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A B S T R A C T   

Background: DTI is sensitive to white matter (WM) microstructural damage and has been suggested as a surrogate 
marker for phase 2 clinical trials in cerebral small vessel disease (SVD). The study’s objective is to establish the 
best way to analyse the diffusion-weighted imaging data in SVD for this purpose. The ideal method would be 
sensitive to change and predict dementia conversion, but also straightforward to implement and ideally auto
mated. As part of the OPTIMAL collaboration, we evaluated five different DTI analysis strategies across six 
different cohorts with differing SVD severity. 
Methods: Those 5 strategies were: (1) conventional mean diffusivity WM histogram measure (MD median), (2) a 
principal component-derived measure based on conventional WM histogram measures (PC1), (3) peak width 
skeletonized mean diffusivity (PSMD), (4) diffusion tensor image segmentation θ (DSEG θ) and (5) a WM measure 
of global network efficiency (Geff). The association between each measure and cognitive function was tested 
using a linear regression model adjusted by clinical markers. Changes in the imaging measures over time were 
determined. In three cohort studies, repeated imaging data together with data on incident dementia were 
available. The association between the baseline measure, change measure and incident dementia conversion was 
examined using Cox proportional-hazard regression or logistic regression models. Sample size estimates for a 
hypothetical clinical trial were furthermore computed for each DTI analysis strategy. 

Abbreviations: AxD, Axial diffusivity; AD, Alzheimer, s disease; Adj. R2, Model’s explained variance adjusted by the number of predictors; AIC, Akaike information criterion; ANCOVA, Analysis of 

covariance; ASPS-Fam, Austrian Stroke Prevention Study; AUC, Area under the curve; CSF, Cerebral spinal fluid; DSEG θ, Diffusion tensor image segmentation θ; DSM, Diagnostic and Statistical Manual of Mental 

Disorders; DTI, Diffusion tensor imaging; FA, Fractional anisotropy; FACT, Fiber assignment by continuous tracking; Geff, Global efficiency network measure; HR, Hazard ratio; MCI, Mild cognitive impairment; 
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Results: There was a consistent cross-sectional association between the imaging measures and impaired cognitive 
function across all cohorts. All baseline measures predicted dementia conversion in severe SVD. In mild SVD, 
PC1, PSMD and Geff predicted dementia conversion. In MCI, all markers except Geff predicted dementia con
version. Baseline DTI was significantly different in patients converting to vascular dementia than to Alzheimer’ s 
disease. Significant change in all measures was associated with dementia conversion in severe but not in mild 
SVD. The automatic and semi-automatic measures PSMD and DSEG θ required the lowest minimum sample sizes 
for a hypothetical clinical trial in single-centre sporadic SVD cohorts. 
Conclusion: DTI parameters obtained from all analysis methods predicted dementia, and there was no clear 
winner amongst the different analysis strategies. The fully automated analysis provided by PSMD offers ad
vantages particularly for large datasets.   

1. Introduction 

Cerebral small vessel disease (SVD) is a highly prevalent condition 
which causes lacunar stroke, vascular cognitive impairment (VCI) and 
dementia (Wardlaw et al., 2019). Characteristic appearances seen on 
magnetic resonance imaging (MRI) include white matter hyper
intensities (WMH), lacunes, cerebral microbleeds, and enlarged peri
vascular spaces (Pantoni, 2010). Cognitive impairment is common, with 
early impairment of executive function and information processing 
speed (Lawrence et al., 2013). SVD is the most common vascular pa
thology underlying VCI, although only a small proportion of patients 
with radiological features of SVD will progress to dementia within a few 
years (Amin Al Olama et al., 2020; Debette et al., 2019; Debette and 
Markus, 2010; Lawrence et al., 2017; Prins et al., 2004; Wu et al., 2019). 

Despite the enormous global burden of SVD in causing stroke, de
mentia and, disability, there are few effective treatments for the disease 
(Smith and Markus, 2020). One challenge is that large sample sizes are 
required to examine new therapies using clinical outcomes such as 
recurrent stroke, cognitive decline and dementia (Amin Al Olama et al., 
2020; Baykara et al., 2016; Benjamin et al., 2016; Lawrence et al., 2015; 
Nam et al., 2017). Moreover, cognitive testing has been shown to be 
relatively insensitive as an endpoint measure in phase 2 trials. Hence, 
there is increasing interest in the use of other markers including MRI as a 
surrogate endpoint to allow evaluation of therapies with smaller sample 
sizes in phase 2 trials, prior to scaling to primary clinical endpoints in 
larger phase 3 trials (Baykara et al., 2016; Benjamin et al., 2016; Law
rence et al., 2015; Schmidt et al., 2004). 

Diffusion tensor imaging (DTI) has been proposed as a promising 
surrogate marker in SVD trials (Baykara et al., 2016; van den Brink et al., 
2022; Zeestraten et al., 2017, 2016). DTI measures have been shown to 
be sensitive to white matter (WM) damage in SVD both within WMH and 
in apparently ‘normal appearing’ WM (O’Sullivan et al., 2004; Pasi 
et al., 2016). In cross-sectional studies DTI measures correlated with 
cognitive impairment more strongly than WMH (Croall et al., 2017; 
Lawrence et al., 2013; Tuladhar et al., 2015). Recent longitudinal 
studies have also demonstrated that both baseline DTI, and change in 
DTI, predict future dementia risk (Egle et al., 2022; Power et al., 2019; 
van Uden et al., 2016; Zeestraten et al., 2017). Changes in DTI markers 
can be detected over periods as little as 1–3 years, which are time du
rations often used in phase 2 clinical trials (Markus et al., 2021; Nit
kunan et al., 2008; van Leijsen et al., 2019; Williams et al., 2019, 2017; 
Zeestraten et al., 2016). 

However, DTI analysis can be time consuming, and automated or 
semi-automated analysis techniques that are robust across different sites 
and populations are attractive, particularly for clinical trials. Such 
methods include Peak width of Skeletonized Mean diffusivity (PSMD), a 
DTI-derived measure based on skeletonization and histogram analysis, 
(Baykara et al., 2016) and Diffusion tensor image SEGmentation θ 
(DSEG θ) a diffusion tensor image (DTI) segmentation technique to 
describe SVD related changes in a single unitary score across the whole 
cerebrum ((Baykara et al., 2016; Williams et al., 2017). Previous ana
lyses have tended to focus on one DTI histogram measure such as MD 
median or MD peak height. However, it is possible that analyzing 

multiple measures improves prediction. The reason for this is that 
different DTI parameters represent slightly different aspects of pathol
ogy; for example radial diffusivity (RD) has been suggested as a marker 
of myelin loss and axial diffusivity (AxD) as a marker of demyelination 
(Song et al., 2002; Winklewski et al., 2018). Techniques such as prin
cipal component analysis which summarize different DTI measures may 
therefore show better prediction than a single histogram measure. Lastly 
advanced MRI diffusion data and tractography can be used to recon
struct WM tracts and networks, and measures of the integrity of such 
brain networks have been shown to correlate strongly with impaired 
cognitive function, and predict future dementia risk (Lawrence et al., 
2018, 2014; Tuladhar et al., 2016b). 

