascular age is determined by functional and structural changes in the arterial wall. When measured by its proxy, pulse wave
velocity, it has been shown to predict cardiovascular and total mortality. Disconcordance between chronological and vascular
age might represent better or worse vascular health. Cell senescence is caused by oxidative stress and sustained cell replication.
Senescent cells acquire senescence-associated secretory phenotype. Oxidative stress, endothelial dysfunction, dysregulation of
coagulation and leucocyte infiltration are observed in the aging endothelium. All of these mechanisms lead to increased vascular
calcification and stiffness. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can involve the vascular endo-
thelium. It enters cells using angiotensin-converting enzyme 2 (ACE-2) receptors, which are abundant in endothelial cells. The
damage this virus does to the endothelium can be direct or indirect. Indirect damage is caused by hyperinflammation. Direct
damage results from effects on ACE-2 receptors. The reduction of ACE-2 levels seen during coronavirus disease 2019 (COVID-
19) infection might cause vasoconstriction and oxidative stress. COVID-19 and vascular aging share some pathways. Due to the
novelty of the virus, there is an urgent need for studies that investigate its long-term effects on vascular health.
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Introduction

The current pandemic of SARS-CoV-2 has been and still is a
challenge for all healthcare systems. Symptoms of COVID-19
range from acute respiratory distress syndrome and multi-
organ failure to very mild or even asymptomatic cases.1

Recently, the concept that COVID-19 is an endothelial dis-
ease has emerged.2 It has been known for some time that
various viruses (eg Human immunodeficiency virus, Herpes
simplex virus) can induce arterial stiffness and early vascular
aging.3,4 This has also been observed for COVID-19.1

In the first part of this narrative review, we present a short
overview of the pathology of vascular aging. We then discuss
why COVID-19 can be considered an endothelial disease.

Methods

The literature search for this narrative review was conducted using
PubMed. Only papers available in English were selected. The
literature search used these keywords and their combinations:
‘vascular age’, ‘early vascular aging’, ‘supernormal vascular ag-
ing’, ‘endothelial senescence’, ‘oxidative stress’, ‘inflammaging’,
‘vascular calcification’, ‘ACE-2’ and ‘COVID-19’. Both authors
reviewed each citation and abstract whenever available. Discrep-
ancies in inclusion were revised and discussed. According to our
keyword list, each article was accessed in terms of scientific
content, methods used, and completeness in reporting factors.

Vascular Aging

Concepts of Early Vascular Aging and Supernormal
Vascular Aging

Vascular age is determined by changes in functional and
structural arterial wall properties. Chronological age defines
the person’s age. Several tools based on multivariate re-
gression models are available for calculating vascular age.5

Vascular age, when measured by its proxy – carotid-
femoral pulse wave velocity (cfPWV), is a better predictor
of cardiovascular (CV) mortality as well as all-cause mortality
when compared with chronological age.6 Vascular age is a
better predictor of CV risk than chronological age when
studying patients with type 1 diabetes and for death when
studying patients with chronic kidney disease.7,8

Disconcordance between vascular and chronological age
might mean two things: either a person is in better vascular
health than his peers of the same sex or the opposite – their
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vascular health is worse than their peers of the same sex. For
example, vascular age much higher than chronological age
implies early vascular aging (EVA).9 This phenomenon has
been observed in patients suffering from inflammatory bowel
disease, chronic kidney disease, diabetes mellitus and obe-
sity.10-13 Indeed, EVA can be defined as an abnormally high
cfPWV for a person’s age and sex.9 For example, patients with
chronic bowel disease have increased cfPWV despite normal
blood pressure.11 Chronic low-grade inflammation in these
patients mimics that seen in inflammaging.10 Unfortunately,
there are no exact cut-off values for EVA yet – neither for
cfPWV or other vascular function and structure defining
variables – the concept is new, and the studies are ongoing.14

The opposite to EVA, super normal vascular aging (SU-
PERNOVA), can be attributed to patients if their cfPWV is
much lower compared with people of the same sex and age.14

These individuals seem to be protected from vascular aging
(measured by cfPWV) by genetic and epigenetic means.
Moreover, SUPERNOVA means a reduced risk for CV
events.14 The exact mechanism of why these people are
protected has not been established yet.

Interestingly, the Lancet Commission on Hypertension has
named several avoidable thresholds leading to CV disease:
elevated blood pressure, subclinical target organ damage and
CV events.15 Since preventive and destiffening strategies are
still under development, the subjects with EVA phenotype
move through these thresholds faster than those with
SUPERNOVA.

