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Abstract
Chemical exchange often serves as the first step in plant–microbe interactions and exchanges of various signals, nutrients,
and metabolites continue throughout the interaction. Here, we highlight the role of metabolite exchanges and metabolic
crosstalk in the microbiome–root–shoot–environment nexus. Roots secret a diverse set of metabolites; this assortment of
root exudates, including secondary metabolites such as benzoxazinoids, coumarins, flavonoids, indolic compounds, and ter-
penes, shapes the rhizosphere microbiome. In turn, the rhizosphere microbiome affects plant growth and defense. These
inter-kingdom chemical interactions are based on a metabolic circular economy, a seemingly wasteless system in which rhi-
zosphere members exchange (i.e. consume, reuse, and redesign) metabolites. This review also describes the recently discov-
ered phenomenon “Systemically Induced Root Exudation of Metabolites” in which the rhizosphere microbiome governs
plant metabolism by inducing systemic responses that shift the metabolic profiles of root exudates. Metabolic exchange in
the rhizosphere is based on chemical gradients that form specific microhabitats for microbial colonization and we describe
recently developed high-resolution methods to study chemical interactions in the rhizosphere. Finally, we propose an ac-
tion plan to advance the metabolic circular economy in the rhizosphere for sustainable solutions to the cumulative degra-
dation of soil health in agricultural lands.

Introduction
Over millions of years, plants and microbes have developed
various associations ranging from mutualistic to parasitic.
Plants and their associated microbes can be considered hol-
obionts, in which the host relies on its microbiome for spe-
cific functions and traits (Rosenberg et al., 2009). It is
estimated that the number of microbial cells colonizing
plants is higher than the sum of plant cells, particularly
those colonizing the root (Mendes et al., 2013). The

rhizosphere is considered the richest source of organic mate-
rial in soil and therefore a hotspot for microbial growth and
activity (Reinhold-Hurek et al., 2015). Moreover, the number
of microbes in the rhizosphere (soil around the root zone) is
5–10 times higher than in nonrhizospheric soil (Groleau-
Renaud et al., 2000). The rhizosphere microbiome provides
diverse benefits to its plant host: microbes promote plant
growth (Lugtenberg and Kamilova, 2009), support nutrient
uptake (Weidner et al., 2015), improve tolerance to abiotic
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stress (Yang et al., 2009), defend the plant host against
pathogens (Raaijmakers et al., 2009; Shi et al., 2017), and
modulate the plant immune system to induce resistance
(Bakker et al., 2013).

Roots select specific microbial populations and shape
the microbiome composition in their vicinity (i.e. the rhi-
zosphere) and internal tissues (i.e. the endosphere)
(Bulgarelli et al., 2012; Bai et al., 2015; Uroz et al., 2019).
To date, an exceptional number of reports have provided
ample information regarding bacterial community struc-
ture in the rhizosphere of different plant species (mostly
model and crop plants, but also some wild species) (Bai
et al., 2015; Bulgarelli et al., 2015; Kawasaki et al., 2016).
Although less well-studied than bacteria, fungal communi-
ties in the rhizosphere have also been systematically de-
scribed (Berlanas et al., 2019). Archaea, oomycetes,
protozoa, and viruses are also found in the rhizosphere
(Mendes et al., 2013).

Chemical exchanges play an important role in the com-
plex interactions among members of the root microbiome.
Much of the research reporting the effect of root exudates
on rhizosphere microbes was performed on dual relation-
ships, such as plant interactions with nitrogen-fixing bacte-
ria, mycorrhizal fungi, plant growth-promoting rhizobacteria,
biocontrol microorganisms, and with pathogenic fungi and
bacteria (Table 1). Understanding the chemodiversity and
the chemical signaling affecting root activity and/or shaping
rhizosphere microbial activity is hence pivotal to protect
plants in nature and improve crop productivity.

Root growth, metabolism, and exudation are crucial for
establishing interactions with rhizosphere microbiota. Root
exudation is the main source of organic compounds released
into the rhizosphere. Changes in soil parameters caused by
root activity, known as soil conditioning, affect plant–soil
feedback (Herrera Paredes and Lebeis, 2016). Soil condition-
ing has a major effect on microbial growth and activity in
the rhizosphere. Conversely, rhizosphere microorganisms in-
fluence plant metabolism and performance (Korenblum and
Aharoni, 2019). Microbial modulation of plant metabolism
can be local or systemic; known systemic responses induced
by microbial colonization of roots include: (1) nitrogen fixa-
tion (i.e. autoregulation of nodulation [AON]; [Reid et al.,
2011]), (2) disease resistance (i.e. induced systemic resistance
[Pieterse et al., 2014]) and, recently, (3) root exudation can
be microbially modulated through a systemic response (i.e.
SIREM for “Systemically Induced Root Exudation of
Metabolites” [Korenblum et al., 2020]).

This review focuses on the chemical interaction between
rhizosphere microbes and plant roots, including processes
that modulate plant metabolism. We present a critical ap-
praisal of plant root exudation and its effect on rhizosphere
microbes, and compare the effect of conditioned and non-
conditioned soils on the rhizosphere microbiome composi-
tion of the next generation of plant host (aka microbiome
soil borne legacy) (Bakker et al., 2018). Root exudates shape
the rhizosphere microbiome, which influences plant

metabolism and exudation (as in SIREM). Finally, we bring a
suit of evidence for host–microbiome and metabolome
crosstalk, that is, plants eavesdrop on chemical communica-
tion between microbes, and vice-versa. Bringing these data
together, it follows that the microbiome–root–shoot–envi-
ronment nexus (Hou et al., 2021b, 2021a) is based on what
can be delineated as “metabolic circular economy”
(Figure 1) influencing rhizosphere interactions and plant
health.