The overall aim of the OPTIMAL (OPtimising mulTImodal MRI 
markers for use as surrogate markers in trials of Vascular Cognitive 
Impairment due to cerebrAl small vesseL disease) collaboration is to find 
the most efficient way of using MRI measures in clinical trials. A pre
vious OPTIMAL study demonstrated that conventional WM DTI mea
sures such as MD median predicted impaired cognitive function and 
dementia conversion in SVD and MCI patient cohorts (Egle et al., 2022). 
In this OPTIMAL study, we compared the performance of different 
strategies of quantifying diffusion-weighted imaging, including MD 
median, in predicting conversion to dementia and impaired cognitive 
function. We then used the data to determine sample sizes for a potential 
intervention study using the different DTI approaches as endpoints. WM 
ultrastructural damage, characterised by DTI, has been associated with 
cognitive not only in patients with symptomatic SVD, but also in elderly 
community populations, and in cohorts with MCI; in all groups WM 
damage due to SVD has been postulated to play a role in cognitive 
impairment. For this reason, we assessed the performance of makers 
across a range of cohorts including both severe and mild SVD, healthy 
elderly community subjects, and subjects with MCI. For our analyses, we 
used all-cause dementia as the primary outcome measure. This is 
because is the most relevant outcome measures for a clinical trial, 
because accurate diagnosis of subtypes in life may be inaccurate and 
related to the later point because population-based studies have shown 
at post-mortem that most cases of dementia have a mixed pathology 
often including vascular changes of SVD (Schneider et al., 2007; Toledo 
et al., 2013). 

2. Materials and methods 

2.1. Cohorts studied 

Five prospective longitudinal cohort studies were included (Table 1) 
which had differing severity of SVD, ranging from severe symptomatic 
disease presenting with lacunar stroke and confluent white matter 
hyperintensities, to a community population in whom “asymptomatic” 
SVD was detected on MRI. In addition, we included a cohort with mild 
cognitive impairment (MCI). They were:  

i. St George’s Cognition and Neuroimaging in Stroke (SCANS) 
included 121 individuals with severe symptomatic SVD defined 
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as a symptomatic lacunar infarct with confluent WMH (Fazekas 
grade >=2) (Fazekas et al., 1987) (Zeestraten et al., 2016)  

ii. Radboud University Nijmegen Diffusion tensor and Magnetic 
Resonance Imaging Cohort (RUN DMC) study included 503 pre
dominantly mild symptomatic SVD patients defined as the pres
ence of lacunes and or any WMH on neuroimaging and 
accompanying stroke, subacute cognitive or motor symptoms 
(van Norden et al., 2011)  

iii. PRESERVE multicenter clinical trial with imaging included 111 
patients with severe symptomatic SVD defined as a symptomatic 
lacunar infarct with confluent WMH (Fazekas grade >=2) 
(Fazekas et al., 1987) (Croall et al., 2017)  

iv. HARMONISATION study included 127 patients with mild 
cognitive impairment (MCI) impaired in at least one cognitive 
domain of a formal neuropsychological test battery, with or 
without a history of stroke (Hilal et al., 2017)  

v. Austrian Stroke Prevention Study (ASPS-Fam), a community 
population of 382 individuals free of dementia and stroke as well 
as demonstrating normal neurological function in whom SVD was 
severity was assessed on MRI (Seiler et al., 2014)  

vi. CADASIL cohort of 58 patients with monogenic SVD confirmed 
by genetic testing or skin biopsy (Baykara et al., 2016). 

Full details of the cohorts are given in Table 1. 

2.2. Standard protocol approvals, registrations, and patient consents 

Local ethical approval was obtained for each cohort study and each 
participant gave written informed consent according to the Declaration 
of Helsinki. 

2.3. Magnetic resonance imaging acquisitions and clinical measures 

Fluid-attenuated inversion recovery (FLAIR), T1-weighted and 
diffusion-weighted data were acquired in all cohorts. The imaging and 
clinical details of all cohorts have been fully described previously and 
are briefly outlined and referenced below. 

2.3.1. SCANS 
MRI scanning took place at baseline and over 3 yearly follow-up 

sessions using a 1.5-T General Electric Signa HDxt MRI system (Zees
traten et al., 2016). Imaging acquisition and parameters are described in 
eTable 1. Age-standardized cognitive test scores sensitive in detecting 
patterns of cognitive impairment in SVD were used to form an index 
measure of Global Cognition (eTable 2) (Lawrence et al., 2015). Mini 
Mental State Examination (MMSE) test scores were additionally 

Table 1 
Overview about the cohort studies included in the OPTIMAL project. The table shows the number of patients enrolled, the respective inclusion criteria and the type of 
dementia diagnosis given in each study.  

Cohort No of 
patients 

Country Duration Inclusion criteria Dementia 
diagnosis 

Vascular Dementia Alzheimer’s 
Disease 

SCANS (Zeestraten 
et al., 2016)  

(Severe SVD) 

121 United 
Kingdom 

3 years 
imaging 
measures  

5 years 
clinical 
measures 

Symptomatic SVD, defined as a 
clinical lacunar stroke syndrome 
with MRI evidence of an 
anatomically corresponding 
lacunar infarct, and with confluent 
regions of WMH graded ≥ 2 on the 
modified Fazekas scale (Fazekas 
et al., 1987) 

Diagnostic and 
Statistical 
Manual of 
Mental 
Disorders V 

– – 

RUN DMC (van 
Norden et al., 
2011)  

(Mild SVD)  

503 The 
Netherlands 

9 years SVD, defined as the presence of 
lacunes and or WMH on 
neuroimaging and accompanying 
acute (lacunar) or subacute 
(cognitive, motor) symptoms 

Diagnostic and 
Statistical 
Manual of 
Mental 
Disorders IV    

National Institute of 
Neurological Disorders and 
Stroke– 
Association Internationale 
pour la Recherché et 
l’Enseignement en 
Neurosciencescriteria  
(Erkinjuntti, 1994) 

National Institute 
on Aging and 
Alzheimer’s 
Association criteria 
(McKhann et al., 
2011) 

PRESERVE (Croall 
et al., 2017)  

(Severe SVD) 

111 United 
Kingdom 

2 years Symptomatic SVD, defined as a 
clinical lacunar stroke syndrome 
with MRI evidence of an 
anatomically corresponding 
lacunar infarct, and with confluent 
regions of WMH graded ≥ 2 on the 
modified Fazekas scale (Fazekas 
et al., 1987) 

– – – 

HARMONISATION ( 
Hilal et al., 2017) 
(Mild cognitive 
impairment) 

127 Singapore 2 years Subgroup of patients with mild 
cognitive impairment (MCI) 
impaired in at least one cognitive 
domain of a formal 
neuropsychological test battery, 
with or without a history of stroke 

Diagnostic and 
Statistical 
Manual of 
Mental 
Disorders IV   

National Institute of 
Neurological Disorders and 
Stroke– 
Association Internationale 
pour la Recherché et 
l’Enseignement en 
Neurosciencescriteria  
(Erkinjuntti, 1994) 

National Institute 
on Aging and 
Alzheimer’s 
Association criteria 
(McKhann et al., 
2011)   

ASPS-Fam (Seiler 
et al., 2014)  

(Community 
population) 

382 Austria Only 
baseline 
included 

Being free of dementia and stroke 
as well as demonstrating normal 
neurological function 

– – –  

CADASIL (Baykara 
et al., 2016)  

(Monogenic SVD) 

58  Germany 1.5 years Diagnosis of CADASIL confirmed 
by genetic testing or skin biopsy 

– – – 

SVD = small vessel disease, WMH = white matter hyperintensities, MCI = mild cognitive impairment. 
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obtained (Folstein et al., 1975). Dementia was diagnosed employing the 
Diagnostic and Statistical Manual of Mental Disorders V and assessed up 
to 5 years (Table 1) (Zeestraten et al., 2017). 

