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Abstract

In vivo developmental neurotoxicity (DNT) testing is resource intensive and lacks information 

on cellular processes affected by chemicals. To address this, DNT new approach methodologies 

(NAMs) are being evaluated, including: the microelectrode array neuronal network formation 

assay (NFA); and high-content imaging (HCI) to evaluate proliferation, apoptosis, neurite 

outgrowth, and synaptogenesis. This work addresses three hypotheses: (1) a broad screening 

battery provides a sensitive marker of DNT bioactivity; (2) selective bioactivity (occurring at 

non-cytotoxic concentrations) may indicate functional processes disrupted; and, (3) a subset of 

endpoints may optimally classify chemicals with in vivo evidence for DNT. The dataset was 

comprised of 92 chemicals screened in all 57 assay endpoints sourced from publicly available 

data, including a set of DNT NAM evaluation chemicals with putative positives (53) and negatives 

(13). The DNT NAM battery provides a sensitive marker of DNT bioactivity, particularly in 

cytotoxicity and network connectivity parameters. Hierarchical clustering suggested potency 

(including cytotoxicity) was important for classifying positive chemicals with high sensitivity 

(93%) but failed to distinguish patterns of disrupted functional processes. By contrast, clustering 

of selective values revealed informative patterns of differential activity but demonstrated lower 

sensitivity (74%). The false negatives were associated with several limitations, such as the 

maximal concentration tested or gaps in the biology captured by the current battery. This work 

demonstrates that this multi-dimensional assay suite provides a sensitive biomarker for DNT 

bioactivity, with selective activity providing possible insight into specific functional processes 

affected by chemical exposure and a basis for further research.

Introduction

Developmental neurotoxicity (DNT) refers to any adverse outcomes in the course of 

normal development of nervous system structures and/or function resultant to chemical 

exposure (EPA, 1998b). Many in vivo DNT studies involve exposure of pregnant rats from 
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implantation through the end of lactation, and include measurements of both functional and 

structural integrity of the developing nervous system, such as brain weights, morphometry, 

neuropathology assessment, and neurobehavior during critical windows of susceptibility 

(EPA, 1998a; OECD, 2007). However, in vivo DNT studies are extremely resource intensive 

(financial, labor, and animal use) (Crofton et al., 2011; Raffaele et al., 2008; Smirnova et 

al., 2014; Tsuji et al., 2012), preventing use in routine screening. Second, uncertainties 

regarding human relevance are apparent, including uncertainty regarding the disrupted 

functional processes and limited ability to assess complex adverse outcomes such as higher 

cognitive function. Third, DNT reference substances demonstrate low reproducibility in in 
vivo DNT study performance across different laboratories (Bal-Price et al., 2018). Fewer 

than 200 substances have been evaluated in the Office of Chemical Safety and Pollution 

Prevention Health Effect Series 870.3600 or Organisation for Economic Co-operation and 

Development Test Guideline 426 DNT guideline paradigms to date, leaving a potential 

knowledge gap. This has led to a 15 year internationally-coordinated research effort to 

build a battery of in vitro DNT NAMs (Fritsche et al., 2018; Lein et al., 2007; Sachana 

et al., 2019). The DNT NAM battery developed at the US EPA Office of Research 

and Development may complement the European Food Safety Authority-funded DNT 

testing battery recently evaluated by Masjosthusmann and colleagues (2020) and increases 

screening capacity to provide DNT-relevant bioactivity data that may be used in fit-for-

purpose applications (Fritsche, et al., 2018; Lein, et al., 2007; Sachana, et al., 2019; Sachana 

et al., 2021).

The developing nervous system is known to be particularly sensitive to environmental 

insult during critical periods of development {Rice, 2000 #62;Grandjean, 2014 #123}, 

including evidence from exposure to ethanol {Laev, 1995 #63;Jones, 1973 #125}, lead 

{Alfano, 1983 #64;Canfield, 2003 #126}, methylmercury {Barone, 1998 #65;Grandjean, 

1997 #127}, and chlorpyrifos {Whitney, 1995 #66;Das, 1999 #67;Rauh, 2006 #128}. It is 

generally accepted that no single in vitro screening assay can recapitulate all the critical 

process of neurodevelopment or clearly identify all substances that produce DNT due to 

the temporal and biological complexity of nervous system development (Bal-Price, et al., 

2018). Some substances may affect a single neurodevelopmental process, whereas other 

substances may disrupt key neural processes early in development resulting in tangential 

or downstream effects on other processes (Harrill et al., 2018). Therefore, the integration 

of in vitro assays that represent diverse neurological processes across development will 

be critical for identifying DNT-relevant bioactivity (Fritsche, et al., 2018; Sachana, et al., 

2019). Researchers at the US EPA have developed and implemented DNT NAMs that 

use human cell lines and primary rat cortical neurons to evaluate chemical effects on 

neural network formation, proliferation, apoptosis, synaptogenesis, neurite outgrowth and 

maturation (Brown et al., 2016; Frank et al., 2017; Harrill, et al., 2018; Shafer et al., 2019) 

using a high-content imaging (HCI) assay suite and a microelectrode array (MEA) network 

formation assay (NFA). The NFA measures neuronal activity, bursting, and connectivity 

(Brown, et al., 2016; Frank, et al., 2017; Shafer, et al., 2019). The HCI assay suite 

measures cell proliferation with a human neural progenitor cell line; apoptosis and viability 

assessment using a human neural progenitor cell line (Druwe et al., 2015); neurite outgrowth 

initiation with a human neuronal lineage cell line (Harrill et al., 2010); and, primary rat 
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cortical cell neurite outgrowth initiation, neurite maturation, and synaptogenesis (Harrill et 

al., 2013; Harrill et al., 2011b). These DNT NAMs detect chemical perturbations of a variety 

of critical neurodevelopmental processes in vitro.

The primary goal of this work is to assess the performance of existing DNT NAMs, 

revealing patterns of responses for the 92 substances screened to date in both MEA NFA 

and HCI assays relevant to DNT. No study to date has described how the NFA performs 

in conjunction with the battery of HCI assays to evaluate proliferation, apoptosis, neurite 

outgrowth, and synaptogenesis, for identifying positive and negative chemicals in a DNT 

NAM evaluation set of chemicals. Primarily, we wanted to investigate whether together 

these two assay technologies, composed of multiple assay endpoints evaluating different 

functional processes relevant to DNT, were capable of delineating positive and negative 

evaluation chemicals, and whether this in vitro activity tended to be free of cytotoxicity. 

Evaluating apparent patterns of response in these assays may help elucidate the in vitro 
biological effects of substances specific to DNT-relevant processes and function and inform 

the hypothesis that these DNT NAMs form an effective screening battery for putative DNT 

hazard. The novel computational analysis herein addresses three related hypotheses: (1) 

the DNT NAMs provide a sensitive indicator of disruptions in key neurodevelopmental 

processes; (2) evaluating bioactivity that may be selective, i.e. occurring at concentrations 

less than observed cytotoxicity, may provide a more specific indicator of the functional 

processes involved in putative DNT bioactivity; and, (3) the available DNT NAM screening 

battery may optimally classify putative positive and negative DNT NAM evaluation 

chemicals identified previously as helpful for assay development (Mundy et al., 2015). This 

work provides an analysis method for interpretation of these DNT NAMs for in vitro hazard 

identification and prioritization of chemicals for DNT bioactivity and further informs the 

need for multiple assay technologies for optimal identification of DNT-relevant bioactivity.

