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Abstract

Colorectal cancer (CRC) is the fourth most common cancer type and is the second leading 

cause of cancer deaths annually in the United States. Conventional treatment options include 

postoperative (adjuvant) and preoperative (neoadjuvant) chemotherapy and radiotherapy. Although 

these treatment modalities have shown to decrease tumor burden, a major limitation to 

chemothearpy/radiotherapy is the high recurrence rate in patients. Immune-modulation strategies 

have emerged as a promising new therapeutic avenue to reduce this recurrence rate while 

minimizing undesirable systemic side effects. This review will focus specifically on the 

mechanisms of monoclonal antibodies: immune checkpoint inhibitors and cytokines, as well as 

current drugs approved by the Food and Drug Administration (FDA) and new clinical/pre-clinical 

trials. Finally, this review will investigate emerging methods used to monitor tumor response 

post-treatment.
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1. Introduction

Colorectal cancer (CRC) is the fourth most common cancer (by incidence) in the 

United States, accounting for 140,000 new cases and 50,000 deaths in 2018 [1]. Before 

advancements in treatment and cancer detection, patients with locally advanced CRC (high-

risk stage II and stage III tumors) and metastatic CRC (mCRC) were treated via surgery 

followed by postoperative (adjuvant) chemotherapy.

In both the neoadjuvant and adjuvant settings, the current standard-of-care chemotherapy 

regimen is FOLFOX, a combination of 5-fluorouracil (5-FU), leucovorin and oxaliplatin [2]. 
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FOLFOX, as an adjuvant therapy, is given in 12 cycles every two weeks through intravenous 

(IV) administration. Variations of this type of chemotherapy have been a fixture in CRC 

treatment since the 1960’s, and have been optimized since [3]. Although FOLFOX is the 

gold standard in treating mCRC, it is associated with myriad and sometimes debilitating 

systemic side effects (nausea, anemia, decrease in white blood cells, fatigue, etc.) [4].

In recent years, the addition of preoperative (neoadjuvant) chemotherapy for locally 

advanced CRC has become clinically accepted after success was demonstrated in esophageal 

[5] and gastric cancers [6], following a series of clinical studies by the Fluoropyrimidine, 

Oxaliplatin and Targeted-Receptor pre-Operative Therapy (FOxTROT) Collaborative Group 

[7]. The goals of neoadjuvant chemotherapy include achieving complete eradication 

of cancer cells or pathological complete response (pCR) prior to surgery, reducing 

intraoperative tumor cell shedding during surgery, and decreasing local recurrence rates [8]. 

In a feasibility phase trial by the FOxTROT Collaborative Group, 150 patients with locally 

advanced CRC were given a combination of chemotherapy drugs either in the neoadjuvant 

or adjuvant setting. Patients receiving neoadjuvant chemotherapy experienced significant 

tumor downstaging and regression [7].

Currently, in locally advanced colon cancer and mCRC, neoadjuvant chemotherapy 

is generally given to patients in 2–12 two-week cycles over 4–24 weeks [9]. After 

assessing tumor therapeutic response after 4–6 cycles (6–8 weeks after initiation) of 

neoadjuvant chemotherapy using techniques such as endorectal ultrasound [9], computed 

tomography (CT), positron emission tomography-computed tomography (PET-CT), or 

magnetic resonance imaging (MRI) (or a combination of these techniques), patients with 

locally advanced disease either receive additional neoadjuvant chemotherapy cycles or 

proceed to surgery [10].

Although there has been a steady reduction in CRC incidence and mortality since 

the 1970′s, primarily attributed to reduction in preventable risk factors, advances in 

early detection, [11] nationwide screening initiatives [1,12], and continued optimization 

of neoadjuvant and adjuvant chemotherapy regimens, current treatment standards and 

management of CRC remains problematic [8]. Although neoadjuvant therapy has shown 

significant tumor downstaging and regression, a low 5-year survival rate (∼10%) along 

with high recurrence rate (30–40%) is a concern to clinicans [13]. Therefore, researchers 

are exploring new therapeutic interventions to overcome these limitations. One broad-scale 

intervention that has gained clinical traction is immunotherapy.