2.3.2. RUN DMC 
MRI scanning was performed at baseline and 2 follow-up time points 

(5 years, 9 years). MRI acquisition was based on 1.5-T Siemens Mag
netom Avanto MRI machine (eTable 1) (van Norden et al., 2011). Age- 
standardised scores were used to compute a Global Cognition index 
score, (eTable 2) (van Uden et al., 2015). MMSE test scores were also 
obtained (Folstein et al., 1975). Dementia diagnosis was based on DSM- 
IV criteria as described previously and assessed up to 9 years (Table 1) 
(van Uden et al., 2016). Alzheimer’s disease and vascular dementia 
diagnosis was based on National Institute on Aging–Alzheimer’s Asso
ciation criteria (NIA-AA) (McKhann et al., 2011) and the National 
Institute of Neurological Disorders and Stroke–Association Inter
nationale pour la Recherché et l’Enseignement en Neurosciences criteria 
(NINDS-AIREN) (Erkinjuntti, 1994). 

2.3.3. Preserve 
MRI acquisition took place on eight 3 T MRI scanners (3 Philips 

Achieva TX, 1 Philips Achieva, 1 Philips Ingenia, 1 Siemens Verio, 1 
Siemens Prisma, 1 Siemens Magnetom Prisma fit) at baseline and 2 years 
(eTable 3). (Croall et al., 2017) Neuropsychological test scores related 
to executive function, processing speed and memory were age- 
normalised and used to create a Global Cognition index score (Markus 
et al., 2021) (eTable 2). Montreal Cognitive Assessment (MOCA) test 
scores were also employed in this study (Nasreddine et al., 2005). No 
dementia diagnoses were made in this cohort. 

2.3.4. Harmonisation 
Imaging data were acquired on a 3 T Siemens Magnetom Trio Tim 

system (eTable 1) (Hilal et al., 2017). Baseline and 2 years follow-up 
DTI data was available. Cognitive test scores were standardised to the 
mean and standard deviation derived from all patients without dementia 
enrolled in HARMONISATION to form a measure of Global Cognition 
(eTable 2). Only cognitive measures of patients with MCI were part of 
this study. MOCA test scores were additionally included in the study 
(Nasreddine et al., 2005). Dementia diagnosis was based on DSM-IV 
criteria and assessed up to 2 years (Table 1). Dementia diagnosis sub
typing was also based on the NIA-AA (McKhann et al., 2011) and NINDS- 

AIREN criteria (Erkinjuntti, 1994). 

2.3.5. ASPS-Fam 
Magnetic resonance acquisition was performed on a 3 T Tim Trio 

whole body scanner (eTable 1). Only DTI measures at baseline were 
analysed due to a low sample size on the follow-up timepoint. Dementia 
conversion as a clinical outcome variable was therefore not included in 
the analysis. Global Cognition was created based on age-standardised 
test scores using a principal component analysis (eTable 2) (Davies 
et al., 2018). 

2.3.6. CADASIL cohort 
Imaging data were based on a 1.5-T GE Signa system in Munich 

(Baykara et al., 2016). Further details regarding acquisition parameters 
are found in eTable 1. To measure cognitive function, the Trail-making 
test–B was used (eTable 2). MMSE test scores were additionally ob
tained from the patients (Folstein et al., 1975). The main outcome score 
was normalized for age and education (Tombaugh, 2004). Dementia 
conversion as a variable was not included. 

3. Magnetic resonance imaging analysis 

3.1. Pre-processing of diffusion raw data 

In SCANS, PRESERVE, HARMONISATION, ASPS-Fam and CADASIL 
a standardized DTI analysis protocol was employed at the central site in 
Cambridge (SCANS. PRESERVE, HARMONISATION, CADASIL), or the 
co-ordinating site was guided using an identical protocol (ASPS-Fam). 
Diffusion-weighted image pre-processing was carried out with the eddy 
correct software from ‘FDT’, FMRIB’s Diffusion Toolbox, (https://fsl. 
fmrib.ox.ac.uk/fsl/fslwiki/FDT) (Andersson and Sotiropoulos, 2016). 
In RUN DMC the diffusion-weighted images were pre-processed prior to 
OPTIMAL with in-house developed iteratively reweighted least squares 
algorithm at the Radboud University Medical Center in Nijmegen 
(Zwiers, 2010). 

3.2. Five different strategies of quantifying DTI data 

Five different strategies of quantifying DTI parameters were 
compared in each cohort: 

Table 2 
Overview over the cohorts. Clinical markers, imaging markers and sample sizes both at baseline and longitudinal are shown.   

SCANS RUN DMC HARMONISATION PRESERVE ASPS-Fam CADASIL 

Demographics Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 
Age (SD) 70.01 (9.75) 65.62 (8.81) 72.23 (8.47) 68.07 (9.11) 65.43 (10.67) 47.90 (9.77) 
Sex, male (%) 78 (0.65) 284 (0.57) 57 (0.45) 43 (0.39) 139 (0.40) 26 (0.45) 
Included in cross-sectional analysis yes yes yes yes yes yes 
Sample size with complete DTI measures at baseline 113 435 127 101 256 54 
Dementia cases with complete baseline imaging 18 50 23 – – – 
Included in longitudinal analysis yes yes yes yes no yes 
Sample size in longitudinal analysis with complete repeated DTI measures 97 267 127 81 – 53 
Dementia cases with complete repeated imaging 17 12 23 – – – 
Baseline complete DTI parameters Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 
MD Median 

(mm2/s) 
8.01e-04 
(4.09e-05) 

8.28e-04 
(3.57e-05) 

8.82e-04 
(6.08e-05) 

7.87e-04 
(4.28e-05) 

7.69e-04 
(3.04e-05) 

8.89e-04 
(1.30e-04) 

PSMD 
(mm2/s) 

3.80e-04 
(1.14e-04) 

3.45e-04 
(7.39e-05) 

3.60e-04 
(7.71e-05) 

3.93e-04 
(9.77e-05) 

2.97e-04 
(5.31e-05) 

5.63e-04 
(1.88e-04) 

DSEG θ 
(mm2/s) 

22.04 
(9.62) 

21.01 
(9.41) 

32.31 
(8.24) 

47.65 
(4.01) 

49.95 
(8.13) 

22.39 
(12.36) 

Geff  7.94 
(2.32) 

3.90e-03 
(8.41e-04) 

0.41 
(0.22) 

0.17 
(0.10) 

4.36 
(1.65) 

2.16 
(1.16) 

DTI = Diffusion tensor imaging, MD Median = Mean diffusivity Median of the WM histogram, PC1 = Scores of the first principal component, PSMD = Peak width of 
skeletonized mean diffusivity, DSEG θ = Diffusion tensor image segmentation θ, Geff = Global efficiency network measure. 
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1. Conventional WM histogram measure MD median (MD median)  
2. The principal component measure (PC1)  
3. Peak width skeletonized mean diffusivity (PSMD)  
4. Diffusion tensor image segmentation θ (DSEG θ)  
5. Global structural network efficiency measure (Geff) 

All other conventional WM histogram measures included in the 
analysis were used to compute the PC1 measure. 