Methods

Overview

The overall workflow of this analysis is as follows: 92 chemicals were tested in a 

concentration-response screening which included 19 MEA parameters (including two 

cytotoxicity parameters) and 21 HCI parameters (including proliferation, apoptosis, neurite 

outgrowth (NOG) initiation, neurite maturation and synaptogenesis assays). The parameters 

were categorized into seven ‘activity types’ based on their associated neural processes. The 

HCI activity types include ‘neurite outgrowth’, ‘synaptogenesis and neurite maturation’, 

‘proliferation’, and ‘apoptosis’, and the MEA activity types include ‘general activity’, 

‘bursting’, ‘network connectivity’. See Table 1 and Supplemental Methods for detailed 

experimental design for each assay. The MEA NFA data was collected over a period of 12 

days in vitro (DIV) with recordings occurring on DIV 5, 7, 9, and 12. Chemical exposure 

started on DIV 0, two hours after plating, and full media changes occurred on DIV 5 and 

9 (two repeat doses). The length of the HCI assays ranged from 1-2 days with a single 

dose exposure occurring two hours after plating, with the exception of the synaptogenesis 

assay where the chemical exposure started on DIV 7 and data was collected on DIV 12. The 

chemical concentration-response data for each assay were normalized on a plate-by-plate 
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basis to the median of the vehicle control wells and the two lowest concentrations of test 

chemical wells and curve-fit using the ToxCast Pipeline (tcpl) to identify active or inactive 

chemicals (Filer et al., 2017). Seventeen MEA parameters (excluding the two cytotoxicity 

parameters) were fit in both the ‘up’ or ‘down’ activity direction. The HCI parameters 

were fit in the ‘down’ direction to capture a loss of bioactivity, with the exclusion of 

“Casp3_7_gain” which was fit in the ‘up’ direction. Examination of the fitted curves from 

the HCI parameters returned very little to no evidence suggesting increases in the assay 

parameters for functional processes. The concentration at 50% maximal activity (AC50) 

values were analyzed across the 57 endpoints using hierarchical clustering to evaluate 

differential patterns of bioactivity among the 92 chemicals. Based on the observation that 

the MEA NFA results may have been associated with cytotoxicity, activity lower than 

the cytotoxicity AC50 was examined as an area under the curve (AUC), compressing 

efficacy and potency into a single metric of selective activity in order to identify groups 

of chemicals with similar selective DNT-relevant activity in the battery. In addition to 

evaluating patterns of activity, several other computational approaches were utilized: 1) a 

random forest regression analysis was used to evaluate the most informative parameters for 

predicting the minimum AC50 value, 2) in vitro to in vivo extrapolation (IVIVE) using high-

throughput toxicokinetic (HTTK) modeling was applied to transform NAM-derived activity 

into administered equivalent doses (AEDs) for a subset of chemicals that were identified 

as false negatives; and, 3) DNT NAM in vitro potencies were compared to a dataset of 

predominantly non-neuronal cell models available in the ToxCast/ Tox21 database.

Software and source data

All data management, analysis, and figures were generated using the R statistical 

programming language using RStudio (version 3.6.3). All original code and source files are 

available on GitHub and at (https://github.com/USEPA/CompTox-Evaluation-DNTNAMs). 

The code and source data for these analyses are also available here (https://doi.org/10.23645/

epacomptox.17152877). Assay data were compiled using the ToxCast pipeline (tcpl) R 

package (version 2.0.3) that is publicly available (https://cran.r-project.org/web/packages/

tcpl/index.html) (Filer, et al., 2017) and these assay data are public in invitrodb version 

3.4 (https://doi.org/10.23645/epacomptox.6062479.v6). Subsets of the source data were 

previously published in Brown et al., 2016, Frank et al., 2017, Harrill et al., 2018, and 

Shafer et al., 2019. Multi-concentration level 0, 3 and 5 data were downloaded from 

invitrodb (version 3.4) from the assay source names CCTE_Shafer_MEA_dev” and the 

“MUNDY_HCI”. See Supplemental Methods Table 3 for a detailed description of the 

methods used to pipeline the NFA and HCI assay suite data in tcpl. Level 5 data were 

filtered with the following criteria: 1) chemicals with ≥3 flags were set to a hit-call 

of zero (flagging at multiple-concentration level 6 data in tcpl uses both the plate level 

concentration-response data and modeled parameters to flag for caution in interpreting the 

curve fit, e.g. noisy data, only highest concentration above baseline, or hit-call potentially 

confounded by overfitting), 2) chemicals with a fit category (fitc) of 36 or 45 (found in mc5 

table in tcpl), indicating the curve top was less than or equal to 1.2 times the cutoff for a 

positive and the resultant AC50 was less than the concentration range screened, were set to 

a hit-call of zero, 3) any hit-call= −1, indicating the concentration series had fewer than 4 

concentrations, was set to zero. It should be noted that the hit-calls presented here for MEA 
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results may differ slightly from those presented in Frank et al., 2017 and Shafer et al., 2019 

due to the use of tcpl here.

All Supplemental Files referenced in this work, containing additional results and 

explanations, can be found online here: https://doi.org/10.23645/epacomptox.17152964.

Chemical screening

A total of 92 chemicals were selected for this analysis that were tested in both the 

NFA and HCI methodologies, including 20 chemical repeats tested in the NFA. This 

includes 53 chemicals previously tested and evaluated in Harrill et al., 2018, Frank et 

al., 2017 and Shafer et al., 2019 that were selected based on evidence of possible in vivo 
DNT hazard (Mundy, et al., 2015), neurotoxic properties, as well as 13 putative negative 

DNT chemicals (Aschner et al., 2017; Harrill, et al., 2018). This set of 66 chemicals 

comprised a “DNT NAMs evaluation set” that can be used for the purpose of evaluating 

the sensitivity and specificity of the battery and includes a variety of chemical classes 

such as pyrethroids, organochlorines, organo metals, and pharmaceutical drugs. In addition, 

data for 26 organophosphate pesticides with known acute toxicities are also included here. 

Assay data from the OPs are available publicly via an Agency Issue Paper prepared for a 

Federal Insecticide, Fungicide, and Rodenticide Act Scientific Advisory Panel (EPA, 2020). 

A complete list of all chemicals screened in concentration response can be found in the 

supplemental materials (Supplemental Table 1). Eight additional chemicals were included 

as positive controls for the assay performance analysis that were not tested in all assay 

endpoints for the NFA and HCI assays (Supplemental Table 2). The chemicals presented 

in the comparison analysis with ToxCast/Tox21 dataset were derived from the ToxCast 

chemical library, which covers a broad chemical landscape and diversity of assays. All 

information on the chemicals and assays within the ToxCast chemical library are publicly 

available (https://comptox.epa.gov/dashboard).

Each chemical was screened with well replicates (n=3, where n is in reference to technical 

replicates) performed within the same experiment across multiple plates. For the vast 

majority of chemicals, screening concentrations ranged from 0.001 μM to 100 μM for the 

HCI and 0.03 μM to 30 μM for the NFA in half-log increments, with a few exceptions, 

such as sodium valproate which was tested at a maximal concentration of 3000 μM (see 

Supplemental Table 1 for detailed information on the minimum and maximal concentrations 

tested for each chemical in each assay technology). The lower concentration bound was 

reflective of practical limitations (e.g. the number of wells on the plate) and the upper 

concentration was reflective of DMSO limitations and typical concentration range within 

which activity is observed. The HCI assays were performed in a 96-well plate format using 

human neural progenitor cells (hNP1 cells derived from a neuroepithelial cell lineage of 

WA09 human embryonic stem cells, ArunA Biomedical (Athens, GA)) in the proliferation 

and apoptosis assays, primary rat cortical cells (dissected at P0 from Long Evans rat, 

(Charles River Laboratory, Raleigh, North Carolina)) in the synaptogenesis assay, or human 

neural cells (hN2 cells: immature neurons differentiated from the hNP1 cells described 

above) or primary rat cortical cells in the NOG assay. The NFA assay was performed in a 

48-well microelectrode plate format using rat cortical cells.
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Selectivity

Selective activity in this study is defined as activity below the threshold of cytotoxicity. 

This was determined with two methods: 1) by calculating the AUC of each concentration-

response curve, applying an upper concentration cutoff at the cytotoxicity log10-AC50 

for each assay, 2) by excluding log10-AC50 potency values above the cytotoxicity 

log10-AC50. The first method was implemented in the ‘patterns of selective activity’ 

analysis. AUC was calculated by integration of each positive curve-fit using the model 

parameters from the winning model fit in tcpl. The upper limit of integration was 

defined as the cytotoxicity log10-AC50 for each chemical by assay (in the absence 

of any cytotoxicity, the AUC is based on the full curve-fit for the assay endpoint). 

The cytotoxicity endpoints included “MUNDY_HCI_Cortical_NOG_NeuronCount_loss” 

for the NOG (rat) assay, “MUNDY_HCI_hN2_NOG_NeuronCount_loss” for the NOG 

(hN2) assay, "MUNDY_HCI_hNP1_CellTiter_loss" for the proliferation assay. The 

MEA_NFA contained two cytotoxicity endpoints ("CCTE_Shafer_MEA_dev_LDH_dn", 

"CCTE_Shafer_MEA_dev_AB_dn") of which the minimum log10-AC50 was found 

between the two endpoints for each sample. Any assay endpoints that had a negative hit-call 

or a negative AUC from this calculation was set to zero in the analysis. The second method 

was implemented in the comparison of activity between early stage processes and the NFA 

as well as in the comparison of the DNT selective potency with ToxCast/ Tox21 data.