The Pathology of Age-Related
Vascular Remodelling

Senescence and Endothelial Dysfunction

Vascular aging starts from endothelial senescence; the hall-
marks of endothelial cell senescence are dysregulation of
vascular tone and stiffness, increased endothelium perme-
ability, altered angiogenesis and mitochondrial biogenesis.16

Cell senescence might be caused by oxidative stress and
sustained replication.17 Senescent cells lose their ability to
divide and begin to produce pro-inflammatory and matrix-
degrading molecules, and this is referred to as senescence-
associated secretory phenotype (SASP).16 This paracrine
activity of SASP cells leads to inflammation, degradation of
extracellular matrix and vascular remodelling.16 Senescent
endothelial cells also tend to produce less vasodilator nitric
oxide (NO) but more vasoconstrictive endothelin-1.18 En-
dothelial cell senescence is regulated by the p53 protein
pathway, activated in response to telomere dysfunction and
deoxyribonucleic acid (DNA) damage.19

Vascular endothelial dysfunction per se is characterized by
vasoconstriction, pro-coagulation, pro-inflammation and
proliferative effects regulated by endothelium through para-
crine or autocrine means.18 All these effects have been ob-
served at a greater level in older people when compared with

younger ones, even in the absence of CV disease.18 Endo-
thelial dysfunction is often measured by endothelium-
dependent dilation (EDD).20 The endothelium promotes
vasodilation through NO synthesized by endothelial NO
synthase (eNOS) and other, less critical vasodilators – pros-
taglandins and hyperpolarizing factors.21 The decreasing EDD
with age is attributed to a decrease in NO availability.22 The
reduction of NO synthesis could be explained by the decline in
tetrahydrobiopterin (BH4), an essential cofactor for NO syn-
thesis in eNOS.23 Vasodilating effects can be modified by
reduced eNOS expression, inactivation of NO, and conversion
of NO to pro-oxidant molecules.24 As a response to angiotensin
II or oxidized low-density lipoproteins, the endothelium pro-
duces endothelin-1, which has a robust vasoconstrictive ef-
fect.25 These regulatory mechanisms are essential in regulating
peripheral blood pressure, but when a disease influences these
pathways, it can restrict local blood flow.

Oxidative Stress

When the endothelial cell is not stressed, it has several an-
tioxidant systems, like superoxide dismutase, glutathione
peroxidase and heme oxygenase, all of which work against
local oxidative stress.26When influenced by pro-inflammatory
cytokines, endothelial cells can produce nicotinamide adenine
dinucleotide phosphate (NADPH) oxidases, and this process
leads to the synthesis of superoxide anions and local oxidative
stress.27 Production of reactive oxygen species (ROS) is as-
sociated with hypertension, hyperlipidemia and diabetes.28

Markers of oxidative stress are found in arteries of aging
humans and animals.29 Aging-related increase of ROS might
be explained by more active NADPH oxidase, heightened
mitochondrial production and a process caused by the de-
crease of BH4, leading eNOS to uncouple and shift from NO
production to ROS production.30 ROS can activate a cascade
resulting in nuclear factor kappa-B entering the nucleus and
activating genes responsible for synthesizing pro-
inflammatory cytokines.31 ROS produced during oxidative
stress also interact with NO, leading to the accumulation of
peroxynitrite – an extremely reactive and toxic metabolite.31

The causal interaction between oxidative stress and reduction
of NO levels and endothelial function is further illustrated by
experimental data, which shows that the administration of
antioxidants improves both NO availability and ED.32 In aged
endothelium, a vicious cycle of oxidative stress and inflam-
mation exists, each fuelling another.16

Thrombogenesis

Endothelial cells play a crucial role in preventing the blood
from clotting. It produces heparan sulfates, thrombomodulin,
NO and prostacyclin to promote anticoagulation and anti-
aggregation.33 If these systems fail and a thrombus is formed,
endothelium also produces plasminogen activators, which
have a profibrinolytic effect.34 Normally, the endothelium has
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anticoagulant, antiplatelet and profibrinolytic qualities. How-
ever, the endothelium can act oppositely. Some triggers (eg,
pro-inflammatory cytokines) can promote clot formation
through von Willebrand factor and tissue factor expression and
inhibit fibrinolysis through plasminogen activator inhibitor-1.35

While the endothelium protects the body from blood clotting
under normal circumstances, when exposed to inflammatory
signals, it can act oppositely, leading to thrombosis.