3.2.1. Conventional WM histogram measures including MD median 
MD median and 19 other WM histogram measures requiring manual 

interventions were computed on the mean diffusivity (MD), fractional 
anisotropy (FA), axial diffusivity (AxD) and radial diffusivity (RD) DTI 
maps. The 5 histogram measures for each of the maps were: Median, 
normalised peak height (PH), peak value, skew, kurtosis. Hence, 20 
histogram measures were computed for each patient. 

Using SPM12b (Statistical parametric mapping), T1-weighted scans 
were segmented into grey matter, WM and cerebral spinal fluid tissue 
probability maps (TPM) (Ashburner and Friston, 2005). MD, FA, AxD 
and RD maps were generated with ‘DTIFIT’,  part of the Functional 
Magnetic Resonance Imaging of the Brain (FMRIB) Software Library 
(FSL) (Behrens et al., 2007, 2003). Employing FMRIB Linear Image 
Registration Tool (FLIRT) (Jenkinson and Smith, 2001), FLAIR to T1- 
weighted and T1-weighted to b0 registrations (the average of all the 
b = 0 s mm− 2 images in the DTI sequence) were employed (Jenkinson 
and Smith, 2001) and the affine transformation matrices were concat
enated to generate a FLAIR-to-DTI transformation. Employing these 
transformations, TPMs were registered into DTI space. Hard segmenta
tions were carried out to generate maps of tissue classes. This was done 
by voxel wise comparison of the different tissue probability maps, 
whereby voxels were allotted to the highest probability tissue class. 
Mask images of all WM were created based on the hard segmentation 
map. A histogram analysis was conducted on the MD, FA, RD and AxD 
maps in the WM regions. 5 WM summary measures (i.e., median, peak 
value, normalised peak height, skew and kurtosis) for each of the 
diffusion maps were obtained from normalized histograms with 1000 
bins (MD range: 0–4 mm2s-1x 10-3, bin width: 0.004 mm2s− 1 × 10-3; FA 
range: 0–1, bin width 0.001). 

3.2.2. The principal component measure (PC1) 
The PC1 measure was computed using principal component analysis 

(PCA) on the 20 conventional WM histogram measures (Lê et al., 2008). 
PCA is an unsupervised learning method and linearly transforms vari
ables to a lower dimensional space while retaining the maximal amount 
of information from the input data. The first principal component (PC1) 
captures the direction along which most variation in the multidimen
sional data is found und the underlying component scores were used as 
PC1 measure in each cohort. 

3.2.3. Peak width skeletonized mean diffusivity (PSMD) 
The Peak width of skeletonized mean diffusivity (PSMD) is a fully 

automatically computed imaging marker publicly available 
(http://psmd-marker.com) which involves tensor fitting, skeletonizing 
the DTI data, applying a custom mask and computing a histogram 
analysis (Baykara et al., 2016; Behrens et al., 2003). The computation is 
divided into three main modules:  

1) WM tract skeletonization using tract-based statistics (TBSS) and the 
FMRIB 1-mm fractional anisotropy template thresholded at an FA 
value of 0.2 (Smith et al., 2006). MD images were projected onto the 
skeleton employing the FA-derived projection parameters. In order 
to avoid contamination of the skeleton through CSF partial volume 
effects, MD skeletons were masked with a standard skeleton 
thresholded at an FA value of 0.3.  

2) excluding CSF prone regions employing a custom mask. Brain 
structures adjacent to the ventricles such as the fornix were removed.  

3) creating a histogram based on the MD values of voxels within the 
skeleton. The PSMD measure refers to the difference between the 5th 
and 95th percentiles of the histogram distribution. 

3.2.4. Diffusion tensor image segmentation θ (DSEG θ) 
DSEG θ is a semiautomatic DTI marker that assigns an unique cere

bral diffusion profile to each voxel that is based on the magnitudes of 
isotropic and anisotropic diffusion metrics (Williams et al., 2017). The 
processing pipeline is composed of 4 main modules:  

1) excluding the cerebellum using an automated pipeline,  
2) diffusion tensors fitting using ‘DTIFIT’ (Behrens et al., 2007, 2003),  
3) k-median cluster analysis of the diffusion data to characterize each 

voxel as to belonging to one of the 16 segments that reflect the 
distinct magnitudes of anisotropy (q) and isotropy (p) microstruc
tural diffusion properties,  

4) calculating a DSEG summary score, θ, by comparing the volumetric 
spectrum of the 16 segments between patients in the form of a scalar 
product, θ, which computes the difference in whole brain diffusion 
characteristics in subjects compared to a reference brain. Clinical 
information of the patient’s reference brain used in each cohort can 
be found in eTable 4. 

3.2.4.1. Global efficiency network measure (Geff). Brain networks can be 
constructed using DTI tractography data, and a measure of global effi
ciency has been shown to predict dementia in a lacunar stroke cohort 
(Lawrence et al., 2018). Except for the network baseline data in RUN 
DMC (Tuladhar et al., 2016a), the construction of brain networks was 
performed using the same technique across all cohorts and the compu
tation is summarized as follows:  

1) for all cohort data 90 brain regions (80 cortical and 10 subcortical 
regions) defined from the AAL parcellation of the cerebral cortex and 
subcortical nuclei (Desikan et al., 2006) were employed as nodes, 
excluding those in the cerebellum.  

2) employing “DTIFIT”, a diffusion tensor model was fitted to each 
voxel in all cohort data except for RUN DMC baseline (Jenkinson 
et al., 2012). In RUN DMC at baseline the diffusion tensor and FA was 
computed using the TrackVis Diffusion Toolkit (https://www.tra 
ckvis.org).  

3) using ANTS (stnava.github.io/ANTs/), the standard space template 
FMRIB58_FA_1mm was registered to the patients FA maps in all 
cohort data except for RUN DMC at baseline. The AAL atlas was then 
transformed to the patient’s FA image using the nearest-neighbour 
interpolation method and the transformation matrix generated by 
the registration. In RUN DMC at baseline skull stripped T1-weighted 
images were nonlinearly registered to Montreal Neurological Insti
tute (MNI) 152 template employing the Function MRI of the Brain 
nonlinear registration tool (FNIRT) (Andersson et al., 2007). The 
transformation matrix derived by registering the b0-images to T1- 
weighted subject space was used to register the AAL images to 
each patient’s diffusion image space with FLIRT (Jenkinson and 
Smith, 2001).  