Patterns of activity in the DNT NAMs

Unsupervised hierarchical clustering was used to understand the differential patterns of 

activity across all 92 chemicals and 57 endpoints (log10-AC50 analysis) or 32 endpoints 

(selective activity analysis which excludes cytotoxicity endpoints and the NFA ‘_up’ 

endpoints) as visualized in a heatmap. These analyses used Ward’s D2 method for linkage 

(Ward, 1963) and the agglomerative clustering method as implemented in the R package 

‘gplots’ version 3.0.4 (Warnes et al., 2016).The dendrogram shown on the heatmap was used 

as a guide for manual selection of cluster groupings. In the selectivity analysis, k-means 

clustering was also implemented as a secondary validation method to determine the optimal 

number of clusters. The elbow method was used to determine the optimal number of 

clusters (value of k using the ‘kmeans’ function in the ‘stats’ base R package), where the 

point of inflection of the curve (x= k, y= sum of squared distances from each point to its 

center) indicates the best model fit. Principal component analysis plots were also utilized 

to visualize the optimal number of clusters. The type II error rate of classifying putative 

positive and negative DNT NAM evaluation chemicals was computed based on active versus 

inactive clusters, respectively. An active cluster was defined as a cluster that captured 

chemicals with any activity in the selectivity heatmap. An inactive cluster was defined as a 

distinct cluster that demonstrated limited to no activity. A confusion matrix was computed, 

where a true positive (TP) was defined as an evaluation set positive that was captured by 

clusters that demonstrated selective activity and a true negative (TN) was defined as an 

evaluation set negative that was grouped in an inactive cluster. An evaluation set positive 

was considered a false negative (FN) if it was incorrectly captured in the ‘negative’ cluster 

and a false positive (FP) was any evaluation set negative that was captured in the active 

clusters. The sensitivity, specificity, and accuracy of the model was calculated: sensitivity = 

TP/(TP+FN), specificity = TN/(TN+FP), and accuracy = (TP + TN) / (TP + TN + FP + FN).
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Important DNT NAM endpoints for chemical potency estimation

Random forest regression using the randomForest R package (version 4.6-14) was used to 

identify the most important endpoints for predicting the minimum log10-AC50 value for 

each chemical across 40 features (all endpoints in the DNT NAM battery excluding the 

NFA ‘up’ endpoints). The 92 chemicals were split 70/30 into training and testing datasets 

using the ‘createDataPartition’ in the R package “caret” (version 6.0-86) (Kuhn, 2008). The 

mean absolute error and the root residual mean square error were computed for the predicted 

values in the testing dataset. Feature importance was scored, ranked, and visualized based on 

two metrics: percent increase in mean square error and increase in node impurity.

In vitro to in vivo extrapolation (IVIVE) approach

For a subset of eleven chemicals in this dataset (seven that were identified as false 

negatives and four as true positives in the selectivity analysis), the bioactivity of the in 
vitro DNT NAM data was transformed into administered equivalent doses (AEDs) using 

high-throughput toxicokinetic (HTTK) data and models following the principles of reverse 

dosimetry (Bell et al., 2018; Sipes et al., 2017; Wambaugh et al., 2018; Wetmore et 

al., 2012). In total, seven of these 11 chemicals were considered “false negatives” using 

the DNT NAM assays and 4 of these 11 chemicals were selected to represent a diverse 

subset of “true positives” using the DNT NAM assays; insufficient data were available to 

estimate AEDs for all chemicals screened in the DNT NAM assays presented here. This 

methodological approach, referred to as in vitro to in vivo extrapolation (IVIVE), was used 

to compute an AED in units of milligram per kilogram bodyweight per day (mg/kg/day) 

from the NAM-derived concentration at 50% maximal activity (log10-AC50). The IVIVE 

approach relies on several high-level assumptions: 1) a nominal in vitro assay concentration 

approximates an in vivo plasma concentration that would correspond to a similar effect; 2) 

in vivo plasma concentration can be approximated based on steady-state kinetics; and, 3) a 

toxicokinetic model can be constructed using estimates of species-specific physiology and 

Phase I and Phase II enzyme-driven hepatic clearance. The HTTK information was built into 

the “httk” R package (version 2.0.3) (Pearce et al., 2017) which uses Monte Carlo simulation 

to incorporate population variability in the model. The 3-compartment steady-state model 

(3css) was selected based on the availability of hepatic intrinsic clearance (in units of 

μL/min/106 hepatocytes) values to predict both the 50th or 95th percentile in the population 

distribution (referred to as 3css50 or 3css95). Hepatic intrinsic clearance parameters were 

measured in vitro (Wambaugh, et al., 2018) for five chemicals and in silico for six chemicals 

(Sipes, et al., 2017) (Supplemental Table 3). Restrictive clearance was employed, i.e. hepatic 

clearance was assumed to be dependent on the fraction unbound in plasma. Due to the 

lack of hepatic clearance data in rat, the present analysis used human HTTK data and 

human physiology. Given this list of high-level assumptions, the NAM-derived AEDs were 

compared to in vivo lowest effect levels which were curated from a literature review of 

chemicals with in vivo DNT information (Mundy, et al., 2015). The lowest effect levels were 

not derived from DNT guideline studies therefore the dose does not necessarily reflect a true 

‘lowest effect’ but instead the lowest dose found to demonstrate a DNT effect based on the 

available studies. The in vivo doses were transformed into human equivalent doses (HEDs) 

(Nair et al., 2016), where HED (mg/ kg) (see Table 1 of Nair and Jacob (2016) for equation). 
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All of the HTTK information and exposure citations used in this analysis are summarized in 

Supplemental Table 3.

Results

NFA and HCI assay performance

Assay endpoints—A total of 92 substances were tested in the DNT NAM battery, which 

included 4 HCI assays: proliferation (3 endpoints), neurite outgrowth (NOG) initiation 

(4 endpoints x 2 cell lines), neurite maturation and synaptogenesis (8 endpoints), and 

apoptosis (2 endpoints), and the MEA NFA, which included 17 endpoints measured 

in both the increased and decreased activity direction (34 endpoints) and viability (2 

endpoints), for a total of 57 endpoints. The proliferation, NOG, and synaptogenesis 

assays each included a measure of cell viability (e.g. cell counts) and/or cytotoxicity (e.g. 

lactate dehydrogenase (LDH)); in this manuscript, these shall be collectively referred to 

as “cytotoxicity parameters”. Cytotoxicity parameters are relevant to DNT if neural cell 

death occurs in vivo during critical periods of nervous system development (Rice et al., 

2000). Several critical processes of in vivo neurodevelopment and several cell models are 

encompassed in this suite of assays (Table 1).

Assay reproducibility

Each of these assays were developed following the principles outlined in Crofton et al., 2011 

and have been demonstrated to perform well with assay positive controls (Brown, et al., 

2016; Druwe, et al., 2015; Harrill, et al., 2018; Harrill et al., 2011a; Harrill, et al., 2013; 

Harrill, et al., 2011b). To further demonstrate the reproducibility and robustness of these 

assays,, we evaluated several additional quantitative indicators of assay reproducibility.. 

First, baseline variability was evaluated as the median and mean coefficient of variation 

(CV) of the vehicle control wells for: the NFA parameters, NFA-associated cytotoxicity 

assays, and the HCI assays, the mean and median CVs for DMSO were 18-21%, 7-8%, 

and 8.4 and 8.7%, respectively. Baseline variability indicates the level of changes required 

to see a difference from background, with the MEA NFA demonstrating greater baseline 

variability relative to the HCI assay suite (Supplemental Table 4). This difference is perhaps 

due to the greater biological complexity inherent to functional networks in contrast to 

measurement of specific cellular morphological or biochemical changes in the HCI assay 

suite. Second, qualitative and quantitative reproducibility was evaluated in the NFA assay, 

wherein 20 chemicals were tested as at least two unique chemical samples with differences 

in sourcing (Supplemental Table 5). Each chemical was given a reproducibility score based 

on three response categories: 1) ‘strong’ (replicates were consistently positive with >3 hits or 

consistency negative with 0 hits), 2) ‘equivocal’ (1 replicate was between 1 and ≤3 hits and 

1 replicate was negative), or 3) ‘weak’ (1 replicate was positive and 1 was replicate negative 

or equivocal) (Supplemental Results 1A). Overall, the replicability of the chemical repeats 

in the NFA was 75% (15/20 chemicals were scored as strong or equivocal), despite the use 

of separately sourced chemical samples. The variability in potency across repeats (measured 

by computing the average standard deviation of bioactivity at each endpoint) was less than 

0.6 log10-μM for each chemical, except for 2,2’,4,4’-tetrabromodiphenyl ether and di(2-

ethylhexyl) phthalate where there was more uncertainty in the potency values (Supplemental 
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Table 4), suggesting generally that AC50 values in the NFA might reasonably vary by ± 0.5 

log10-μM, or approximately ± 1 standard deviation. There are several reasons why some 

chemicals demonstrated ‘weak’ concordance (e.g. 6-propyl-2-thiouracil, chlorpyrifos oxon, 

di-(2-ehtylhexyl)phthalate, diazinon, methamidophos) such as chemical sample stability, 

biological variability in culture preparations, or differences in laboratory equipment and 

personnel (Supplemental Results 1A).