Immunotherapy is an emerging technique to treat cancer by stimulating or enhancing 

a patient’s immune components to target and inhibit cancer cells, limiting the negative 

systemic effects associated with untargeted chemotherapy approaches [14]. Current 

clinically approved immunotherapy techniques for CRC treatment include monoclonal 

antibody therapy, adoptive cell transfer (ACT) therapy, cancer vaccines and cell therapy 

[13]. Among the many types of immunotherapy strategies, monoclonal antibody therapy has 

gained the most clinical traction for treating CRC in recent years [15]. This review discusses 

current CRC monoclonal antibody immunotherapy treatments, which can be divided into 

antibodies targeting either immune checkpoints or cytokines. Treatments discussed are either 
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approved by the U.S. Food and Drug Administration (FDA), in clinical trials in humans, 

or in pre-clinical trials. Finally, this review discusses emerging methods (optical and non-

optical) to monitor tumor response to immunotherapy treatments in CRC patients.

2. Immune checkpoints in colorectal cancer

Immune checkpoints are any set of ligand-mediated inhibitory pathways that maintain 

homeostasis of the immune system by regulating the duration and amplitude of immune 

responses [16]. Within these pathways, there are various types of cells that play a role in 

the regulation of the immune system (i.e. CD4, CD8, monocytes, natural killer (NK) cells 

and dendritic cells (DCs)). CD4 cells, a specific classification of T-cells, are responsible 

for immune system regulation, specifically the release of cytokines to increase the activity 

of other immune cells [17]. CD8 cells, also known as “killer cells”, suppress immune 

signaling during T cell activation [18]. Monocytes are types of white blood cells which 

can differentiate into macrophages and DCs [19]. When monocytes differentiate into 

macrophages, they can differentiate into one of two subtypes: M1 or M2. M1 macrophages 

produce pro-inflammatory cytokines (i.e. interleukin-1 (IL-1), IL-6, IL-12, tumor necrosis 

factor-alpha (TNF-α), etc.) that signals an immune response [19]. M2 macrophages produce 

polyamines (i.e. spermidine and spermine) that induce cell proliferation and extracellular 

matrix formation [19]. Natural killer cells (NK) are effector lymphocytes thatengages in 

interactions with other cell types (macrophages, T cells, etc.) to limit immune response 

[20]. DCs or antigen-presenting cells (APCs) are responsible for the activation of adaptive 

immune responses by presenting antigens to other cells such as T cells. Overall, the 

functions of these cells play a role in how the immune system is activated to decrease 

tumor burden.

Several immune checkpoints have been used as immunotherapeutic targets in various cancer 

types such as melanoma, kidney, bladder and non-small cell lung cancer as well as CRC, 

including cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed cell death protein-1 

(PD-1), and programmed cell death ligand-1 (PD-L1).

2.1. CTLA4

CTLA4, and its homolog, CD28, are cell surface receptors found on CD4+ cells (helper 

T-cells) and CD8+ cells (cytotoxic T-cells). The ligands for CTLA4 and CD28 are the B7 

proteins (B7–1 (CD80) and B7–2 (CD86)), which are produced by APCs. B7 ligands are 

upregulated and presented on the cell surface by APCs when the APCs encounter and 

acquire non-self-antigens [21]. When T-cells detect B7, along with major histocompatibility 

complex loaded with cognate peptide, competitive binding ensues between CD28/B7 and 

CTLA4/B7 to maintain T-cell homeostasis. CD28/B7 binding initiates immune stimulation 

by increasing T-cell proliferation whereas CTLA4/B7 binding initiates immunosuppression 

by competitively reducing signaling of the CD28/ B7 complex (Fig. 1) [22]. Then, CTLA4 

reduces the probability of future CD28/B7 binding by removing B7 proteins from the APC 

surface via trans-endocytosis [23]. Thus, CTLA4/B7 interaction is involved in immune 

tolerance and immunosuppression, a hallmark of cancer [24]. Monoclonal antibodies which 
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target and block the CTLA4 immune checkpoint pathway results in increased CD28/B7-

dependent clonal expansion of T-cells [25].