4) whole-brain deterministic tractography using MRtrix (Tournier 
et al., 2012) was performed on the principal eigenvector in all cohort 
data but RUN DMC at baseline. Streamlines (max number per voxel 
= 4, length = 20–250 nm, step size = 0.5 mm) were generated 
employing trilinear interpolation of the tensor field. Streamlines 
terminated in regions where FA<0.15 or the angle turn between 
consecutive vectors was greater than 45. Brain regions were classi
fied as being linked to each other under the condition that at least 
one streamline terminating in region A also terminated in region B. 
The strength of connectivity between two seeds was determined by 
the streamline count adjusted by the length of the streamline in mm. 
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In RUN DMC at baseline whole-brain deterministic tractography was 
applied using the fiber assignment by continuous tracking (FACT) 
algorithm (Tuladhar et al., 2016a). Fiber tracks were launched at the 
voxel’s center with FA greater than 0.2 and terminated either when 
leaving the brain mask, when coming across voxels with FA smaller 
than 0.2 or when the angle turn being greater than 60. Two brain 
regions were classified as being connected when the reconstructed 
streamline linked both regions. The weight of connectivity between 
two seeds was computed by multiplying the mean FA for each 
reconstructed streamline by the total number of reconstructed 
streamlines linking two regions. The number of reconstructed 
streamlines may correspond to the WM structure and has commonly 
been employed as weighting of edges in graph-theoretical studies. 
Under the condition that 2 edges share a similar number of stream
lines, the weights may still be different when FA is considered. The 
connection strength was normalised by the volume of AAL regions 
and the differences in brain size (Brown et al., 2011). 

5) based on the strength of connectivity, the connectome was recon
structed as an undirected graph and the adjacency matrix was 
generated as a symmetric matrix. Each matrix’s element indicated 
the strength of connectivity between individual pairs of brain re
gions. Graph-theory analysis was used to compute the summary 
measure weighted global network efficiency (Geff) (www. 
brain-connectivity-toolbox.net) (Latora and Marchiori, 2001; Rubi
nov and Sporns, 2010). The Geff measure indicates the degree of 
connectivity between nodes of the brain network relative to an 
idealized network where every node is connected. 

3.3. Statistical analysis 

Statistical analyses were carried out using R (version 3.6.3) with two- 
sided p values and p < 0.05 considered statistically significant. (R Core 
Team, 2019). No multiple comparisons adjustment was applied to the 
regression models. 

3.3.1. Cross-sectional analysis 
Heatmaps were created reflecting the magnitude of Pearson corre

lation between the 20 WM DTI histogram measures in each cohort. 
Using MMSE and MOCA scores, boxplots were created to compare the 
patients’ profiles of impaired cognitive functions across the different 
cohorts. The association between the DTI measures and cognition was 
tested using linear regression while adjusting for age, sex and premorbid 
IQ or years of education completed. Education was log transformed in 
HARMONISATION to meet homoscedasticity and linearity assumptions. 
In the multi-centre PRESERVE study clinical site was added as a 
confounder into the linear model. In the CADASIL cohort one residual 
outlier observation was removed from the regression analysis to meet 
the statistical assumptions. This outlier was due to one DTI observation 
significantly altering the cross-sectional associations. 

3.3.2. Longitudinal analysis: Baseline imaging and dementia 
The association between baseline imaging data and later dementia 

conversion was tested in SCANS, RUN DMC and HARMONISATION 
using a Cox proportional hazards model (Therneau and Lumley, 2015). 
The clinical markers such as age, sex and education or premorbid IQ 
were added as covariates. Follow-up time was used as the underlying 
time scale. We observed no violation of the proportional hazard 
assumption in any model. Receiver operating characteristic curves 
(ROC) were computed to show the diagnostic discriminatory ability of a 
binary classifier system with varying thresholds and the areas under the 
curves (AUCs) were calculated (Robin et al., 2011). In RUN DMC dif
ferences in baseline DTI measures between dementia subtypes (i.e., VD 
vs AD/VD vs AD) were tested using the Kruskal-Wallis test. 

3.3.3. Longitudinal analysis: Change in imaging measures and dementia 
Repeat MRI at a later time point was available in SCANS, RUN DMC, 

HARMONISATION, CADASIL and PRESERVE and was used to determine 
the sensitivity of DTI measures to detect change. In ASPS-Fam the lon
gitudinal sample size with DTI was too small (N = 64) for the longitu
dinal analysis of the small changes over time in a population-based 
sample. In the SCANS cohort with multiple follow-ups, a linear mixed 
model was fitted for MD Median, PSMD, DSEG θ and Geff (Bates et al., 
2015). We included follow-up time as a fixed effect and included 
random intercepts and slopes for each participant. The average fixed 
effects slopes of time were interpreted as the average annualized change 
rate in a given imaging measure per additional year of follow-up. The 
statistical significance of change in DTI measures was determined using 
a paired t-test in all cohorts with 1 follow-up time point. In PRESERVE it 
was also tested as to whether there were differences in the temporal 
change of DTI measures between scanner sites while accounting for the 
marker’s baseline measure using an ANCOVA model with permutation 
(Wheeler, 2010). 

To create a compound longitudinal DTI measure for the dementia 
analysis, a PCA was applied to the changes of 19 DTI markers used at 
baseline in SCANS and to all 20 DTI markers in RUN DMC and HAR
MONISATION (Lê et al., 2008). In SCANS no individual trajectories of 
AxD Median could be estimated due to limited variability in the data 
when using a linear mixed model. Prior to the Cox regression in SCANS, 
imaging measures collected post dementia diagnosis were removed and 
the linear mixed model was recomputed. Running a Cox regression in 
SCANS or logistic regression models in RUN DMC and HARMO
NISATION, the association between the change in DTI measures and 
dementia conversion was tested. ROC curves were modelled to estimate 
the diagnostic discriminatory ability of each predictive model and the 
AUCs were calculated (Robin et al., 2011). 

3.3.4. Sample size estimation 
In the SCANS cohort with multiple follow-ups, a sample size esti

mation for a hypothetical clinical trial that applied each DTI marker was 
performed while varying the treatment effect sizes using the longpower 
R package (Donohue et al., 2013) for a statistical power of 0.80 and two- 
tailed type I error rate of 0.05. In cohorts with only one follow-up time 
point the imaging marker’s sample size was estimated based on the 
coefficient of variation with the same treatment effect sizes (Chen and 
Peace, 2010). 

3.3.5. Data availability statement 
The data that support the findings of this study are available to bona 

fide researchers upon reasonable request subject to approval of the 
relevant regulatory and ethical bodies. 