Carbon sinks in the rhizosphere
Carbon allocation is vital for plants to adapt to environmen-
tal changes. The trade-off between carbon sink and source
activities will finally govern the success of plant growth
(Lemoine et al., 2013), but also has a major impact on plant
interactions with its microbiota (Hennion et al., 2019).
Consequently, belowground carbon allocation reflects a
wide range of physiological and ecological strategies, such as
nutrient mobilization (e.g. iron acquisition) and selecting the
rhizosphere microbiome through root exudation. Plants ex-
ude large amounts of substances made of photosynthetically
fixed carbon through the roots into the rhizosphere, the
zone of soil under the immediate influence of plant roots
(Hiltner, 1904). Root exudates contain a wide variety of
small molecules including amino acids, carbohydrates, or-
ganic acids, hormones, vitamins, and different classes of spe-
cialized metabolites (Venturi and Keel, 2016; Sasse et al.,
2018). Metabolite patterns and quantity of root exudates
are dependent on plant species, age, and environment
(Maurer et al., 2021).

Root exudation requires the transport of molecules to the
root system from the shoot and/or through root cell layers
and subsequent release to soil. We currently have little un-
derstanding of how metabolite secretion ensues and its asso-
ciated regulatory mechanisms. To be secreted by cells of the
epidermis and possibly by root cap cells, a molecule needs
to traverse the plasma membrane and permeate the cell
wall. Thus, membrane transporters are likely involved in
root chemical secretion. Exudation of primary metabolites
(e.g. sugars and amino acids) is facilitated by transporters
(e.g. SWEET transporters) along the concentration gradient
(Breia et al., 2021). As most secondary metabolites cannot
simply diffuse through membranes, especially metabolites
that are modified by glycosylation, acylation, or hydroxyl-
ation, the secretion of these molecules is likely an active pro-
cess. In one of only a few examples, export of coumarins
from roots in Arabidopsis thaliana is mediated by a
Pleiotropic Drug Resistance (PDR)-Type ATP-Binding
Cassette (ABC) transporter (ABCG37/PDR9; Ziegler et al.,
2017). ABCG37/PDR9 was also associated with transport of
the endogenous auxin precursor indole-3-butyric acid in
Arabidopsis signifying a most likely promiscuous activity of
such proteins (Rů�zi�cka et al., 2010). Apart from the limited
number of transporters associated with metabolite exuda-
tion (Weston et al., 2012; Sasse et al., 2018; Canarini et al.,
2019) we also have a major gap of knowledge with respect
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to the precise location of root metabolite accumulation and
the exact location of exudation. In recent work, we
employed matrix-assisted Mass Spectrometry Imaging (MSI)
and demonstrated the spatial localization of secondary

metabolites in tomato (Solanum lycopersicum) roots
(Korenblum et al., 2020). Some metabolites were specifically
found on the tips of lateral roots (e.g. the acylsugar S1:5),
while other metabolites were only detected on the hairs of

Table 1 Overview of studies reporting the effect of root exudates from different plant species on various rhizosphere microbes

Plant species Metabolite/whole exudate Effect (±) Rhizosphere microorganism Reference

Alfalfa (M. sativa) 7,40-Dihydroxyflavone and
naringenin

+ Acidobacteria Szoboszlay et al. (2016)

Arabidopsis (A. thaliana) Phytochemical extracts
from root exudates

+ Microbiome Badri et al. (2013)

Arabidopsis Malic acid + B. subtilis FB17 Rudrappa et al. (2008)
Arabidopsis Scopoletin – F. oxysporum and V. dahliae Stringlis et al. (2018)
Arabidopsis Sideretin and fraxetin – Pseudomonas sp. Root329 Voges et al. (2019)
Arabidopsis Thalianin, thalianyl fatty

acid esters, and arabidin
+ Proteobacteria Huang et al. (2019)

– Actinobacteria
Arabidopsis Camalexin + Pseudomonas sp. CH267 Koprivova et al. (2019)
Arabidopsis and alfalfa Whole exudate effect ± Fungal community Broeckling et al. (2008)
Arabidopsis abcg30

mutant
Whole exudate effect + Microbiome analysis (e.g.

Bradyrhizobium)
Badri et al. (2009)

Arabidopsis myc2 and
med25 mutants

Whole exudate effect + Microbiome analysis
(Streptomyces, Bacillus, and
Lysinibacillus)

Carvalhais et al. (2015)

Banana (Musa acuminata) Malic and fumaric acids + B. amyloliquefaciens NJN-6 Yuan et al. (2015)
Chinese tallow (Triadica

sebifera)
Flavonoid + AM fungi Tian et al. (2021)

Eucalyptus globulus ssp.
Bicostata

Rutin + Pisolithus Lagrange et al. (2001)

Common bean (Phaseolus
vulgaris)

Flavonoid + Rhizobium leguminosarum Aguilar et al. (1988)

Maize (Z. mays) Benzoxazinoids – Flavobacteriaceae and
Comamonadaceae

Cadot et al. (2021)

Maize 2,4-Dihydroxy-7-methoxy-
2H-1,4-benzoxazin-3(4H)-
one

+ P. putida KT2440 Neal et al. (2012)

Maize (6R)-7,8-Dihydro- 3-oxo-ion-
one and (6R; 9R)-7,8-dihy-
dro-3-oxo-ionol

– F. oxysporum f. sp. melongenae Park et al. (2004)

Maize Flavones + Oxalobacteraceae Yu et al. (2021)
Maize Whole exudate effect + B. amyloliquefaciens SQR9 Zhang et al. (2015)
Peanut (Arachis hypogaea) Alanine and other amino

acids
+ F. oxysporum and F. solani Li et al. (2013)

Pine (Pinus radiata) Quinic, lactic, maleic acids + Microbiome Shi et al. (2011)
Potato (Solanum

tuberosum)
Tyramine and other amino

acids
+ S. subterranean Balendres et al. (2016)

Sand Sedge (Carex
arenaria)

Volatile + Soil bacteria Schulz-Bohm et al. (2018)

Sugarbeet (Beta vulgaris) Whole exudate effect + P. aeruginosa PA01 Mark et al. (2005)
Tobacco Whole exudate effect + Paenibacillus elgii Das et al. (2010)
Tomato (S. lycopersicum) a-Tomatine + Sphingomonadaceae Nakayasu et al. (2021)
Tomato Whole exudate effect + F. oxysporum f. sp. lycopersici Scheffknecht et al. (2006)
Tomato Whole exudate effect + Pseudomonas spp. Kravchenko et al. (2003)
Tomato and cucumber