2.2. PD-1

PD-1, a well-studied immune checkpoint, has a primary function to suppress the immune 

response to regulate tolerance and autoimmunity [26–28]. PD-1 is a cell surface receptor 

found on CD4+ cells, CD8+ cells, B-cells, NK cells, myeloid-derived cells, and macrophages 

[27]. The primary function of PD-1 is to suppress the immune response (Fig. 1) [26]. 

The ligands for PD-1 are the B7 proteins, B7-H1 (PD-L1) and B7-DC (PD-L2). PD-L2 is 

produced by APCs. PD-L1 is expressed by T-cells, B-cells, DCs, and macrophages and is 

upregulated by many pro-tumor cytokines such as IL-4, IL-10 VEGF, and TNF-α produced 

by infiltrating immune cells [26,29]. Additionally, PD-L1 is directly expressed by many 

types of cancer cell, including CRC and is associated with poor prognosis [30]. PD-1/PD-L1 

binding results in T-cell apoptosis and reduced IL-2 (an anti-tumor cytokine) production 

[27]. Although the induction of T-cell apoptosis is problematic in tumors, it is essential for 

some T cells to survive apoptotic death in order to become memory T cells [31]. PD-1 

and PD-L1 are active targets in CRC immunotherapy research with the goal of introducing 

monoclonal antibodies to block PD-1/PD-L1 binding and improve the anti-tumor immune 

response.

3. Immune checkpoint inhibition immunotherapy

3.1. FDA-approved drugs

Nivolumab (Opdivo®) is an immune checkpoint inhibitor that binds to PD-1 receptors, 

blocking PD-1 activation and resulting in T-cell activation and immune response. The first 

uses of Nivolumab was a first line treatment for metastatic melanoma as well as bladder 

cancer and brain metastases. Nivolumab was granted accelerated approval by the FDA 

in 2017 following an ongoing, multicenter Phase II trial (NCT02060188) [32], funded 

by Bristol-Myers Squibb, that indicated Nivolumab was effective for CRC patients with 

deficient DNA mismatch repair (dMMR)/microsatellite instability high (MSI-H) disease 

[33]. dMMR/MSI-H CRC makes up approximately 12–15% of cases and is phenotypically 

characterized by a high quantity of tumor infiltrating lymphocytes (TILs), prevalence in 

the right side of the colon (proximal colon), and poor differentiation [33]. The approval 

of Nivolumab was particularly important since standard FOLFOX-based chemotherapy has 

limited benefit for dMMR/MSI-H CRC patients as shown in five randomized clinical trials 

evaluating 5-FU vs surgical treatment [33]. There are currently 39 ongoing clinical trials 

further exploring Nivolumab as either stand alone or combinatorial treatment (Ipilimumab, 

Azacytidine, etc.) for CRC.

Pembrolizumab (Keytruda®) is an IgG4-k monoclonal antibody that inhibits PD-1 binding 

with PD-L1 and PD-L2. This results in an upregulated immune response against CRC 

cells [30]. Pembrolizumab was granted accelerated approval by the FDA in 2017 as a 

second-line treatment for either unresectable, dMMR, or MSI-H CRC following multiple 

Phase II and III clinical trials [34,35]. There are currently 52 ongoing clinical trials further 
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exploring Pembrolizumab as either stand alone or combinatorial treatment with standard 

chemotherapy for CRC.

3.2. Clinical studies

Table 1 shows a current list of ongoing clinical trials that use immune checkpoint inhibitors.

3.3. Pre-clinical studies

Table 2 shows a list of ongoing pre-clinical trials that use immune checkpoint inhibitors.

3.4. Conclusion

Immune checkpoint inhibition is a promising approach for CRC treatment [42], with 

several FDA-approved drugs already on the market and many more in clinical trials. 