Leucocyte Infiltration

Under normal circumstances, the endothelium does not in-
teract with leucocytes for extended periods.36 Various se-
lectins expressed on the endothelial wall help slow leucocytes
down and increase the time they spend in contact with the
endothelium.37 Pro-inflammatory cytokines (eg interleukin 1
alpha (IL-1α), tumour necrosis factor-alpha (TNF -α)) pro-
mote the synthesis of selectins.36 Once slowed down, leu-
cocytes bind to the endothelial wall through adhesion
molecules like intercellular adhesion molecule-1 (ICAM-1)
and vascular cell adhesion molecule-1 (VCAM-1).37 Leuco-
cytes, bound to the endothelium, can be affected by chemo-
attractants to enter tissues.38

Inflammation and Inflammaging

Inflammaging is a concept that defines constant chronic low-
level inflammation in the absence of apparent infection and is
usually attributed to the elderly population.39 During the last
decade, inflammaging has been related to cardiovascular
pathology in populations with pulmonary diseases, chronic
kidney disease, diabetes and obesity.40,41

Inflammatory mediators can worsen vascular endothelial and
smooth muscle cell function.42 Accumulation of inflammatory
cells in vascular walls is related to hypertension in experimental
animal studies.43 Macrophages within the arterial wall produce
ROS, which increases adhesionmolecule expression, activation of
matrix metalloproteinases and reduced amount of NO, leading to
vascular remodelling and dysfunction.44 Additionally, increased
ROS production and inflammation promote telomere shortening,
which is associated with atherosclerosis and major CV events.45

Furthermore, increasing pro-inflammatory mediators and reducing
anti-inflammatory mediators might lead to arterial stiffening and
vascular calcification.46,47

Inflammaging is closely associated with perturbations in
gut microbiota with aging. Based on previous evidence, it is
well established that aging is associated with reduced mi-
crobiota diversity.48,49 Studies agree that dysbiosis harms the
host. On the other end of the spectrum of microbiota diversity
stand supercentenarians, whose microbiota tends to be even
more biodiverse.50 The type of composition of microbiota
determines levels of inflammatory markers, dysfunction of the
blood-brain barrier and increased circulating bacterial DNA.51

The well-functioning blood-brain barrier ensures brain health
and prevents central nervous system damage.52

Lastly, the lessons about the association between inflam-
mation and CV disease should be learned from pharmaceutical
studies. Statins impact low-density lipoprotein cholesterol and
inflammation, and statin-related CV event reduction results
from both effects.53 Colchicine, an anti-inflammatory drug,
was associated with a lower incidence of myocardial
infarction.54

Vascular Calcification

There is much evidence that vascular calcification increases with
age.55 It is an active process mainly defined by the phenotypic
transformation of vascular smooth muscle cells (VSMCs). The
osteogenic transformation of VSMCs is preceded by apoptosis,
macrophage infiltration and inflammation.56

The phenomenon of arterial wall thickening due to pre-
cipitation of calcium phosphate that results in arterial stiff-
ening is referred to as arteriosclerosis.57 It is an essential part
of vascular aging and a CV risk factor.58 There are two sig-
nificant types of arteriosclerosis – calcification of intima and
calcification of media.59 Medial sclerosis is prevalent in pa-
tients with type 2 diabetes and chronic renal disease and is also
associated with aging.60 Oxidative stress is shown to induce
aging-associated vascular calcification.61 When medial cal-
cification affects arteries of the extremities, it is referred to as
Mönckeberg medial sclerosis.62 It is the most common type of
medial sclerosis. Arteriosclerosis in microvasculature leads to
an increase in cfPWVand pulse pressure, eventually leading to
reduced perfusion.63

Atherosclerosis is mainly defined by intimal thickening
that develops as early as the second decade of life and is
associated with aging.64 Higher than average amounts of
senescent cells, reduced cell proliferation, DNA damage and
telomere shortening are found in atherosclerotic lesions, in-
dicating a close connection between aging and
atherosclerosis.65,66 As the result of intimal thickening, en-
dothelial barrier becomes more permeable, allowing choles-
terol and phospholipids to enter the subendothelium.67

Increased permeability combined with mild hypercholester-
olemia or hypertension is thought to be the driving force for
early atherosclerotic lesions.68 This has been demonstrated in
animal studies, where older rabbits acquired more severe
atherosclerotic plaques than younger rabbits when fed an
atherogenic diet.69 Coronary artery calcium can be used to
measure coronary atherosclerosis. Calcium score measured
from computed tomography is a good prognostic tool for
adverse CVevents though the radiation and economic burden
should also be considered.70

How can COVID-19 Damage
the Vasculature?