Assay performance was also assessed with positive controls that are known to cause effects 

on neurodevelopmental processes measured in these assays (“assay positive controls”) or 

to be inactive (“assay negative controls”; Supplemental Table 2). Overall, the activity of 

the controls performed as expected with positive controls demonstrating selective activity in 

the NFA and HCI assays and the negative control (acetaminophen) demonstrating little to 

no activity in the battery (Supplemental Figure 2, Supplemental Results 1B). For example, 

the positive control, lithium chloride, a known inhibitor of neurite outgrowth (Harrill, et 

al., 2011b), decreased all 4 endpoints across the NOG initiation assay in both the rat 

cortical cells and the human hN2 neural cells (Supplemental Figure 2A). Aphidicolin, a 

known inhibitor of cell proliferation (Kohno et al., 2006; Mundy et al., 2010) decreased 

all 3 endpoints in the neuroprogenitor proliferation assay. Bisindolylmaleimide I, a known 

inhibitor of an ontogeny of network activity (Harrill, et al., 2011b; Robinette et al., 

2011), was active in 16 NFA endpoints measuring decreased network activity which was 

reproducible across 4 chemical repeats (Supplemental Figure 2B).

Finally, the Z’ factor, a measure of how reliably a signal can be distinguished from 

noise, was computed for the assay-matched positive controls. A Z’ of 0.5-1.0 indicates 

an assay with sufficiently high signal-to-background (noise) distinction (Paul Friedman et 

al., 2016; Zhang et al., 1999). The Z’ across all NFA endpoints ranged from 0.55-0.8, 

with bisindolylmaleimide I demonstrating the highest effect size of the positive controls, 

and overall suggesting reproducible, robust results in the NFA with a substance known 

to perturb network formation (Supplemental Table 6, Supplemental Results 1C). For the 

HCI assays, the Z’ was more variable, ranging from 0-0.8, indicating positive controls with 

high efficacy and high reproducibility for the viability and NOG assays and perhaps a 

future need for better positive controls in the synaptogenesis and hNP1 proliferation assays 

(Supplemental Table 7). For example, staurosporine, known to induce apoptosis (Bertrand 

et al., 1994; Druwe, et al., 2015; Feng et al., 2002), had a robust Z’ value of 0.8 and large 

effect sizes as indicated by the strictly standardized mean difference (Bray et al., 2004) in 

the endpoint measuring apoptosis in hNP1 neuroprogenitors, indicating an optimal positive 

control. A known inhibitor of proliferation, aphidicolin, produced a small effect size and 

more variability as indicated by a low signal-to-noise (another metric that indicates the 

positive control response from the baseline response) and Z’ (Z’ value of 0.1), making 

aphidicolin a less optimal control but one that clearly affected hNP1 proliferation. Together, 

the CV of vehicle control wells, the concordance of NFA chemical repeats, the activity 

and Z’ factor of known positive and negative controls indicates that this battery of broad 

phenotypic endpoints has sufficiently low baseline variability and high signal-to-noise to 

detect chemical perturbations of these neurodevelopmental processes in vitro.
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Patterns of general DNT-relevant activity using the log10-AC50 metric (μM)

Here we evaluated the patterns of activity across the DNT NAM battery (Figure 1, 

Supplemental Table 8). We hypothesized that the integration of all assays would reveal 

informative differential patterns of bioactivity that may ultimately be useful for identifying 

putative DNT activity from a set of distinct cellular processes. The 92 chemicals were 

tested in a concentration window of 0.001 to 100 μM with a narrow potency range (median 

potency range ±SD of 8.30 ± 11.3 μM). Hierarchical clustering of activity and potency using 

the log10-AC50 (μM) in the combined DNT battery analysis revealed three main chemical 

groups (rows/ y-axis dendrogram) and a general ‘on/off’ activity pattern, particularly for the 

NFA. Cluster 1 grouped chemicals that were very active in the NFA and moderately active 

to not active in the HCI assays (≤26/57 hits), cluster 2 grouped high activity (with activity 

seen in NFA and some or all of the HCI assays) and high potency chemicals (≥23/57 hits), 

and cluster 3 captured very low activity to negative chemicals (≤6/57 hits). Hierarchical 

clustering of activity type (column labels/ x-axis dendrogram) revealed that the four NFA 

activity types measuring decreased activity (‘down’) cluster together (bursting, network, 

general activity, cytotoxicity). Notably, three synaptogenesis endpoints (dark orange bar) 

associated with the NFA endpoints ‘down’ endpoints: 1) neurite length, 2) pre-synaptic 

puncta in the neurite compartment, and 3) cytotoxicity in the same assay. All other endpoints 

measured with the HCI technology clustered together in a separate main effect group, 

and the NFA endpoints measuring increased activity clustered together, demonstrating 

little to no activity. A current limitation to contextualizing this result is the lack of assay 

positive controls in the NFA that are known to increase NFA parameters. The two NOG 

initiation assays (tested in either human hN2 neural cells (yellow bar) or rat primary cortical 

cultures (dark blue bar)) were not closely associated, suggesting that some chemicals may 

differentiate by cell-type rather than neurological process. Given the strong clustering by 

assay technology and the lack of differential patterns across the NFA ‘down’ endpoints, we 

evaluated the correlation between endpoints using a correlation matrix (Supplemental Figure 

3 and Supplemental Results 2). The NFA ‘down’ endpoints were strongly correlated (mean 

correlation coefficient ± SD of 0.9 ± 0.02), suggesting that log10-AC50 for all 17 parameters 

may not be needed for indicating activity in the NFA.

Informative endpoints in identifying the most sensitive endpoint

We next evaluated assay endpoint sensitivity, to understand which endpoints lead to 

minimum AC50 value estimates, as well as the hypotheses regarding how selective 

bioactivity in the DNT NAM battery may allow for greater differentiation of in vitro 
phenotype. We examined potential trends in the most sensitive assay endpoints by 

determining the endpoint with the minimum log10-AC50 response per chemical across the 

DNT battery. In comparing the NFA and HCI assays, the minimum log10-AC50 value 

was determined by the NFA for 76.3% of chemicals, with the activity-type ‘network 

connectivity’ defining the minimum log10-AC50 value for nearly 50% of the 92 chemicals 

screened (Figure 2A). The NFA endpoint measuring decreased mutual information, a 

measure of network connectivity, was the most sensitive endpoint overall (Figure 2B), 

followed by the NFA cytotoxicity endpoint using LDH. Four out of the top eight most 

sensitive endpoint were measures of cytotoxicity (black bars) in different assays and cell-

types (rat cortical, hNP1, and hN2 cells). The normalized mutual information endpoint 
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is a derived endpoint that was designed to be a sensitive indicator of perturbations in a 

developing neural network (Ball et al., 2017). Importantly, approximately 90% of chemicals 

with more than one hit in any assay were within one order of magnitude difference from the 

closest log10-AC50 response. Indeed, all potencies for the 92 chemicals fell within a median 

range ± SD of 0.919 ±1.05 log10-μM. Moreover, the minimum log10-AC50 value as defined 

by the NFA versus the HCI assay suite demonstrated a low coefficient of determination 

(R2) of 0.43, indicating variability in assay sensitivity between the two assay technologies 

(Supplemental Figure 4). These findings were supported by a random forest regression 

analysis which predicted the minimum log10-AC50 value with a mean absolute error of 

0.572 log10-μM and a root residual mean square error of 1.083 log10-μM. Ranking of 

feature importance for predicting the minimum log10-AC50 value identified cytotoxicity 

and network connectivity endpoints as the most informative endpoints in predicting the 

minimum log10-AC50 value across the battery (Supplemental Figure 5, Supplemental 

Table 9, Supplemental Results 3). Overall, these results reveal an important role for 

cytotoxicity and network connectivity parameters in determining the minimum log10-AC50 

value and indicates that no single endpoint is sufficient to define a most sensitive DNT 

effect in the DNT NAM battery for all chemicals. Moreover, endpoints measuring other 

neurodevelopmental processes (e.g. loss in NOG branch points and loss in neurite length in 

the synaptogenesis assay) are also sensitive in identifying neuronal perturbations, supporting 

the application of multiple endpoints and key neurodevelopmental processes in the battery.