(Cucumis sativus)
Citric acid + Pseudomonas fluorescens

PCL1751, P. fluorescens
PCL1753, Pantoea agglomer-
ans PCA0067, and
Aeromonas hydrophila
PCA0081

Kamilova et al. (2006)

Watermelon (Citrullus
lanatus)

Chlorogenic acid – F. oxysporum f. sp. niveum Ling et al. (2013)

Watermelon Cinnamic acid + F. oxysporum f. sp. niveum Ling et al. (2011)
Wild oat (Avena barbata) Organic acids nicotinic, shi-

kimic, salicylic, cinnamic
and IAA

+ Microbacterium HA36,
Flavobacterium HB58 and
Cellulomonas HD24

Zhalnina et al. (2018)
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the main root (e.g. acylsugar S4:19 and hydroxytomatine).
MSI was also used in a different study to reveal the spatial
distribution of metabolites involved in regulating biological
nitrogen fixation within soybean root nodules (Veli�ckovi�c
et al., 2018). An alternative to MSI techniques to track the
precise location of metabolite accumulation in roots is the
use of a biosensor. Pini et al. (2017), employed Rhizobium
bio-reporter strains to map root secretion of sugars, polyols,
amino acids, organic acids, or flavonoids in pea (Pisum sati-
vum) roots and nodules. In pea nodules, dicarboxylates and
sucrose are the main carbon sources. This evidence suggests
that root exudation is likely variable along the root axis.

As early as 1904, Hiltner noted the selection of a unique
population of microorganisms by the chemicals released
from plant roots (Hiltner, 1904). Since then, a relatively small
number of specific plant metabolites have been described to
impact the root microbiome and several studies have tested
the effect of total root exudates collections on soil microor-
ganisms. Here, we provide a comprehensive list of studies
that evaluated the effect of root exudates on the rhizo-
sphere microbes, including plant volatiles (Table 1). Whole
exudate collections are typically composed of a wide range
of molecules, including high and low molecular weight com-
pounds affecting both bacterial and fungi soil microorgan-
isms. Arabidopsis and alfalfa (Medicago sativa) whole
exudate extracts exhibit a plant-specific effect on soil fungal
communities (Broeckling et al., 2008), while genetic

modification of active metabolite transporters (Badri et al.,
2009) or key regulators of pathogen defense genes
(Carvalhais et al., 2015) resulted in changes of root exudates
composition and microbial communities.

Metabolites exuded through the roots are either synthe-
sized in the roots or supplied by the shoot. Roots are sup-
plied with sugars that were synthesized in the leaves and are
mostly used for maintenance of root growth during early
growth stages (Hennion et al., 2019). Correspondingly, in
Arabidopsis, sugars are exuded by roots in the greatest
abundance early in the plant’s life cycle (7–10 days old)
(Chaparro et al., 2014); in later stages (18–21 days old), sug-
ars are still found in root exudates and have some contribu-
tion to the Arabidopsis rhizosphere microbiome structure
(Badri et al., 2013). The rhizosphere effect of organic acids
exuded from plant roots has been frequently studied
(Kamilova et al., 2006; Rudrappa et al., 2008; Ling et al.,
2011, 2013; Shi et al., 2011; Zhalnina et al., 2018).
Apparently, rhizosphere bacteria grow preferentially on aro-
matic organic acids exuded by plants (i.e. malonic, malic,
nicotinic, shikimic, salicylic, cinnamic, and indole-3-acetic
acids) (Oburger et al., 2009; Zhalnina et al., 2018). Being one
of the most labile carbon sources in the rhizosphere, when
released by roots organic acids are quickly consumed (i.e.
uptaken or biodegraded) by the rhizosphere microbiota
(Oburger et al., 2009). These studies provided evidence that
the chemical composition of root exudates, the substrate

ENVIRONMENT

MICROBIOME

ROOT

SHOOT

MICROBIOME
(Bacillus subtilis)

Root signal

Shoot signal

SYSTEMIC 
EXUDATION
(Acylsugars)

SIREMMetabolic Circular Economy

A B
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Figure 1 Metabolic circular economy in the rhizosphere. A, Schematic representation of chemical allocation in the phytobiome. The micro-
biome–root–shoot–environment nexus is based on a metabolic circular economy that influences rhizosphere interactions where metabolites are
exchanged (i.e. consumed, reused and redecorated [redesigned]) by different rhizosphere microbiome members. B, SIREM leads to shifts in the
chemical diversity in the rhizosphere and is microbiome-driven. SIREM (blue arrows) is a mechanism of the metabolic circular economy system
(red and purple arrows). SIREM-related acylsugar exudation is induced by the soil bacterium B. subtilis.
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preference, and competition of soil microbes determine the
structure and function of the rhizosphere microbiome. Soil
conditioning through exudation of organic acids regulates
the composition of the rhizosphere microbiome and appar-
ently promotes the growth of microbes that assist plants
fitness. For instance, malic and fumaric acids released by
banana roots are crucial for Bacillus amyloliquefaciens NJN-
6 colonization on the host roots. Bacillus amyloliquefaciens
NJN-6, originally isolated from the rhizosphere of banana
plants, was shown to protect these plants from Fusarium
oxysporum f. sp. cubense and promote their growth (Yuan
et al., 2015). Interestingly, organic acid treatment of soil
was shown to improve soil physicochemical performance
and affect the structure of the soil microbial community
(by inducing the enrichment of plant growth-promoting
bacteria). Following these findings, the authors suggested
the use of organic acids as soil prebiotics (Macias-Benitez
et al., 2020). Conversely, amino acids were associated with
enhanced growth of pathogenic microorganisms. A typical
example is the production of tyramine and other amino
acids by potato roots, leading to Spongospora subterranea
growth, a major crop-threatening pathogen (Balendres
et al., 2016). Alanine and other amino acids secreted from
peanuts were also found to promote the growth of F. oxy-
sporum and Fusarium solani (Li et al., 2013). Amino acids
in the rhizosphere may serve as sources of both carbon
and nitrogen; while microbes seemingly prefer to uptake
inorganic nitrogen, the ability to take up amino acids con-
fers an advantage by some opportunistic soil pathogens
(Moe, 2013).