4. Results 

4.1. Cognition 

The degree of cognitive impairment was more in SCANS and 
CADASIL than RUN-DMC or ASPS-Fam as evidenced by a lower median 
MMSE. (eFigure 1, panel A). In HARMONISATION, patients who were 
more cognitively impaired had more consistently lower MOCA test 
scores than in PRESERVE (eFigure 1, panel B). In SCANS, RUN DMC and 
HARMONISATION, patients converting to dementia had overall lower 
baseline MMSE and MOCA test scores than patients who did not develop 
dementia (eFigure 1, panel C & panel D). The differences were stronger 
in SCANS and HARMONISATION than in RUN DMC. 

4.2. PCA analysis 

The percentage of explained variance of PC1 was highest in the 
CADASIL (84.4 %) group and lowest in ASPS-Fam (40 %) (eFigure 2, 
eFigure 3). In the sporadic SVD cohorts the PC1′s explained variance 
ranged between 57.2 and 71.5 % (eFigure 2). There were no patterns 
showing that dementia cases or dementia subtypes would be better 
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represented on the second instead of the first principal component 
dimension (eFigure 4). 

4.3. Cross-sectional results 

There were significant associations between all five imaging mea
sures and cognitive function in all SVD cohorts and in the MCI cohorts 
(Table 3a-b, eTable 5a-f). There was not a single regression model 
resulting in the highest explained variance (Adj. R2) and in the best 
model fit (AIC) across cohorts. In the single-center sporadic SVD cohorts 
SCANS and RUN DMC the models’ adjusted explained variances (Adj. 
R2) were similar within each cohort for all parameters (Table 3a). In the 
multicenter study PRESERVE the Adj. R2 was lower in DSEG θ and Geff 
than in PC1, PSMD or MD Median (Table 3b). In CADASIL, PSMD 
explained more variance than any other measure. The overall model fit 
measured by the AIC was best for PSMD in PRESERVE, RUN DMC and 
CADASIL. The Geff model had the best model fit for SCANS and ASPS- 
Fam. 

4.4. Longitudinal results 

4.4.1. Dementia prevalence and subtypes 
In SCANS 18 out of 113 patients who had complete baseline DTI 

imaging measures converted to dementia within 5 years. In RUN DMC 
435 patients had complete baseline DTI measures and 50 patients con
verted to dementia within 9 years (AD N = 28; VD N = 14; AD/VD N = 6; 
LBD N = 1; Unknown N = 1). In HARMONISATION 23 patients who had 
complete baseline DTI measures were diagnosed with dementia within 
2 years (AD N = 20; VD N = 3). The rates of dementia conversion were 
higher in HARMONISATION than in SCANS or RUN DMC (eFigure 5). 

4.4.2. Baseline DTI in predicting future dementia conversion 
Complete imaging baseline data with follow-up dementia conversion 

were available for SCANS, RUN DMC and HARMONISATION (Table 2). 
Baseline PSMD and PC1 measures predicted dementia conversion in all 3 
cohorts (Table 4, eTable 6a-c). In RUN DMC baseline MD median and 
DSEG θ were not associated with dementia, MD median: HR (95 % CI) =
1.33 (1.00, 1.76), DSEG θ: HR (95 % CI) = 1.33 (0.91, 1.93). In HAR
MONISATION baseline Geff did not predict dementia conversion, HR 
(95 % CI) = 0.79 (0.49, 1.30). The AUCs were overall higher in the 
sporadic SVD cohorts SCANS and RUN DMC than in the MCI cohort 
HARMONISATION (Fig. 1). 

4.4.3. Baseline DTI measures and subtypes of future dementia in RUN DMC 
In RUN DMC there were significant differences between the subtypes 

for baseline PC1 (χ2 = 17.19, p < 1.9e-04, df = 2), MD median (χ2 =

19.00, p < 7.5e-05, df = 2), PSMD (χ2 = 13.52, p = 0.001, df = 2) and 
Geff (χ2 = 16.07, p = 3.2e-03, df = 2) (Fig. 2). For baseline DSEG no 
differences between the 3 subtypes were found (χ2 = 0.07, p = 0.97, df =
2). Holm-Bonferroni multiple-comparison post hoc tests showed that 
baseline PC1 (p = 5.4e-05), MD median (p = 4.6e-05) and PSMD (p =
7.9e-04) were significantly higher and baseline Geff (p = 1.6e-04) 
significantly lower in VD than in the AD dementia subtype. Higher PC1, 
MD median, PSMD and lower Geff in VD than in AD were consistently 
found over 3-years intervals in RUN DMC (eFigure 6). 

4.4.4. Change in DTI measures over time 
All imaging measures showed significant change over time except for 

PSMD and Geff in the multicentre PRESERVE cohort and Geff in HAR
MONISATION and CADASIL (Table 5). Changes in all conventional WM 
DTI histogram measures in SCANS, RUN DMC and HARMONISATION 
are shown in eTables 8a-c. Overall, most imaging markers significantly 
changed over time. PC1 explained less variation of the imaging change 
data in the sporadic SVD than in the MCI cohort (SCANS: 36.3 %, RUN 
DMC: 32.8 %, HARMONISATION: 57 %) (eFigure 7). In PRESERVE 
most conventional DTI histogram measures significantly changed and Ta
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PC1 explained 31.9 % of the variance when running a PCA on all 20 
conventional DTI measures (eTable 7). There were no differences be
tween scanner sites for any changes in the 5 imaging measures while 
accounting for the measure’s baseline value and controlling for the 
increased Type-1 error rate with the Tukey post hoc test (eFigure 8). 

4.4.5. Change in DTI in predicting dementia conversion 
Complete longitudinal imaging data with follow-up dementia con

version were available for SCANS, RUN DMC and HARMONISATION 
(Table 2). In SCANS all 5 imaging measures significantly changed over 
the 3 years after removing observations post dementia diagnosis (eTa
ble 9). Changes in all imaging measures were associated with dementia 
conversion in SCANS, but not in RUN DMC (Table 6). In HARMO
NISATION change in MD Median was the only measure significantly 
associated with dementia conversion, OR (95 % CI) = 1.60 (1.02, 2.63). 
The association and model fit were strongest in the DSEG θ model in 
SCANS, HR (95 % CI) = 4.01 (2.21, 7.29), and also resulted in the 
highest AUC with 0.924 (Table 6). Across the 3 different cohorts, 
SCANS, RUN DMC and HARMONISATION, the combined measure PC1 
was not a stronger predictor for dementia conversion than its underlying 
histogram measure MD median. Due to the low dementia incidence in 
RUN DMC relative to the overall cohort size (N = 12), a Firth’s Bias- 
reduced logistic regression was additionally run on the RUN DMC 
data. In line with previous evidence, no significant association between 
any changes in DTI and dementia conversion was found (eTable 10). 

4.4.6. Sample size estimation for a hypothetical clinical trial 
Sample sizes for a hypothetical clinical trial with varying durations 

and varying treatment effect sizes were calculated for the four single 
imaging measures in the different cohorts and are shown in Table 7. In 
both single-center sporadic SVD cohorts (SCANS, RUN DMC) DSEG θ 
and PSMD required the lowest sample size estimates. DSEG θ and MD 
median had the lowest sample size estimation in CADASIL. Sample size 
estimates were high for Geff in all 4 cohorts. 