While COVID-19 is still a new entity, we already have some
studies on the relationship between COVID-19 and arterial
aging. Evidence suggests that the SARS-CoV-2 virus can
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spread into the cardiovascular endothelium.71 Further evi-
dence shows that epitheliopathy is present in COVID-19 and
is related to the severity of the disease and death.72

SARS-CoV-2 enters cells using ACE-2 receptors; in-
creased ACE-2 production makes it easier for the virus to enter
the cell.73 The disease course is worse in individuals with
comorbidities like endothelial dysfunction, diabetes, hyper-
tension and CV disease – all of which are associated with
elevated ACE-2 receptor expression.74 Once infected, various
pathways discussed later lead to a decrease of ACE-2 re-
ceptors in endothelial cells.73

ACE-2 receptors are found in various tissues and are
targeted as a binding protein for different viruses.75 ACE-2
messenger ribonucleic acid (mRNA) is found in most human
cells, mainly in alveolar epithelial cells, enterocytes in the
small intestine and vascular endothelial cells, and arterial
smooth muscle cells.76 ACE-2 plays a role in anti-
inflammation by promoting vasodilation.77 Under normal
conditions, a physiologic equilibrium exists between oppos-
ingly acting angiotensin derivatives synthesized by ACE and
ACE-2. If the concentration of ACE-2 receptors is reduced (as
seen in COVID-19), the balance shifts towards vasocon-
strictive, oxidative and pro-inflammatory responses.74

ACE-2 typically reduces vasoconstriction and pro-
motes vasodilation, thus reducing hypertension.78 Re-
duction in ACE-2 levels in peripheral vasculature disturbs
the anti-hypertensive role of these enzymes in small
vessels.79 The decrease of surface levels of ACE-2 leads to
an increase of angiotensin-II, which leads to vasocon-
striction.80 This has been a proven pathological response
to the SARS virus.80

The damage SARS-CoV-2 does to the endothelial wall can
be split into two parts: direct and indirect damage. Indirect
damage is caused by hyper inflammation and an increase in
circulating cytokine levels.81 Previous studies have shown that
acute infection can result in increased cfPWV, possibly by
decreasing NO bioavailability.82 In vivo studies have shown
that C-reactive protein reduces eNOS expression and activity
in endothelial cells, thus leading to functional stiffening of the
arteries.83 cfPWV increase during acute infection also strongly
correlates with C-reactive protein, IL-6 and matrix
metalloproteinase-9 (MMP-9) levels.84 The increase in MMP-
9 levels leads to reduced elastin synthesis and fragmentation.85

Healthy elastin prevents vascular smooth muscle cells from
changing their phenotype from normal contractile phenotype
to pathologic secretory phenotype.86 Increased arterial stiff-
ness leads to increased damage to the arterial wall due to
changes in pulse pressure.87 This arterial damage itself leads to
atherosclerosis and inflammation, and these effects both
contribute to arterial stiffening.88,89 Thus, a vicious cycle is
formed.1 Increased arterial stiffness has been proven to cause
target organ damage, it is also used to predict CV events and
mortality. Infection of the endothelial cell leads to endothelial
dysfunction through impaired smooth muscle cell function
and vascular extracellular matrix remodelling.83

Direct damage results from SARS-CoV-2 infecting vas-
cular endothelial cells. The SARS-CoV-2 virus uses the ACE-
2 receptor to infect its host.90 These receptors are also present
on endothelial cells.91 It has also been shown that in vitro
grown human capillary organoids can be infected by SARS-
CoV-2.90 Diffuse endotheliitis, infiltration of mononuclear
cells into endothelium and evidence of endothelial cell death
was found in post-mortem studies of patients who died from
COVID-19.92 All these findings prove that the virus can infect
endothelial cells. Infected cells become a target for recruited
immune cells, which may lead to apoptosis and endothelial
dysfunction.92

A recent study shows that SARS-CoV-2 S protein alone
can be sufficient to cause endothelial cell injury, even without
genetic material typically found in the virus. The ways in
which S protein damages endothelial cells are various. When
affected by S protein, endothelial cells undergo mitochondrial
fission, which might lead to apoptosis. Endothelial cells, when
exposed to S protein, undergo reduced eNOS activity. This
leads to decreased NO bioavailability and endothelial dys-
function. Authors also noticed increased glycolysis in endo-
thelial cells, which led to increased ROS and inflammation.
The increase in ROS leads to ACE-2 destabilization and a
decrease in ACE-2.93