The role of plant secondary metabolites in
rhizosphere interactions
Besides organic acids and sugars that are essential carbon
sources, secondary metabolites can also shape the rhizo-
sphere microbiome. They function as semiochemicals medi-
ating interactions or as toxic compounds deterring plant
pathogens. For instance, flavonoids are hitherto one of the
most studied chemical classes in root exudates. The various
branches of the intricate flavonoid pathway exhibit diverse
effects on soil microorganisms (Hassan and Mathesius, 2012;
Weston and Mathesius, 2013). They are pivotal in attracting
rhizobia to the root system of legume plants and induce
nodule formation by activation of nod genes from the rhizo-
bia. Legume-nodulating rhizobia use quorum-sensing (QS)
N-acyl homoserine lactones (AHLs) to regulate this symbi-
otic interaction and flavonoids (e.g. genistein, apigenin, and
daidzein) can also increase the production of autoinducers
and consequently the expression of AHL synthesis genes in
rhizobia (P�erez-Monta~no et al., 2011). Conversely, certain fla-
vonoids inhibit QS in Pseudomonas aeruginosa and
Escherichia coli through allosteric inhibition of receptors
(Paczkowski et al., 2017; Manner and Fallarero, 2018). Root
excreted flavonoids are also well-known for inducing the es-
tablishment of arbuscular mycorrhizal (AM) symbiosis (Tian
et al., 2021) and as defense molecules against soil-borne

pathogens. Interestingly, the Nod Factors from
Bradyrhizobium and Rhizobium were shown to induce exu-
dation of flavonoids in higher amounts in soybean (Glycine
max) plants (Schmidt et al., 1994). Maize (Zea mays) roots
exude metabolites from different chemical classes, mostly
benzoxazinoids (see below) and flavonoids are secreted into
the rhizosphere. The flavone apigenin exuded by maize roots
was shown to affect plant growth and nitrogen nutrition by
a microbial-driven process, that is, oxalobacteraceae is
enriched in apigenin-containing rhizosphere and promote
plant growth and nitrogen acquisition (Yu et al., 2021).

Another milestone in rhizosphere chemistry was the re-
cent discovery that coumarins shape the Arabidopsis root
microbiome when grown under low iron conditions
(Stringlis et al., 2018; Voges, et al., 2019). Specifically, scopole-
tin inhibits the growth of two soil-borne fungal pathogens,
F. oxysporum and Verticillium dahlia (Stringlis et al., 2018).
While catecholic coumarins (e.g. fraxetin) inhibit the growth
of the bacterial strain Pseudomonas sp. Root329, these mole-
cules could improve Bacillus subtilis biofilm formation
(Figure 2). Bacillus subtilis is widely used in agriculture as a
biocontrol agent against various plant pathogens. Root colo-
nization is dependent on its ability to form biofilm on roots
and requires active iron acquisition from the soil milieu by
producing catecholic siderophores (Chen et al., 2012; Rizzi
et al., 2019). While B. subtilis likely uses the plant-derived
catecholic coumarins as iron chelators; the proposed mode
of action of these molecules against Pseudomonas involves
the generation of reactive oxygen species (Voges et al.,
2019). Besides flavonoids and coumarins, different phenyl-
propanoids can be secreted from watermelon roots and
showed an opposite effect on the same soil microorganisms.
Ling et al. (2013) showed that chlorogenic acid from water-
melon has a negative effect on the pathogen F. oxysporum f.
sp. niveum, while the upstream compound in the phenyl-
propanoid pathway, cinnamic acid, was found to support
the growth of the same fungi (Ling et al., 2011).

Arabidopsis root-derived triterpenes also exert a dual
effect on the root microbiome. A blend of specific root-
derived triterpenes (namely thalianin, thalianyl medium-
chain fatty acid esters, and arabidin) in Arabidopsis, may
increase the proliferation of bacterial strains belonging to
Proteobacteria strains while it inhibits the growth
of Actinobacteria strains. Terpenes are the largest group of
plant secondary metabolites showing a vast diversity of
chemistries (Chen et al., 2004; Huang and Osbourn, 2019;
Muchlinski et al., 2019). This class of metabolites likely
confers a broad spectrum of biological activities in the rhizo-
sphere; yet no molecular mechanism of action of root-
derived terpenes on rhizosphere bacteria was disclosed.
Nevertheless, monoterpenes are known to exhibit antibacte-
rial activity, for example, carvacrol and thymol disturb
membrane integrity of nonplant associated bacteria
(Solórzano-Santos and Miranda-Novales, 2012). The sesqui-
terpene lactone strigolactone, which was first identified in
root exudates of cotton plants a few decades ago (Cook
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et al., 1966), influences AM symbiosis and rhizobial root
interactions (López-Ráez et al., 2017). In rhizobial interac-
tions, strigolactones affect swarming motility of the rhizo-
bacteria. In AM symbiosis, strigolactones are exuded into
the rhizosphere and attract AM fungi; in return, the fungal
counterpart provides phosphate and facilitates plant water
uptake. Several strigolactones were isolated and associated
to the induction of hyphal branching in AM fungi (AMF),
which is a critical step in host recognition; for instance 5-
deoxystrigol in Lotus japonicus (Akiyama et al., 2005), oro-
banchol and solanacol in tomato plants (López-Ráez et al.,
2008). For additional details on the role of strigolactones in
plant interactions with beneficial and detrimental organisms,
see for example the review by López-Ráez et al. (2017).