5. Discussion 

An increasing number of studies have demonstrated that DTI mea
sures of WM damage are associated with cognition, predict future de
mentia conversion and capture change over time. This has raised 
awareness of DTI as an attractive surrogate endpoint for clinical trials in 
SVD. However, how best to analyse DTI data remains uncertain. An ideal 
analysis technique would combine a simple automated technique, with 
high sensitivity to change and dementia conversion. In this study, we 
compared 5 different DTI analysis approaches by comparing associa
tions of each with cognition at baseline, and with future dementia 
conversion. 

We were not able to identify a single optimal analysis strategy. 
Except for the asymptomatic SVD cohort ASPS-Fam, all analysis tech
niques were significantly associated with global cognition or executive 
function at baseline. The overall fit of the regression model, measured by 

Table 3b 
Cross-sectional analysis between DTI and Global Cognition or TMT-B while accounting for the clinical markers. In severe SVD and monogenic SVD all imaging 
markers were associated with impaired cognitive function. Only MD median, DSEG θ and Geff were significantly related to impaired cognitive function in the 
community cohort with normal neurological functioning.   

Global Cognition TMT-B  
PRESERVE ASPS-Fam CADASIL 

Baseline 
Markers 

β 
(95 % CI) 

P-Value Adjusted R2 AIC β 
(95 % CI) 

P-Value Adjusted R2 AIC β 
(95 % CI) 

P-Value Adjusted R2 AIC 

MD median − 0.39 
(-0.57, − 0.22)  

<0.001  0.389  242.69 − 0.14 
(-0.24, − 0.04)  

0.01  0.516  488.48 − 0.50 
(-0.82, − 0.18)  

<0.001  0.227  133.15 

PC1 0.37 
(0.20, − 0.54)  

<0.001  0.375  245.01 − 0.04 
(-0.14, 0.06)  

0.38  0.503  494.77  0.50 
(0.15, 0.85)  

0.01  0.206  134.50 

PSMD − 0.41 
(-0.57, − 0.24)  

<0.001  0.409  239.53 − 0.03 
(-0.13, 0.08)  

0.64  0.501  495.32 − 0.70 
(-1.01, -0.39)  

<0.001  0.357  124.11 

DSEG θ − 0.19 
(-0.37, − 0.01)  

0.04  0.282  258.78 − 0.14 
(-0.23, -0.05)  

<0.001  0.521  486.35 − 0.50 
(-0.80, -0.20)  

<0.001  0.251  131.65 

Geff − 0.19 
(-0.37, − 0.01)  

0.04  0.281  258.84 0.18 
(0.09, 0.28)  

<0.001  0.530  482.02  0.45 
(0.09, 0.82)  

0.02  0.243  136.43 

MD Median = mean diffusivity median of the WM histogram, PC1 = scores of the first principal component, PSMD = peak width of skeletonized mean diffusivity, DSEG 
θ = diffusion tensor image segmentation θ, Geff = global efficiency network measure, β = standardized regression coefficient, 95 % CI = 95 % confidence interval, AIC 
= Akaike information criterion, P-Value = statistical value of significance with p < 0.05. 

Table 4 
Baseline DTI measures predicting dementia conversion while accounting for the clinical markers. Baseline PSMD and PC1 measures predicted dementia 
conversion in SCANS, RUN DMC and HARMONISATION. In RUN DMC MD median and DSEG was not associated with dementia. In HARMONISATION baseline Geff did 
not predict dementia conversion.   

Dementia conversion  
SCANS RUN DMC HARMONISATION 

Change 
Markers 

HR 
(95 % CI) 

P-Value AIC AUC HR 
(95 % CI) 

P-Value AIC AUC HR 
(95 % CI) 

P-Value AIC AUC 

MD Median 2.19 
(1.51, 3.16)  

<0.001  138.37  0.832 1.33 
(1.00, 1.76)  

0.05  515.69  0.828 1.78 
(1.08, 2.93)  

0.02  173.51  0.761 

PC1 2.28 
(1.51, 3.44)  

<0.001  139.60  0.825 1.57 
(1.15, 2.14)  

<0.001  511.60  0.837 1.74 
(1.03, 2.92)  

0.04  174.17  0.765 

PSMD 1.74 
(1.29, 2.34)  

0.001  143.70  0.804 1.45 
(1.14, 1.83)  

<0.001  511.51  0.831 1.73 
(1.13, 2.65)  

0.01  172.72  0.765 

DSEG θ 3.52 
(2.09, 5.92)  

<0.001  128.21  0.908 1.33 
(0.91, 1.93)  

0.14  517.17  0.821 1.94 
(1.06, 3.53)  

0.03  173.67  0.753 

Geff 0.37 
(0.23, 0.61)  

<0.001  138.39  0.842 0.64 
(0.46, 0.89)  

0.01  512.59  0.832 0.79 
(0.49, 1.30)  

0.36  177.58  0.702 

MD Median = mean diffusivity median of the WM histogram, PC1 = scores of the first principal component, PSMD = peak width of skeletonized mean diffusivity, DSEG 
θ = diffusion tensor image segmentation θ, Geff = global efficiency network measure, AIC = Akaike information criterion, HR = hazard ratio, AUC = area under the 
curve, AIC = Akaike information criterion, 95 % CI = 95 % confidence interval, P-Value = statistical value of significance with p < 0.05. 
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AIC, was worse for DSEG and Geff in PRESERVE and better for PSMD in 
CADASIL. In the 3 studies in which there was imaging and data on future 
dementia conversion, SCANS, RUN DMC and HARMONISATION, most 
baseline DTI measures predicted dementia. The area under the curve 
was larger in the SVD cohorts (SCANS & RUN DMC) compared to the 
MCI cohort (HARMONISATION). Baseline PC1 and PSMD predicted 
dementia conversion across all 3 cohorts. DSEG θ performed notably 
better in the SCANS cohort than in RUN DMC. 

Differentiating between dementia subtypes in RUN DMC, all baseline 
DTI measures, except for DSEG, were significantly different between 
patients converting to VD dementia and those converting to AD de
mentia. The differences in DTI measure profiles indicated more severe 
WM ultrastructural damage in those converting to VD. Previous studies 
also showed different etio-pathogenic profiles of WM microstructure 
between VD and AD dementia (Fu et al., 2012; Tu et al., 2017). Whereas 
patients with SVD had global changes in DTI measures across many 
brain regions, patients with AD demonstrated more regionally confined 
microstructural WM changes. 

There were significant changes in all DTI metrics over time in all 
single-center sporadic SVD and MCI cohorts. In the multicentre cohort 
PRESERVE, the network analysis and PSMD were not sensitive to 
change. The combined PC1 measure was not a better predictor for de
mentia conversion, as evidenced by AUC, than one of its underlying 
single measures, i.e., MD median. Despite the significant changes over 

time in all DTI measures, consistent associations with dementia con
version were only found in the severe SVD cohort, i.e., SCANS, and not 
in the 2 cohorts with AD dementia as the most prevalent subtype. 