Patterns of selective activity

To explore the hypothesis that selective bioactivity in the DNT NAMs may allow for 

greater differentiation of in vitro phenotypes, we evaluated patterns of DNT-relevant activity 

at concentrations below the AC50 for cytotoxicity. Patterns of selective activity excluded 

NFA ‘up’ endpoints due to limitations on interpreting these endpoints, including few 

instances of increases in these endpoints and a lack of positive controls that reliably 

increase these endpoints. These patterns of selective activity were evaluated using a 

hierarchical clustering approach (Figure 3 and Table 2, Supplemental Table 10). The 

selectivity analysis importantly reveals that there is a narrow concentration window (median 

range ± SD of 0.101 ± 0.732 log10-μM) to observe activity that is not likely to be 

confounded by cytotoxicity in the DNT NAM battery (the median difference between 

the cytotoxicity AC50 and the mean selective potency ± SD was 0.109 ± 0.334 log10-

μM for the NFA and 0.086 ± 0.447 log10-μM for the HCI assay suite, Supplemental 

Tables 11 and 12). Hierarchical clustering by activity type and chemical revealed five 

main chemical clusters demonstrating differential patterns of activity that were not evident 

when considering bioactivity that co-occurred with cytotoxicity, with support for three 

observations: (1) active chemicals cluster into four groups based on the magnitude of 

the sum of the selective AUC for all endpoints by chemical; (2) a subset of endpoints 

measuring general activity and/or network connectivity in the NFA, NOG (hN2), and 

synaptogenesis/ neurite maturation appear to differentiate chemicals with high selective 

potency and/or efficacy (mean AUC sum ± SD of 1140 ± 441.5); and, (3) the association 

of the selective AUC data across assay endpoints suggests cell-type and species-specific 

effects (Supplemental Results 4). Cluster 1, with a mean AUC sum ±SD of 1230 ± 373.2, 

captured chemicals that were selectively active in synaptogenesis and/or neurite maturation 
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assays, particularly in endpoints measuring decreased number of synapses, number of 

neurite-associated puncta, neurite length loss, and neurite branch points per cell. The 14 

chemicals grouped in cluster 1 consisted of metals (e.g. triethyltin bromide, cadmium, 

bis(tributyltin)oxide, and methylmercury), organochlorines (heptachlor, hexachlorophene, 

and dieldrin), and neuroactive drugs (fluoxetine, chlorpromazine, and chlordiazepoxide). 

Colchicine, an alkaloid gout therapeutic that causes cell death via interference with 

microtubules and prevents tubulin-dependent neurite outgrowth in neurons (Gorman et 

al., 1999; Uppuluri et al., 1993), was captured in cluster 1 and was notably dissimilar 

with an AUC sum of 2043. Cluster 2, with a mean AUC sum ± SD of 1046 ± 510.3, 

captured chemicals that were selectively active in general activity and network connectivity, 

particularly in endpoints measuring decreased mutual information between electrodes, 

number of spikes in a network spike, standard deviation of network spike duration, number 

of bursts per minute, and mean firing rate. The chemicals haloperidol and deltamethrin 

were particularly closely associated in the hierarchical clustering (and in the PCA of the 

k-means analysis in Supplemental Figure 6D), demonstrating strong selective activity across 

all network, general and bursting activity endpoints. Cluster 3, with a mean AUC sum ± SD 

of 305.4 ± 156.4, captured low efficacy chemicals with moderate activity across multiple 

neurodevelopmental processes. Several subclusters demonstrated trends in selective activity, 

such as 6-aminopyridine-3-carboxamide, paraquat dichloride, and z-tetrachlorvinphos (blue 

arrows), which were selective in all three endpoints measuring NOG (rat) but not NOG 

(hN2), indicating possible cell-type/species-specific effects. Cluster 4, with a mean AUC 

sum ± SD of 80.54 ± 58.83, captured low efficacy chemicals with disparate (or highly 

selective) activity. Cluster 5 was manually defined based on inactivity. The selectivity 

analysis demonstrates activity with greater differentiation of in vitro phenotypes than non-

selective activity (Figure 1) and identifies groups of chemicals that, in the absence of 

cytotoxic effects, appear to target distinct neurodevelopmental processes.

The selective AUC heatmap also indicates which chemicals were contained in an in 
vivo DNT NAM evaluation set, including putative “positives” (53 chemicals, black row 

annotation in Figure 3) and “negatives” (13 chemicals, gray row annotation in Figure 

3) (Supplemental Table 1, as proposed by previous publications (Aschner, et al., 2017; 

Harrill, et al., 2018; Mundy, et al., 2015)). A confusion matrix was computed for the 

classification of putative in vivo DNT positives in the active clusters (clusters 1-4) and 

the putative in vivo DNT negatives in the inactive cluster (cluster 5), resulting in an 

accuracy of 77%, a sensitivity of 74%, and a specificity of 92%. Based on selective 

activity, the DNT battery performed with a high specificity rate, identifying 12/13 putative 

negatives in the inactive cluster, and a moderate sensitivity rate, incorrectly classifying 

14/53 putative positives in the inactive cluster. In contrast, non-selective activity (including 

cytotoxicity and MEA NFA ‘up’ endpoints, Figure 1) classified DNT NAM evaluation 

chemicals with a sensitivity of 93%, a specificity of 69%, and an accuracy of 88% (active 

clusters were defined as ≥1 positive hit-call). The higher sensitivity can be explained by 

capturing chemicals that were cytotoxic without any other DNT NAM-relevant activity 

at concentrations below the AC50 for cytotoxicity (5,5-diphenylhydantoin, acrylamide, 

caffeine, cyclophosphamide, amphetamine, fosthiazate) or that demonstrated disparate 

activity in the NFA ‘up’ endpoint(s) (maneb, phenol, diethylene glycol, nicotine, acephate). 
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Only four chemicals were identified as false negatives: carbamazepine, naloxone, sodium 

fluoride, and thalidomide. One possible explanation for the misclassification of putative 

positives in these analyses may be that the screening concentration was not sufficiently high 

to cause effects in vitro. To enable comparison of the maximum screened concentrations to 

doses known to cause adversity in vivo, IVIVE was performed using a high-throughput 

toxicokinetic (HTTK) model and data, as operationalized by the R library “httk,” to 

approximate NAM-derived administered equivalent doses (AEDs) in units of mg/kg/day 

(Pearce, et al., 2017; Wambaugh, et al., 2018). Only seven of 14 putative false negatives 

had sufficient information to estimate AEDs and compare them to in vivo points-of-

departure (Mundy, et al., 2015). Based on reported DNT-relevant in vivo rodent doses 

and converted human equivalent doses (HED), three of these seven (caffeine, maneb, and 

5,5’-diphenylhydantoin) may have not been screened at a high enough concentration (Figure 

4, Supplemental Table 13). The AED based on the maximum screened concentration for 

sodium valproate approached doses associated with in vivo adversity, and cyclophosphamide 

monohydrate, acrylamide, and nicotine appeared to have been screened at sufficient 

concentrations. Four true positives from the DNT NAM evaluation set were included for 

comparison, demonstrating in vivo points-of-departure that were several orders of magnitude 

below the AEDs based on the maximum screened concentration.

We further explored trends in the perturbations of the key cellular processes, evaluating 

whether disruptions in early stage processes (e.g. synaptogenesis and/or neurite maturation, 

NOG) correspond with disruptions in a later-stage process (e.g. network formation). In this 

analysis, the unity of activity between the early stage assays (NOG and synaptogenesis) and 

the NFA were presented in Venn diagrams (Figure 5). A chemical was considered active 

if it was a hit in at least one assay endpoint, including cytotoxicity. In the NOG assays, 

all chemicals that disrupted NOG (rat) also disrupted the NFA, while 35/37 chemicals 

that disrupted the NOG (hN2) assay also disrupted the NFA. In the synaptogenesis assay, 

42/45 chemicals that disrupted the synaptogenesis assay also disrupted the NFA. These 

data indicate that screening simply for early stage processes, NOG (in rat or hN2 cells) 

or synaptogenesis and/or neurite maturation effects (in rat cells), would not have fully 

identified all hits in the NFA. When examining selective hits, there was a lower ratio of 

chemicals that were active in the early stage process and the NFA, indicating that some of 

the overlap between the early stage processes and the NFA can be explained by cytotoxicity 

(Supplemental Figure 7). Together, these results indicate that many chemicals that perturbed 

early stage processes also disrupted network formation (selective or non-selective), however 

there was a subset of chemicals that were active in the NFA that were not active in 

any early stage process (Supplemental Results 5), indicating that: 1) network formation 

activity cannot necessarily predict perturbations in early stage processes, and 2) there are 

additional biological activities captured by network formation that are not captured by NOG/

synaptogenesis.