The localization of biosynthesis of indole-derived special-
ized metabolites, such as camalexin and benzoxazinoids, is
critical to root exudation and interactions. Arabidopsis and
other Brassicaceae plants produce and secrete camalexin in
the shoot and in the root as a phytoalexin against patho-
gens. Interestingly, root-specific biosynthesis of camalexin
that is dependent on the activity of the cytochrome P450
CYP71A27 in Arabidopsis, is pivotal to the plant interactions
with multiple microbial strains (Koprivova et al., 2019). A re-
markable association of the activity of CYP71A27 in roots
and the sulfatase activity in bacteria appeared crucial to
plant growth promotion by Pseudomonas sp. CH267 and
MPI9 strains. Pharmacologically effective doses of camalexin
complemented both effects of the CYP71A27 gene

knockout, the sulfatase activity, and the plant growth pro-
motion by Pseudomonas sp. CH267. The plant defense
benzoxazinoids (BX), specifically the aglycones 2,4-dihydroxy-
1,4-benzoxazin-3-one and 2,4-dihydroxy-7-methoxy-1,4-ben-
zoxazin-3-one glucoside, are predominantly secreted from
crown roots (roots originating from the stem) as compared
to primary roots (roots developing from the radicle). The
rhizosphere microbial community structure from
BX-producing wild-type maize differs from that of a BX-
deficient bx1 mutant of maize (Hu et al., 2018), and crown
root-associated communities of both wild-type and BX-
deficient mutants show reduced diversity indices when com-
pared with primary root-associated communities (Cotton
et al., 2019). Mutant lines have been used to identify the
role of BX and other plant metabolites in rhizosphere inter-
actions, but those specific metabolic changes in mutant lines
may affect overall plant metabolome and consequently
change the metabolic pattern of the root exudates. For in-
stance, Cotton et al. (2019) showed that benzoxazinoids de-
ficient bx1 and bx2 mutants of maize influence the
rhizosphere microbiome by an endogenous regulatory activ-
ity on a wider spectrum of plant-derived rhizosphere signals
(e.g. flavonoids). This key observation highlights a challenge
in deciphering the role of secondary metabolites in the rhi-
zosphere; metabolic engineering primarily targets one me-
tabolite or gene but it usually generates off-target metabolic
changes (Lv et al., 2014). Plant metabolism is highly inter-
twined and perturbation of a single gene leads to multiple

A B C

D E F

O O

OH

OH

O

O

O H
OH

O H

OH

O HOO O

O

OH
O HO

Esculetin Esculin Fraxetin

0          12.5          100 

+

−

0          12.5          100 0          12.5          100 Fe(μM)

Figure 2 Coumarins from Arabidopsis root exudate improve biofilm formation of the soil bacterium B. subtilis. Structures of the coumarins
Esculetin (A), Esculin (B), and Fraxetin (C) are depicted. The effect of these molecules (D, E, and F, respectively) in a B. subtilis pellicle assay con-
ducted with a final concentration of 5 lM of each coumarin is shown. The sign ( + ) on the left side indicates coumarin treatment and the (–)
sign indicates control (without coumarin). Bacterial cells were inoculated into the growth medium with different iron concentrations, and incu-
bated at 23�C for 2 days in dark before imaging. Biofilm formation appears as a bright layer in the positive wells. In low iron condition, root-de-
rived coumarins improve B. subtilis biofilm formation.
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consequences on metabolic flux. Thus, besides complemen-
tation assays, as used in the case of camalexin by Koprivova
et al. (2019), a system-wide analysis might be assisting in
evaluating the whole exudate effect on the root
microbiome.

Plant–soil feedback and root–shoot–root
systemic responses
By changing soil properties, root exudation has a fundamen-
tal role in plant–soil feedbacks also in further generation of
plants, the so-called microbiome driven “soil-borne legacy”
(Bakker et al., 2018). The best-studied case of the benefits of
soil conditioning on new generations growing in the same
soil is the agricultural phenomenon of disease-suppressive
soils. Improved suppression of fungal and bacterial plant
pathogens is associated with the enrichment of antagonistic
microbial members in the soil microbiome. Examples include
the take-all disease of wheat (Triticum aestivum) (Berendsen
et al., 2012), scab disease of potato (Sagova-Mareckova et al.,
2015) and black rot disease of tobacco (Nicotiana tabacum)
(Almario et al., 2014). In maize, benzoxazinoids recruit rhizo-
sphere bacteria (e.g. the plant beneficial bacterium
Pseudomonas putida) that enhance jasmonate signaling and
defense responses in the next generation of plants (Hu
et al., 2018). While soil conditioning functions in assembling
a more health-promoting root microbiota, benzoxazinoids
secretion also enriches various potential plant pathogenic
fungi (Cadot et al., 2021). Some soils are naturally suppres-
sive, but disease suppression can also be determined by the
plant host selection of antibiotic producing bacteria from
the native soil microbiota. For instance, a specific tomato va-
riety (Hawaii 7996) recruits a rhizospheric flavobacterium
against the soil-borne pathogen Ralstonia solanacearum and
rhizosphere transplantation of this resistant plant transfers
the ability to control disease symptoms in a susceptible to-
mato variety (Kwak et al., 2018). Specific root exudation pat-
tern likely results in the recruitment of this flavobacterium
by resistant plants. In Arabidopsis, alteration of root exuda-
tion patterns and increased resistance to Pseudomonas syrin-
gae were observed in plants grown in conditioned soils (i.e.
soils used to grow multiple plant generations that were
infected by P. syringae) (Yuan et al., 2018). Infected plants
exuded through the roots increased amounts of amino acids
and long-chain organic acids. The addition of these mole-
cules into the rhizosphere was found to elicit disease
suppression.

Microbial-driven changes in root metabolite profiles, gene
expression and developmental patterns were reported nu-
merous times. SIREM (Korenblum et al., 2020) is a root–root
long-distance signaling mediated by the root microbiome. In
SIREM, tomato rhizosphere microbiome modulates the
chemical diversity secreted to the rhizosphere by changing
the patterns of root exudation through a systemic root–
shoot-root signaling mechanism. Using a split-root hydro-
ponic system, different soil microbiomes introduced to one
root side (“local side”) were used to evaluate the effect of