Since the analysis techniques were similar in their predictive ability, 
then ease of use and the degree of automation become important factors. 
PSMD allows for a fully automated analysis without any tissue seg
mentation, that may require checking and correction, making it suitable 
for rapid analysis of large data sets. PSMD performed well across all 
cohorts except for detecting change in the PRESERVE cohort. In the 
PRESERVE cohort 86% had been scanned on a Philips scanner. The 
sensitivity of PSMD has been shown to be affected by images from the 
Philips scanner especially when there was a software update during the 
study (https://www.psmd-marker.com/faq/) and this may be a limita
tion. Another automatic skeletonized measure, called Mean Skeleton
ized Mean Diffusivity (MSMD), was sensitive to change in PRESERVE 
(eFigure 9). MSMD may therefore offer a better marker than PSMD 
when using Philips scanners. A further advantage of PSMD is that it is 
freely available. DSEG θ is semi-automated method requiring some user 
input such as choosing the reference brain. It performed well across 
datasets and may also be useful for use in clinical trials. However, it is 
not yet openly available. 

We studied patient cohorts with a range of SVD, from mild changes in 
a stroke and dementia free community population (ASPS-Fam), through 
to patients with severe symptomatic SVD with confluent WMH (SCANS) 

Table 7 
Sample size estimation per treatment arm. Sample size estimation was lowest for DSEG and PSMD in the sporadic SVD cohorts SCANS and RUN DMC. DSEG and MD 
median required the lowest minimum sample size in CADASIL.   

SCANS  RUN DMC HARMONISATION CADASIL 

Duration of RCT  
3 years 
(3 follow-up measurements)  

4 years 
(1 follow-up measurement)  

2 years 
(1 follow-up measurement)  

1.5 years 
(1 follow-up 
measurement)  

Treatment effect 10 % 20 % 30 % 10 % 20 % 30 % 10 % 20 % 30 % 10 % 20 % 30 % 

MD Median 1201 301 134 20,527 4650 1878 3795 860 348 732 166 67 
PSMD 1073 269 120 1423 323 131 3101 703 284 1276 289 117 
DSEG θ 417 105 47 1292 293 119 2200 499 202 656 149 60 
Geff 2333 583 259 71,164 16,120 6510 8383 1899 767 19,068 4320 1745 

RCT = Randomized controlled trial, MD Median = Mean diffusivity Median of the WM histogram, PC1 = Scores of the first principal component, PSMD = Peak width of 
skeletonized mean diffusivity, DSEG θ = Diffusion tensor image segmentation θ, Geff = Global efficiency network measure. 

Fig. 1. Baseline DTI measures together with the clinical markers, i.e. age, sex and education or premorbid IQ, classified dementia conversion vs no-dementia 
conversion better in the SVD cohorts, SCANS and RUN DMC, than in the MCI cohort HARMONISATION. MD Median = mean diffusivity median of the WM his
togram, PC1 = scores of the first principal component, PSMD = peak width of skeletonized mean diffusivity, DSEG θ = diffusion tensor image segmentation θ, Geff =
global efficiency network measure, AUC = area under the curve * the baseline measure significantly predicted dementia conversion independently of the clin
ical markers. 

M. Egle et al.                                                                                                                                                                                                                                     
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and patients with monogenic SVD (CADASIL). The previous OPTIMAL 
study showed that changes in WM microstructure may contribute to 
cognitive impairment in all cohorts and in those cohorts in which data 
on future dementia risk was available predicted dementia (Egle et al., 
2022). This emphasizes a key role for WM microstructure and cognitive 
decline across the range of disease severity, not only in pure SVD, but 
also in an MCI cohort in whom the predominant future dementia type is 
AD, and the utility of DTI metrics in capturing this. 

It was notable that in PRESERVE the amount of variance in cognition 
explained by DTI metrics was lower. This is likely to reflect the multi
centre nature of PRESERVE, in which DTI was performed on several 
different scanners across different sites. In contrast the other studies 
utilized imaging on a single scanner. To solve these challenges associ
ated with acquisition-related differences of diffusion MRI, a promising 
DTI harmonization technique has been successfully tested on various 
SVD cohorts (de Brito Robalo et al., 2021). Ideally, however, in a clinical 
trial harmonization, or even standardization, should be implemented at 
the level of the acquisition. 

We used the data from this study to estimate sample size calculations 
for a trial in SVD. With a treatment effect of 20 %, which would be 
typical for many intervention studies, sample sizes of a few hundred 
would be required. Sample sizes were generally low for DSEG θ, and only 
slightly higher for PSMD. In contrast, the network measure Geff needed 
a high minimum sample size in all 4 cohorts. 

The study has several strengths. We compared several different DTI 
parameters across multiple independent datasets. Analysis methods 
were evaluated on additional datasets on which they had not been 
developed. However, it also has limitations. Firstly, different durations 
and number of follow-up time points were used which may have affected 
the findings across cohorts with varying SVD severity. Strong associa
tions between DTI changes and dementia conversion were only found in 
the cohort characterized by more severe sporadic SVD progression, with 
multiple observational follow-up points. Annual follow-up time points in 
RUN DMC may have resulted in similar findings as in SCANS. Second, 
different MRI acquisition parameters were employed for the different 
cohorts potentially affecting the results. Third, different DTI pre- 
processing has been applied for different cohorts, nevertheless the re
sults were relatively consistent between the cohorts. The Geff generated 
from the RUN DMC data differs in scale to that from the other datasets, 

this is most likely due to the differences in processing between this 
dataset and those processed centrally. While this may be a limitation, we 
felt it important to preserve the compatibility between the data pub
lished here and in other papers using it. Fourth, these DTI measures were 
all based on single-shell DTI. However, multi-shell DTI and higher DTI 
models may be more informative to characterize the WM microstruc
ture, perhaps leading to lower sample sizes. 

A further consideration is that we included a range of severity of 
disease pathologies in our study. Some represented severe SVD in whom 
the predominant pathology which may cause dementia is vascular, and 
this was reflected in the dementia cases in SCANS being vascular. In 
others, such as the MCI cohort, the predominant dementia pathology is 
likely to be AD, although the strong prediction provided by DTI suggests 
that WM changes are also important. Consistent with this, most de
mentia cases were AD. Interestingly in RUN DMC in which the inclusion 
criteria were symptomatic SVD due to stroke, cognitive or motor 
symptoms, most dementia cases were AD emphasizing that in elderly 
populations mixed pathology is the major pathology underlying 
dementia. 

In conclusion, all DTI approaches at baseline predict future dementia 
risk in SVD and may be useful surrogate endpoints in clinical trials of 
SVD. We found no clear difference between different DTI strategies but 
automated methods such as PSMD offer clear advantages in large 
studies. PSMD performed well overall except for the PRESERVE dataset, 
possibly due to difficulties in using it on Philips sequences. DSEG θ 
performed well overall. Whilst these methods did not show marked 
improvement over simple histogram methods, they are easier to 
implement in large clinical studies. 
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