Comparison of DNT NAMs to ToxCast/Tox21 data

Lastly, we compared DNT NAM activity to the activity observed in the broader ToxCast/

Tox21 screening program, with the goal of identifying substances with neural-specific 

effects. The ToxCast/Tox21 database (as of invitrodb version 3.3, 2020 release) contains 
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1,569 assay endpoints tested in a variety of cell types and assay technologies (https://doi.org/

10.23645/epacomptox.6062479.v5). This aim of this comparison was to reveal substances 

with selective bioactivity in the DNT NAM battery. Thirty-three chemicals that were highly 

cytotoxic in the DNT battery, as defined by positive hit-calls in at least 3 of 8 cytotoxicity 

assay endpoints in the DNT NAM battery, were identified. The minimum cytotoxicity log10-

AC50 value from the DNT NAM battery was compared to the cytotoxicity burst threshold 

potency in ToxCast assays, a lower bound estimate for a concentration that might cause 

cell stress or cytotoxicity in vitro (Richard et al., 2016). In general, substances that were 

cytotoxic in the DNT battery were also cytotoxic in other ToxCast assays, with the exception 

of phosmet, lead(II) acetate trihydrate, ethoprop, and cytarabine (red arrows), which were 

not cytotoxic in available ToxCast assays (Figure 6A) as defined by the burst. Cytotoxicity 

was observed within < 1 log10-μM between the DNT NAM battery and ToxCast assays for 

30/37 chemicals, suggesting that these highly cytotoxic chemicals in developing neurons are 

similarly cytotoxic in other cell types and/or assay platforms. The minimum DNT NAM 

cytotoxicity was more potent than the 5th percentile ToxCast AC50 for seven chemicals (blue 

arrows: fluoxetine hydrochloride, heptachlor, methylmercury, dichlorvos, tebuconazole, 

terbufos, and bis(tributyltin)oxide) indicating that these chemicals are cytotoxic to neurons 

at concentrations that demonstrate little or no bioactivity in other cell-types and/or assay 

platforms. Moreover, the interquartile range and median for the DNT NAM log10-AC50 

values (Figure 6A) indicate that some, if not all, DNT bioactivity can be explained 

by cytotoxic effects for these 37 cytotoxic chemicals. The minimum selective bioactive 

concentrations (log10-AC50 lower than cytotoxicity log10-AC50 values) in the DNT NAM 

battery were compared to the range and lower 5th percentile of ToxCast log10-AC50 values 

(Figure 6B). Four chemicals (blue arrows: fluoxetine, isoniazid, methylmercury, and maneb) 

appeared to be more selectively potent in the DNT NAM battery compared to the 5th 

percentile ToxCast AC50 (> 1 log10-μM), suggesting that these chemicals have strong 

selective effects on neuronal cell types in the absence of cytotoxicity. Moreover, 47/58 of the 

chemicals with selective DNT effects had a minimum DNT NAM AC50 value that was lower 

than the median ToxCast AC50 values, demonstrating that the DNT NAM battery captures 

potent, sensitive effects relative to general ToxCast activity.

Discussion

This work presented a novel integrated analysis of concentration-response data for 92 

chemicals screened in a DNT NAM battery that evaluates key neurodevelopmental 

processes: proliferation, apoptosis, synaptogenesis, neurite outgrowth and maturation, and 

neural network formation and function (Brown, et al., 2016; Frank, et al., 2017; Harrill, et 

al., 2018; Shafer, et al., 2019). The DNT NAM assay suite together successfully functioned 

as a broad phenotypic screen of neurodevelopmental processes in vitro, provided insight 

into complex differential patterns of disrupted functional biology not captured by each 

assay alone, and demonstrated the need for multiple assay endpoints evaluating distinct 

neurodevelopmental functional processes to delineate positive and negative evaluation 

chemicals. Clustering analyses suggest the minimum log10-AC50 value in the DNT NAM 

battery may provide a sensitive marker of DNT bioactivity, and selective bioactivity may 

reveal specific functional processes impeded in vitro. The DNT NAM selectivity analysis 
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demonstrated high specificity (92%) and lower sensitivity (74%) in classifying DNT NAM 

evaluation chemicals, while non-selective activity demonstrated a lower specificity (69%) 

and a high sensitivity (93%). Finally, we identified chemicals that demonstrate more potent 

bioactivity in neuronal cell types compared to the broader ToxCast/Tox21 dataset, which 

includes a variety of non-neuronal cell types and technologies, potentially informing the 

relative importance of in vitro DNT bioactivity for chemicals with many bioactivities in 
vitro.

The DNT NAM battery demonstrated reliability, based on reproducibility with assay 

performance controls known to disrupt specific functional processes relevant to 

neurodevelopment, such as proliferation by aphidicolin, NOG initiation by lithium chloride, 

and network activity by bisindolylmaleimide I. The NFA demonstrated 75% qualitative 

concordance (repeated observation of active, equivocal, or negative behavior) for screening 

of replicate samples for 20 chemicals. Further, baseline sampling variability and qualitative 

concordance suggest signal can be distinguished from noise, and that positive, equivocal, 

or negative behavior in the DNT NAM battery assays is likely to be reproducible despite 

experimental changes and chemical sourcing differences over time.

We identified measures of network connectivity (mutual information) and cytotoxicity as 

the most sensitive assay endpoints in the DNT NAM battery on a potency basis. The 

mutual information parameter, a calculated measure of dependence between any two random 

electrodes in a well (Ball, et al., 2017), is by design a sensitive readout and its ranking as 

the overall most sensitive endpoint is unsurprising. However, potency for the DNT NAM 

battery occurs within a narrow concentration range (median ± SD of 0.919 ±1.05 log10-μM 

across the 92 chemicals). Feature importance from a random forest regression analysis for 

minimum potency ranked cytotoxicity, measures of decreased network connectivity and 

general activity, and a measure of neurite length loss in the NOG (rat) assay as most 

informative of minimum potency by chemical. This analysis suggests that cytotoxicity in 

neuronal cells is a sensitive marker of potentially DNT-relevant bioactivity and that different 

cell-types and species may inform minimum bioactive concentration in DNT NAMs.

Differences in methodology between assays may have affected assay sensitivity, including 

exposure duration and cell type: the MEA NFA used rat primary cortical neurons and 

involved a 12-day chemical exposure period with two doses, in contrast to most of the HCI 

assays which involved a single chemical exposure of 48 hours or less, with the exception of 

a 5 day exposure in the synaptogenesis assay. Harrill and colleagues (2011a, b) compared 

sensitivity of human hN2 neural cells and rat cortical neurons in the NOG assays and 

found that the human hN2 cells were more sensitive to NOG inhibitors. Moreover, the 

six cytotoxicity parameters in the DNT NAM battery measure different aspects of cellular 

health, such as number of nuclei, number of neurons, or lactate dehydrogenase. Given that 

the battery includes different cell-types and species, it will be critical to investigate the 

impact of cell-type sensitivity in future studies.