the root microbiomes on the metabolites secreted in the
second root side (“systemic side”; kept under axenic condi-
tions). Three root microbiome treatments were prepared
with high, medium, and low microbial diversity levels
(termed HD, MD, and LD, respectively). Following 7 days of
root microbiome treatment, metabolic profiling of root exu-
dates in the “systemic side” revealed that 53.3%–75.4% of
the total mass features (detected in electrospray negative or
positive ionization mode, respectively) were significantly
modulated by one of the three microbiome treatments. We
detected a total of 115 metabolites that were significantly
enriched or depleted in the systemic side that was modu-
lated by the “local side” root microbiome. SIREM-induced
metabolites represented different chemical classes including
aliphatic and aromatic alcohol glycosides, fatty acids, hydrox-
ycinnamic acid conjugates, organic acid derivatives, sulfur-
containing compounds, steroidal glycoalkaloids (SGAs), ste-
roidal saponins, and acylsugars. The latter class of metabo-
lites is known to be produced by foliar glandular trichomes
of tomato and other members of the Solanaceae family
(Figure 3). These molecules consist of either glucose or su-
crose backbones esterified with three to four acyl chains,
each containing 2–12 carbons. In SIREM, acylsucroses (26
metabolites) and acylglucoses (G2:12 [6, 6]; seven isomers)
were exuded by the “systemic side” of tomato roots; the
sugar moiety and the length of the acyl chains differed
according to the root microbiome composition. HD-treated
plants mostly exuded acylsugars that are uniquely secreted
in the course of SIREM in tomato; acylsucroses with C5 acyl
chains (S1:5, S2:10, and S3:15). As in the case of acylsugars,
hydroxycinnamic acid amides conjugated to tyramine or
octopamine, were reported for the first time to be secreted
by roots. While acylsugars and hydroxycinnamic acid conju-
gates were induced in HD-treated plants, ferulic acid glyco-
sides were suppressed in LD-treated plant exudates. Tomato
SGAs commonly found in tomato fruits were also SIREM-
modulated in roots, such as hydroxytomatine, dehydrotoma-
tine, and a-tomatine (Korenblum et al., 2020). Interestingly,
a-tomatine was recently associated with enrichment of
Sphingomonadaceae in the tomato rhizosphere, suggesting
its role in belowground chemical communication (Nakayasu
et al., 2021).

Another SIREM-related molecule that was detected in
exudates of microbiome-treated plants was azelaic acid
(AzA). It accumulated in the “systemic side” root tissue in a
glycosylated form. The AzA aglycone is commonly found in
leaves of various plants after pathogen attack (Lim et al.,
2017); neither the aglycone nor the glycosylated form were
reported previously to occur in roots nor in exudates.
Following the challenge of split-root plants with AzA only,
AzA was detected in systemic parts of the split-root plants,
both shoot and root, in its glycosylated form (i.e. AzA-
hexose). The AzA aglycone is exuded through the “systemic
side” root. Additionally, AzA treatment induces systemic ex-
udation of other metabolites, for example, the SGA
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a-tomatine was higher in exudates of AzA-treated plants as
compared to untreated plants (Korenblum et al., 2020).

SIREM is dependent on the colonization of roots by spe-
cific bacteria and possibly on the interaction of plant roots
with other soil microbes. For instance, B. subtilis induced the
exudation of specific tetraacylsucroses and bacteria belong-
ing to the order Pseudomonadales were correlated to the
systemic exudation of ferulic acid glycosides. Therefore,
SIREM represents a microbial-driven systemic root exudation
mechanism that likely promotes soil conditioning. We also
suggested that AzA or AzA-hexose are SIREM-inducing mol-
ecules that might be reprograming plant metabolism. The
detection of specific chemistries (with large structural diver-
sity) in root exudates modulated by root microbiome sug-
gests exclusive rhizosphere functions, likely important to
interactions belowground. Future research is required to

elucidate acylsugars’ biosynthesis in roots of Solanaceae
plants and unravel the specific role of these metabolites exu-
dation in belowground interactions. Moreover, AzA biosyn-
thesis and transport in planta also requires further research.

Plant systemic signaling mechanisms that regulate soil
microbiome–root–shoot–root interactions remain little in-
vestigated to date. One challenge in such experiments is the
isolation of the “local side” root from the “systemic side”
root. The “split-root” experimental system is an excellent
tool to reveal systemic signaling controlling root interactions
with the rhizosphere microbiome (Kassaw and Frugoli, 2012;
Larrainzar et al., 2014). The AON pathway is part of legume
root–rhizobium symbiosis, in which nodule number is con-
trolled by a systemic mechanism (Pervent et al., 2021).
When soil N is limiting, legume plants are triggered to exude
flavonoids (e.g. luteolin and apigenin), which recruit rhizobia
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to the roots and induce nodule formation (Weston and
Mathesius, 2013). In the nodules, the enzyme nitrogenase
catalyzes the reduction of N2 to NH4 + . Bacterial infection
and nodule formation are controlled by nitrate availability
to roots. Notably, the number of nodules is systemically reg-
ulated through a signal that is produced in the nodule/root
tissue (small peptides of the CLAVATA3 /EMBRYO
SURROUNDING REGION-RELATED (CLE) family [Mortier
et al., 2012]). The peptides are transported to the shoot,
and then a shoot-derived secondary signal is transmitted
back to roots to inhibit further nodulation in distal parts of
the root system. This intricate long-distance relay of small
peptides (including microRNAs and hormones; Okuma
et al., 2020) that is crucial for balancing between susceptibil-
ity to rhizobia colonization (i.e. nodule formation and influx
of nitrogen) and the efflux of carbon compounds derived
from photosynthesis to maintain the nodule active.
Interestingly, autoregulation of symbiosis has also been
reported for the AMF root colonization, a “common symbi-
osis pathway” that controls the establishment of both root
nodulation and the AMF–plant symbiosis (Ikeda et al.,
2010). Nodulation systemically influences AMF root coloni-
zation and the other way around (Catford et al., 2003). In
AMF–plant symbiosis, CLE peptides are also produced by
the fungal counterpart, which positively regulates symbiosis
(Le Marquer et al., 2019).

Metabolic crosstalk in the rhizosphere
While there is no evidence of a universal language in the rhi-
zosphere, it is clear that extensive chemical communication
occurs between plants and its microbiome. The plant host
and its microbiome coexisted and coevolved for millions of
years. During this period of time both counterparts have
been exposed to numerous chemicals, among them signal-
ing molecules, produced and released by the other.
Therefore, plants enhance and interfere with bacterial com-
munication systems and similarly bacterial signal molecules
can influence plant metabolism. Aside from modulation of
metabolism, crosstalk (or “hijacking”) of inter-kingdom sig-
nals (such as bacterial auto-inducers and host plant hor-
mones) has broad implications for bacterial colonization on
roots and plant fitness.