Systemic inflammation and direct viral damage could be
responsible for the progression of atherosclerotic plaques or
rupture of older plaques, as seen in Influenza infections.94

SARS-CoV-2 infects endothelium.92 Cells infected by SARS-
CoV-2 have been shown to produce increased amounts of
MMP-9.95 MMP-9 is associated with increased cfPWV and
elastin fragmentation.84 Healthy elastin protects vascular
smooth muscle cells from phenotype shift from the normal
contractile phenotype to SASP.86 MMP-9 has been shown to
promote the formation of new atherosclerotic plaques and
instability of plaques.96,97 In vitro studies have demonstrated
that SARS-CoV-2 spike protein is enough to induce the
synthesis of adhesion molecules (VCAM-1 and ICAM-1) and
pro-inflammatory cytokines (TNFα, IL-1β and IL-6) in human
umbilical vein endothelial cells.98 Pro-inflammatory cytokines
contribute to the progression of atherosclerosis, and the ex-
pression of adhesion molecules is crucial for the development
of atherosclerosis.99,100 This shows a reasonable theoretical
pathway of SARS-CoV-2-induced atherosclerosis.

During vascular aging, vascular smooth muscle cells
transition from normal constrictive phenotype to pathological
SASP. This transition is irreversible and is driven by the p53
protein pathway as a response to telomere shortening or DNA
damage.101 DNA can be damaged by oxidative stress resulting
from increased ROS production, associated with SARS-CoV-
2 infection, and telomere shortening was noticed in patients
after COVID-19.102

SARS-CoV-2 endothelial infection and pathological
changes present in aged vasculature share common pathways.
Oxidative stress and pro-inflammatory cytokines activate
nuclear factor kappa-B, leading to pro-inflammatory cytokine
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gene transcription, and increased ROS production in
NADPH oxidases.16 Pro-inflammatory cytokines reduce the
bioavailability of NO and increase the expression of matrix
metalloproteinases, both of which lead to arterial
stiffness.83,85 Another common pathway leading to arterial
stiffness is a decreased number of ACE-2 receptors, typical
for both COVDI-19 and aging.103 Arterial stiffness is as-
sociated with increased pulse pressure and endothelial
damage.104 The arterial damage triggers the production of
pro-inflammatory cytokines.16 The common pathways of
arterial aging and SARS-CoV-2 infection have been summed
up in Figure 1.

Conclusions

Aging vasculature undergoes a variety of biochemical changes
and structural remodelling. Certain risk factors and genetic
and epigenetic factors can influence the rate at which vascular
aging occurs. Together these known and unknown factors are
responsible for EVA and SUPERNOVA individuals. SARS-
CoV-2 has been proven to, directly and indirectly, damage
endothelium and promote changes like those seen in vascular
aging. Vascular aging and COVID-19 share common path-
ways. COVID-19 could lead to early vascular aging. How-
ever, due to the novelty of the virus, there is still an urgent need
for studies that investigate its long-term effects on vascular
health. Also, there is a need to establish if certain medications
could decrease any premature arterial aging. Fundamental
studies are needed to identify possible therapeutic targets for
the prevention and treatment of early vascular aging induced
by COVID-19.
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Abbreviations

ACE-2 angiotensin-converting enzyme 2
BH4 tetrahydrobiopterin

cfPWV carotid-femoral pulse wave velocity
COVID-19 coronavirus disease 2019

CV cardiovascular
DNA deoxyribonucleic acid
EDD endothelium-dependent dilatation
eNOS endothelial nitric oxide synthase
EVA early vascular aging
IL interleukin
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ICAM-1 intercellular adhesion molecule-1
MMP-9 matrix metalloproteinase-9
NADPH nicotinamide adenine dinucleotide

phosphate
NO nitric oxide

ROS reactive oxygen species
SARS severe acute respiratory syndrome

SARS-CoV-2 severe acute respiratory syndrome
coronavirus 2

SASP senescence-associated secretory phenotype
TNFα tumour necrosis factor-alpha

SUPERNOVA Super normal vascular aging
VCAM-1 vascular cell adhesion molecule-1
VSMCs vascular smooth muscle cells
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