Of major interest was the similarity of chemicals thought to act on related neuronal targets 

with other chemicals that may demonstrate hierarchical cluster associations. The cluster 

with the highest selective activity values contained several metals, organochlorines, and 
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neurological drugs that perturbed the NFA and synaptogenesis and NOG. Excessive metal 

concentrations in the developing nervous system have been associated with impaired cell 

function and neurological diseases (Wright et al., 2007) (Malecki, 2001; Sadiq et al., 

2012). Methylmercury exposure has been associated with deficits in neuronal migration, 

proliferation, and growth (Antunes Dos Santos et al., 2016; Choi, 1989; Radonjic et al., 

2013), consistent with effects observed on NOG in human hN2 neural cells. Several drugs 

also demonstrated selectivity for synaptogenesis and NOG (hN2) perturbations, such as 

fluoxetine, an antidepressant drug that inhibits the selective reuptake of serotonin, which 

modulates differentiation, migration, axonal guidance, synaptogenesis and dendritic pruning 

in the developing brain (Gaspar et al., 2003; Haydon et al., 1984) (Getz et al., 2011; Xu 

et al., 2010). Fluoxetine was closely associated with another drug that targets serotonin, 

chlorpromazine, which also demonstrated strong selectivity for synaptogenesis and NOG 

(hN2). This association suggests the possibility of a relationship between the molecular 

target and DNT NAM bioactivity; however, several other chemicals in the dataset share 

similar receptor targets and were not closely associated. Haloperidol, an antipsychotic that 

targets the D2 receptor (Scalzo et al., 1989), decreased network formation activity and 

bursting activity, and was most strongly associated with deltamethrin, a pyrethroid that 

disrupts voltage-gated sodium channels (Soderlund et al., 2002). Using a limited dataset, a 

clear relationship between molecular target and DNT NAM selective bioactivity pattern for 

functional processes was not revealed.

A deeper dive into “mis-classified” chemicals using selective activity suggests the need 

for more experimentation on chemicals that can increase NFA signal; possible biological 

gaps in the DNT NAM battery; and, possible differences in the concentrations achievable in 
vitro versus in vivo. Only one putative negative was incorrectly identified as a positive 

in the selectivity analysis: isoniazid. However, with evidence that isoniazid disrupts 

neurotransmission in vitro (Carta et al., 2008; Hamada et al., 2020), isoniazid may not be an 

informative “true” negative. The selectivity analysis incorrectly classified 14 false negatives 

in the inactive cluster, while the non-selective activity analysis classified four false negatives. 

In total, five of the 14 false negatives in the selectivity analysis were chemicals active 

only at cytotoxic concentrations. Indeed, cytotoxicity has been identified as the most highly 

integrated ‘key event’ in a derived network of adverse outcome pathways for neurotoxicity 

(Spinu et al., 2019). We also examined whether any false negatives may be explained by 

activity in the MEA NFA ‘up’ endpoints which were excluded from the selectivity analysis, 

but only borderline and/or suspected noise were observed MEA NFA in the “up” direction 

for these false negative chemicals (see examples of this behavior in Supplemental Figure 

9). Evidence with the chemicals screened to date in the MEA NFA failed to demonstrate 

that increases in the parameters measured can be observed; for example, chemicals that 

antagonize γ-Aminobutyric acid type A (GABAA) receptors have been reported to increase 

mean firing rate in acute MEAs (Kosnik et al., 2020; Strickland et al., 2018{Cao, 2012 

#334)} but do not increase mean firing rate in the MEA NFA, possibly due to longer 

exposures during network development.

Observed false negatives may have been due to gaps in model biology. Adenosine receptors 

may not be sufficiently expressed in these cell models to correctly detect caffeine (Johansson 

et al., 1997). Although naloxone, an antagonist of the μ-type opioid receptor (Wang et al., 
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2007), was inactive in the DNT NAM battery, the receptor is likely present because another 

μ-type opioid receptor antagonist, loperamide, was highly active. Masjosthusmann and 

colleagues (2020) reported on DNT assays evaluating neural crest cell migration, neuronal 

differentiation, and oligodendrocyte differentiation that also identified nicotine as a false 

negative. Another false negative in the analysis herein, maneb, was active in the neural crest 

cell migration assay, identifying a possible gap in the key neurodevelopmental processes 

covered by the DNT NAM battery described here.

Additional explanations of the false negatives in this analysis include methodological 

limitations, such as chemical bioavailability in vitro and maximum screened concentrations. 

Most chemicals were screened at concentrations from 0.001 to 100 μM in half-log 

increments in the HCI assays and 0.03 to 30 μM in the NFA (Supplemental Table 1). 

The AEDs based on the maximum concentrations screened for sodium valproate, caffeine, 

maneb, and 5,5’-diphenylhydantoin were lower than or approached the doses associated with 

in vivo effects in studies of DNT, suggesting higher concentrations may have been required 

to observe DNT-relevant effects. Conversely, the doses needed to perturb DNT-relevant 

functional processes might be lower than those necessary to impact apical measures in 
vivo. Future work should include improved prediction of brain and serum concentrations 

based on in vitro assay concentrations to better contextualize these bioactive concentrations. 

Additionally, many chemicals screened in this work lacked the information needed for 

high-throughput toxicokinetic models to predict AEDs; in the future, with the availability 

of more data or structure-activity relationships to predict the needed modeling parameters, 

quantitative IVIVE approaches could be used before or after screening experiments to 

indicate whether the appropriate concentration range had been screened when in vivo data 

are available for comparison.

Comparing DNT NAM potency values to ToxCast/Tox21 data identified substances with 

selective DNT in neuronal cell types and possible gaps in the currently available targeted 

screening assays. Generally, highly cytotoxic substances in the DNT NAM battery were also 

cytotoxic in available assays in the ToxCast database. Chemicals with cytotoxicity in the 

DNT NAM assays (phosmet, lead(II) acetate trihydrate, ethoprop, and cytarabine), but not 

in available cytotoxicity assay data in ToxCast, may be chemicals of greater interest for 

putative DNT-related bioactivity. Moreover, the chemicals that demonstrated more potent 

‘selective’ activity compared to ToxCast/Tox21 assays may be indicative of a targeted mode 

of action that was not previously captured.

Taken together, this novel computational analysis of the DNT NAM battery provides 

insight into the complex biology underlying differential patterns of DNT-relevant bioactivity 

and further informs the need for an integrated-multi-dimensional assay suite for DNT 

hazard identification. Importantly, this analysis demonstrated that the NFA and HCI 

assay technologies together, comprised of multiple assay endpoints evaluating key distinct 

functional processes in neuronal development, are necessary for the optimal classification 

of positive and negative DNT evaluation chemicals. Addition of DNT NAM assays 

to an integrated screening paradigm (Thomas et al., 2019) that uses neuronal cells, 

and is expanded to non-neuronal cell-types (e.g. microglia, astrocytes) representing key 

neurodevelopmental processes that are not currently included in this DNT NAM battery 
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(e.g. neural crest cell migration, myelination), may further improve classification of DNT 

NAM evaluation chemicals. Although selective activity in the DNT NAM battery may 

implicate specific functional processes perturbed, cytotoxicity in these neuronal cell lines 

was identified as a sensitive indicator of putative DNT-related activity, suggesting that 

relative cytotoxicity in neuronal cell types may help inform putative DNT hazard and derive 

sensitive points of departures.

Supplementary Material
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Abbreviations

AB Alamar Blue

AC50 concentration at 50% maximal activity

AED administered equivalent dose

AUC area under the curve

CV coefficient of variation

DIV day in vitro

DMSO dimethyl sulfoxide

DNT Developmental neurotoxicity

EPA [United States] Environmental Protection Agency

FN false negative

FP false positive

GABAA γ-Aminobutyric acid type A

HCI high content imaging

HED human equivalent dose
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hNP1 human neural progenitor cells derived from a neuroepithelial cell 

lineage of WA09 human embryonic stem cells, ArunA Biomedical 

(Athens, GA)

hN2 human neural cells (immature neurons differentiated from the hNP1 

cells)

HTTK high-throughput toxicokinetics

IVIVE in vitro to in vivo extrapolation

LDH lactate dehydrogenase

MEA microelectrode array

NAM new approach methodology

NOG neurite outgrowth

NFA network formation assay

Tcpl ToxCast Pipeline

TN true negative

TP true positive
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Figure 1. Hierarchical clustering of log10-AC50 values for the DNT NAM battery.
Rows of the heatmap indicate chemical activity across activity type associated with the DNT 

NAM assay endpoints illustrated by a color annotation bar. Within the heatmap, more potent 

chemicals are indicated by increasingly dark blue, and yellow indicates a negative hit-call in 

the assay endpoint represented. Three main clusters are identified.
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Figure 2. Sensitive endpoints in the DNT NAM battery.
(A) Bar plot indicates the percentage of chemicals for which the most sensitive endpoint 

(lowest AC50 value) corresponded to each activity type.