The inoculation of crops with beneficial microbes has
been long explored to improve plant yield (Sessitsch et al.,
2018). Several studies showed the effect of plant growth-
promoting rhizobacteria on plant growth is based on their
ability to produce phytohormones such as gibberellins
(GAs), auxins, cytokinins (CKs), ethylene, and abscisic acid
(ABA) (Freebairn and Buddenhagen, 1964; Morrone et al.,
2009; Kudoyarova et al., 2014; Shahzad et al., 2017; Keswani
et al., 2020). GAs were first discovered in the fungal rice
pathogen Gibberella fujikuroi, but they are also produced by
other fungi and bacteria (Salazar-Cerezo et al., 2018). Active
GAs (i.e. GA1, GA3, GA4, and GA7) are pivotal for plant
growth and its interaction with microbes. GA biosynthesis
was unraveled recently in rhizobia, which independently

evolved a biosynthetic pathway divergent from the plant
and fungal ones (Nett et al., 2017). Bradyrhizobium diazoeffi-
ciens and other rhizobia contain an operon encoding the
enzymes to produce GA. While two rhizobial diterpene
cyclases (CPS and KS) share some homology with the plant
and fungal cyclases, the other enzymes involved in rhizobial
GA biosynthesis share little or no homology with the plant
and fungi proteins (Nett et al., 2017). Similarly, plants and
microbes are able to produce auxin. The most common
auxin indole-3-acetic acid (IAA) evolved independently in
fungi (first detected in the spent media of a yeast culture),
bacteria, and plants (Duca et al., 2014). In plants, auxin plays
a role amongst others in cell division, tissue differentiation,
and plant growth while in fungi, IAA affects cell expansion,
disturbs cell division, and in some species induces spore ger-
mination (Fu et al., 2015). It is estimated that over 80% of
the rhizospheric bacteria are capable of synthesizing IAA
(Spaepen and Vanderleyden, 2011). For instance, both rhizo-
bacterial strains, Bacillus megaterium UMCV1 and
Azospirillum brasilense Sp245, produce auxins and induce
root-architectural alterations such as increased number of
lateral roots and longer root hairs (López-Bucio et al., 2007;
Spaepen and Vanderleyden, 2011). In both plants and
microbes, IAA is synthesized either by a tryptophan-
dependent pathway or by a tryptophan-free way. The pro-
duction of auxins in bacteria seems to depend on the avail-
ability of precursors in root secretions. L-tryptophan has
been identified in root exudates and is suggested as the
main precursor of the synthesis of bacterial auxins
(Kamilova et al., 2006; Fu et al., 2015). Therefore, auxin con-
centration in the rhizosphere is highly dependent on plant–
microbe interactions. The effect of auxin on bacteria is di-
verse; it may function as a signaling molecule affecting gene
expression, regulate antibiotic synthesis, and pathogenesis
antagonizing plant defense responses (Fu et al., 2015; Kunkel
and Harper, 2018; Matilla et al., 2018). CKs are involved in
the interactions between roots and soil microorganisms and
have been reported to play an important role in defense
against biotrophic pathogens. Arabidopsis plants treated
with trans-zeatin before P. syringae pv. tomato DC3000 inoc-
ulation, led to decreased susceptibility to the bacterial path-
ogen (Choi et al., 2010). The convergent evolution of GA,
IAA, and CK biosynthesis suggests that these molecules
were favored as a widespread physiological code in plants
and microbes.

The gaseous hormone ethylene is also produced by
microbes, however, the main microbial modulation in the
rhizosphere impacting ethylene balance in plants is the re-
duction of plant ethylene levels via degradation of its imme-
diate precursor 1-aminocyclopropane-1-carboxylate (ACC)
(Gamalero and Glick, 2015). The catabolic activity of the mi-
crobial enzyme ACC deaminase lowers local levels of the
hormone in plants, and then the low ethylene concentration
allows plant growth under stressed conditions. In return,
ACC is a nitrogen source to the rhizosphere microbiota.
This mutualistic relationship between plants and ACC
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deaminase-producing bacteria has a great potential to pro-
mote plant stress tolerance as ethylene displays a wide range
of biological effects in plants (Liu et al., 2019). As ethylene,
ACC acts as a signaling molecule in several plant processes
such as root–shoot signaling (Yoon and Kieber, 2013; Van
de Poel, 2020), thus the interaction of plants with ACC
deaminase-producing bacteria might decrease the degree of
ACC signaling of specific plant functions. For instance, plant
roots typically respond to flooding by synthesizing a high
level of ACC. Due to lack of oxygen, ACC is translocated
from roots to shoots, where it becomes a substrate for ACC
oxidase and is converted to ethylene (Gamalero and Glick,
2015). Experiments with the “split-root” system demon-
strated that a positive message (i.e. ACC) produced in roots
was transmitted through the xylem and stimulated shoot
ethylene production (Jackson, 2002). The abiotic stress plant
hormone ABA is also produced by rhizosphere microbes
and can be perceived by the plant hosts thereby improving
drought resistance (e.g. A. brasilense sp 245; Cohen et al.,
2008). ABA accumulation in soil can negatively affect seed
germination, inhibit root growth and increase plant disease
susceptibility (Yuzikhin et al., 2021). ABA root concentration
balance interplays with other phytohormones in disease re-
sistance, such as salicylic acid and ethylene. Interestingly,
many rhizobacteria are capable of affecting the balance of
one or more plant hormones. For example, Burkholderia
phytofirmans PsJN affects both ethylene and auxin levels in
plants. This same strain produces the autoinducer AHL that
mediates QS in the rhizosphere and is crucial for root colo-
nization (Zú~niga et al., 2013).

While AHL production by rhizosphere microbes is recog-
nized to modulate plant gene expression and metabolism,
host metabolites can cross-signal with microbial QS signals
to modulate bacterial gene expression and root colonization
(Joshi et al., 2021). The rhizosphere harbors a high amount
of bacteria that employ QS mechanisms (Elasri et al., 2001).
Among 129 bacterial isolates from cottonwood tree rhizo-
sphere, 40% were tested positive for AHL production; all
positive isolates belonged to the Proteobacteria phylum
(Schaefer et al., 2013). A classical AHL QS system consists of
a LuxI-type protein (AHL synthase) that interacts with the
cognate LuxR-type protein (a transcription factor) (Steindler
et al., 2008). Various luxR homologs were detected in the
genomes of the cottonwood proteobacterial isolates, some
of these homologs were suggested to be members of a sub-
family of LuxRs that respond to plant signals rather than to
bacterial AHLs (Schaefer et al., 2013). Bacterial AHLs can
function as inter-kingdom signals on a widespread signaling
network between plants and bacteria. As many plant benefi-
cial and pathogenic bacteria require QS to successfully colo-
nize the host plant, these bacteria can use their QS
molecules to regulate plant growth (Schenk et al., 2012).
Several plant species have been shown to respond to AHLs
influencing and reprogramming plant gene expression
(González and Venturi, 2013). Recently, four AHL molecules
(N-(3-oxohexanoyl)-L-homoserine lactone [oxo-C6-HSL], N-

(3-oxooctanoyl)-L-homoserine lactone [oxo-C8-HSL], N-(3-
oxododecanoyl)-L-homoserine lactone [oxo-C12-HSL], and N-
(3-oxotetradecanoyl)-L-homoserine lactone [oxo-C14-HSL])
and combinations of these molecules were tested for their ef-
fect on Arabidopsis growth and resistance against P. syringae
pathovar tomato. Some of these AHL molecules, when
treated independently, positively influenced plant growth,
while others induced resistance by AHL-driven priming
(Shrestha and Schikora, 2020). Many plant-associated bacteria
(e.g. rhizobia, xanthomonads, and pseudomonads) have a
LuxR-like protein that lacks an AHL synthase and these pro-
teins are regarded as LuxR solo or orphan (Patankar and
González, 2009; González and Venturi, 2013). LuxR solo pro-
teins bind and respond to plant compounds. For instance,
the plant phenylpropanoid p-coumaric acid accumulates in
the rhizosphere. This metabolite activates the 4-coumaroyl-
homoserine lactone synthase of Bradyrhizobium sp., which
uses the plant-derived p-coumaric acid and endogenous
S-adenosylmethionine to generate the hybrid signal molecule
p-coumaroyl homoserine lactone (i.e. p-coumaroyl-HSL),
which finally induces genes related to chemotaxis (Schaefer
et al., 2008). Metabolism crosstalk is thus an emerging field in
the rhizosphere inter-kingdom signaling, where plant host
metabolites can be used as alternative substrates in bacteria
(e.g. p-coumaroyl-HSL).

Future perspectives
The fusion of plant and microbial small molecules as a con-
certed effort (Wang and Seyedsayamdost, 2017), and the
biosynthesis of metabolites induced by external signals or
depending on the microbiome context (Korenblum and
Aharoni, 2019) are unquestionably pertinent in complex
ecosystems such as the rhizosphere. However, the effect of
these phenomena is not restricted to the rhizosphere and
likely influences the plant host at the “phytobiome scale”
(i.e. the network of the whole plant with their microbiome,
other organisms, and the environment; Leach et al., 2017).
Systemic processes are particularly important in the micro-
biome–root–shoot–environment nexus; the rhizosphere
microbiota can induce various physiological changes in
plants, including promotion of growth, improved health,
and modulation of root exudation (e.g. in SIREM). The un-
derstanding of the internal and external chemical signals in-
duced by the rhizosphere microbiome in systemic responses
will provide tools for better bioinoculants technology and
exudate-oriented plant breeding. Moreover, in this
“metabolic circular economy” in the rhizosphere, the chemi-
cal spectrum is extensive and there is likely no metabolic
waste. It is estimated that one plant species produces a few
thousand metabolites (Fernie et al., 2004), but only a few
tens of root-derived metabolites are known to have a role
on the rhizosphere microbiome (Table 1). Besides reducing
this knowledge gap and systematic evaluation of the meta-
bolic connectivity among root exudates and the rhizosphere
microbiome in model and nonmodel plants further research
on the spatial distribution of root-secreted metabolites along
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the root axis using high-resolution methods will reveal de-
tailed localization of metabolites in roots (Figure 4). These
technologies include the combination of biosensors with
microfluidic systems for in vivo spatiotemporal mapping
of root secretion and microbial colonization (Massalha
et al., 2017; Pini et al., 2017; Geddes et al., 2019) and MSI
at the root cell-type resolution (Veli�ckovi�c et al., 2018;
Korenblum et al., 2020). The spatial distribution of metab-
olites using these methods can be advanced by comparing
mutants and wild-type plants. Additionally, spatially re-
solved metabolite localization at the single cell (Taylor
et al., 2021) or the effect of metabolites on the micro-
biome transcriptomics at the single-cell resolution (Dar
et al., 2021) are cutting-edge techniques that will further

allow super-resolution of the metabolic coupling in the
rhizosphere. Moreover, better understanding of the mod-
ulation of phytobiome metabolism will certainly advance
the discovery of novel chemistries and the fundamental
evolutionary trajectories of the metabolic crosstalk in the
rhizosphere, that is, the chemically driven ecological rules
in the rhizosphere. Gaining this knowledge is fundamental
for the development of innovative strategies for sustain-
able agriculture and environmental protection.
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Gramaje D (2019) The fungal and bacterial rhizosphere micro-
biome associated with grapevine rootstock genotypes in mature
and young vineyards. Front Microbiol 10: 1–16

Breia R, Conde A, Badim H, Fortes AM, Gerós H, Granell A (2021)
Plant SWEETs: from sugar transport to plant–pathogen interaction
and more unexpected physiological roles. Plant Physiol 186:
836–852

Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM
(2008) Root exudates regulate soil fungal community composition
and diversity. Appl Environ Microbiol 74: 738–744

Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL,
Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R,

Schmelzer E, et al. (2012) Revealing structure and assembly cues
for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:
91–95

Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan
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RA, González B (2013) Quorum sensing and indole-3-acetic acid
degradation play a role in colonization and plant growth promo-
tion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN.
Mol Plant Microbe Interact 26: 546–553

3182 | THE PLANT CELL 2022: 34; 3168–3182 Korenblum et al.