(B) Bar plot indicates the percentage of chemicals for which each assay endpoint was the 

most sensitive (lowest AC50 value).
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Figure 3. Selective activity in the DNT NAM battery.
Rows of the heatmap indicate chemical activity across activity type associated with the DNT 

NAM assay endpoints illustrated by a color annotation bar. Within the heatmap, yellow 

indicates a negative or non-selective AUC, whereas increasing pink to black color indicates 

increasing selective AUC values (more selective activity observed).
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Figure 4. Comparison of in vitro AEDs to in vivo human equivalent doses of the false negatives
The bioactivity of the in vitro DNT NAM data was transformed to AEDs using HTTK data 

and models following the principles of reverse dosimetry. The in vivo LEL in rodents was 

transformed to a human equivalent dose (HED) using allometric scaling. The chemicals 

include a subset of seven false negative chemicals and four true positive chemicals with 

available HTTK data. The x-axis units are in log10 mg/kg/day.
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Figure 5. The intersect of activity in early stage processes and network formation
Venn diagrams indicate the intersect between chemicals that were active in the early stage 

process and in the NFA. A chemical was considered active if it was a hit in at least one 

endpoint in the assay, including cytotoxicity. The early stage processes include: A) NOG 

(in rat cortical neurons), B) NOG (in human neural cells), or C) synaptogenesis and neurite 

maturation (in rat cortical cells).
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Figure 6. DNT NAM potency and ToxCast/Tox21 potency
(A) The 5th percentile AC50 value from ToxCast/Tox21 (gray circle), the minimum DNT 

cytotoxicity log10-AC50 (purple square), the cytotoxicity burst threshold (green triangle), 

and the interquartile range and median for the AC50 values in the DNT battery (boxplot). 

The number of positive burst assay endpoints over the total number of burst assay endpoints 

screened is provided to the right to indicate cytotoxicity hit-rate. The x-axis units are in 

log10-micromolar.

(B) The 5th percentile log10-AC50 value from ToxCast/Tox21 (gray circle), the selective 

(not including cytotoxicity hits) DNT log10-AC50 (purple square), the cytotoxicity burst 

threshold (green triangle), and the interquartile range and median for the log10-AC50 

values in the ToxCast/Tox21 assay endpoints (boxplot). The number of positive ToxCast/

Tox21 assay endpoints over the total number of ToxCast/Tox21 assay endpoints screened is 

provided to the right to indicate hit-rate. The x-axis units are in log10-micromolar.
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Table 1.
Overview of Assay Endpoints Grouped by Activity Type.

The assay technology type (HCI or MEA), activity type, assay short name, cell type, functional process and 

endpoints evaluated, and then the expected possible assay response direction are briefly summarized.

Assay
technology
type

Activity
Type

Assay short
name

Cell 
type

Overview of functional 
processes and endpoints 
evaluated

Direction

HCI

Proliferation MUNDY_HCI_hNP1_Pro Human 
hNP1

Proliferation based on BrdU 
labeling, the intensity of this 
response, and number of nuclei 
per well (cytotoxicity).

Down

Apoptosis MUNDY_HCI_hNP1 Human 
hNP1

Apoptosis based on 
luminescent signal produced 
by detection of caspase 3/7 
cleavage. The number of cells 
were measured based on the 
amount of ATP present in each 
well (cell viability).

Both

Neurite 
outgrowth, hN2

MUNDY_HCI_hN2_NOG Human 
hN2

Neurite outgrowth based on 
morphology of βII-tubulin 
labeled neurons. Measurements 
of neurite length, number of 
neurites, number of neurite 
branch points, and number of 
neurons per well (cytotoxicity).

Down

Neurite 
outgrowth, rat

MUNDY_HCI_Cortical_NOG Rat 
cortical

Synaptogenesis 
and neurite 
maturation

MUNDY_HCI_Cortical_Synap&Neur_Matur_ Rat 
cortical

Synaptogenesis based on 
morphology of MAP2 and 
synapsin labeled neurons. 
Measurements of neurite 
length, number of neurites, 
number of neurite branch 
points, the number of pre-
synaptic puncta in the cell body 
compartment or the neurite 
compartment, the total number 
of synapses, the number of 
neurite-associated puncta, and 
number of neurons pre well 
(cytotoxicity).

Down

MEA

Network 
formation 
activity: 
General

CCTE_Shafer_MEA_dev Rat 
cortical

General activity based on 
measurements: mean firing 
rate, burst rate, number of 
active electrodes, and number 
of bursting electrodes.

Both

Network 
formation 
activity: 
Bursting

CCTE_Shafer_MEA_dev Rat 
cortical

Bursting activity based 
on measurements: interspike 
interval within a burst, number 
of spikes within a burst, mean 
duration of a burst, and mean 
interval between bursts.

Both

Network 
formation 
activity: 
Network

CCTE_Shafer_MEA_dev Rat 
cortical

Network activity based on 
measurements: number of 
spikes in a network spike, 
number of electrodes active at 
peak of network spike, mean 
spike duration, SD of network 
spike duration, mean interspike 
interval for spikes in network 
spikes, number of spikes in 
network spike, percent of 
spikes in network spike (out of 
total spikes), mean correlation 
between all electrodes, and 

Both

Toxicol Sci. Author manuscript; available in PMC 2023 April 26.



E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Carstens et al. Page 31

Assay
technology
type

Activity
Type

Assay short
name

Cell 
type

Overview of functional 
processes and endpoints 
evaluated

Direction

mutual information between all 
electrodes.

MEA 
Cytotoxicity

CCTE_Shafer_MEA_dev Rat 
cortical

Two measurements of 
cytotoxicity: alamarBlue 
(‘_AB) which detects 
metabolically active cells and 
lactate dehydrogenase activity 
assay (‘_LDH’) which detects 
LDH released into the cell 
culture medium upon damage 
to the plasma membrane. Due 
to the half-life of LDH and the 
length of time between media 
changes, total cellular LDH 
was measured as an indicator 
of remaining cells at DIV12.

Down
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Table 2.
Key for interpreting patterns of selective response in Figure 3.

The column label from Figure 3 and corresponding assay endpoint name are provided.

Column
Label in
Figure 3

Assay endpoint name

A MUNDY_HCI_Cortical_NOG_BPCount_loss

B MUNDY_HCI_Cortical_NOG_NeuriteCount_loss

C MUNDY_HCI_Cortical_NOG_NeuriteLength_loss

D MUNDY_HCI_Cortical_Synap&Neur_Matur_BPCount_loss

E MUNDY_HCI_Cortical_Synap&Neur_Matur_CellBodySpotCount_loss

F MUNDY_HCI_Cortical_Synap&Neur_Matur_NeuriteCount_loss

G MUNDY_HCI_Cortical_Synap&Neur_Matur_NeuriteLength_loss

H MUNDY_HCI_Cortical_Synap&Neur_Matur_NeuriteSpotCountPerNeuriteLength_loss

I MUNDY_HCI_Cortical_Synap&Neur_Matur_NeuriteSpotCountPerNeuron_loss

J MUNDY_HCI_Cortical_Synap&Neur_Matur_SynapseCount_loss

K MUNDY_HCI_hN2_NOG_BPCount_loss

L MUNDY_HCI_hN2_NOG_NeuriteCount_loss

M MUNDY_HCI_hN2_NOG_NeuriteLength_loss

N MUNDY_HCI_hNP1_Pro_MeanAvgInten_loss

O MUNDY_HCI_hNP1_Pro_ResponderAvgInten_loss

P CCTE_Shafer_MEA_dev_active_electrodes_number_dn

Q CCTE_Shafer_MEA_dev_burst_duration_mean_dn

R CCTE_Shafer_MEA_dev_burst_rate_dn

S CCTE_Shafer_MEA_dev_bursting_electrodes_number_dn

T CCTE_Shafer_MEA_dev_correlation_coefficient_mean_dn

U CCTE_Shafer_MEA_dev_firing_rate_mean_dn

V CCTE_Shafer_MEA_dev_interburst_interval_mean_dn

W CCTE_Shafer_MEA_dev_mutual_information_norm_dn

X CCTE_Shafer_MEA_dev_network_spike_duration_std_dn

Y CCTE_Shafer_MEA_dev_network_spike_number_dn

Z CCTE_Shafer_MEA_dev_network_spike_peak_dn

A1 CCTE_Shafer_MEA_dev_per_burst_interspike_interval_dn

B1 CCTE_Shafer_MEA_dev_per_burst_spike_percent_dn

C1 CCTE_Shafer_MEA_dev_per_network_spike_interspike_interval_mean_dn

D1 CCTE_Shafer_MEA_dev_per_network_spike_spike_number_mean_dn

E1 CCTE_Shafer_MEA_dev_per_network_spike_spike_percent_dn

F1 CCTE_Shafer_MEA_dev_spike_duration_mean_dn
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