Although immune checkpoint inhibition has shown success in treating CRC, the biggest 

challenge for investigators is identifying which patients may or not respond before treatment 

initiation [42] and overcoming tumor cell resistance to this immunotherapy [16]. Jenkins 

et al. provides a comprehensive review of tumor cell resistance to immune checkpoint 

inhibition [42]. This heterogeneous patient response to immune checkpoint inhibition is 

a strikingly similar problem to identifying responders vs. non-responders for standard first-

line neoadjuvant chemotherapy in CRC [43]. The current state-of-the-art is to biopsy the 

tumor during colonoscopy and determine expression levels of markers such as a PD-L1 

using immunohistochemistry (IHC). Patients overexpressing the target biomarker, such as 

PD-LI, are considered the best candidates for that immunotherapy [44]. In the future, 

investigators are looking into identifying other biomarkers and personalized gene-expression 

signatures to identify candidates most likely to respond to immune checkpoint inhibition 

[43,45].

4. Cytokines in colorectal cancer

Cytokines are small (∼5–20 kDa) cell-signaling proteins, produced by immune cells, that are 

involved in myriad pathways in CRC. [46] Chemokines, members of a family of cytokines 

able to induce cellular chemotaxis, are also involved in CRC pathways such as CCL2, IL-6, 

and other growth factor and their corresponding receptor pathways [47].

Interleukins (i.e. IL-6), are naturally occurring proteins that regulate communication 

between cells. Unlike most cytokines, interleukins are not stored within a cell, but it is 

secreted rapidly in response to stimuli. After being produced, interleukins travel to its target 

cells and binds to a receptor molecule on the cell surface, releasing a cascade of signals that 

controls a cell’s behavior.

Growth factors are signaling molecules between cells that are capable of stimulating cell 

growth, proliferation, healing and cell differentiation. Examples of growth factors include 

vascular endothelial growth factors (VEGFs) and epidermal growth factors (EGFs), which 

will be discussed in the following sections.

Thus, cytokines and chemokines, and their receptors, make attractive targets for CRC 

therapy, although pre-clinical and clinical research currently lags other discussed CRC 
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immunotherapy techniques [48]. Development of cytokine-targeted immunotherapy can 

potentially be used as stand-alone treatment or, more likely, combinatorial treatment with 

either chemotherapy, radiotherapy, or other immunotherapy techniques to normalize the 

CRC tumor microenvironment (TME) [49].

5. Cytokine-targeted immunotherapy

5.1. FDA-approved drugs

All current FDA-approved cytokine-targeted immunotherapy drugs for melanoma, renal 

cell carcinoma, as well as CRC target either vascular endothelial growth factor receptors 

(VEGFRs) or epidermal growth factor receptors (EGFRs), depicted in Fig. 2. VEGFs 

are signaling proteins responsible for the simulation of blood vessel formation, while 

EGFRs are transmembrane proteins responsible for cell differentiation and proliferation 

upon activation. Cytokine-targeted immunotherapy drugs targeting VEGFRs include 

bevacizumab, aflibercept, and regorafenib. Drugs targeting EGFRs include cetuximab and 

panitumumab. All five FDA-approved drugs primarily benefit mCRC patients, although 

many clinical trials are ongoing for other CRC subtypes in both neoadjuvant and adjuvant 

settings.

5.1.1. Anti-vascular endothelial growth factors (anti-VEGFs)—The FDA 

approved bevacizumab as first line treatment for mCRC in 2004 [50] and in 2006 for 

second-line treatment of mCRC in combination with FOLFOX4 [51], making it the first 

anti-VEGF drug for CRC. A phase III clinical trial by Eastern Cooperative Oncology 

Group (ECOG) tested bevacizumab’s efficacy and safety in combination with FOLFOX4 

[52]. Patients treated with the combination therapy saw a longer median overall survival of 

12.9 months with a 22.2% response rate compared to an overall survival of 10.8 months 

and an 8.6% response rate for patients receiving standalone FOLFOX4 chemotherapy [53]. 

Additional studies have confirmed the benefits of bevacizumab in treating mCRC [54,55]. 

In three phase III clinical trials, the addition of bevacizumab to a chemotherapy regime 

was well-tolerated and improved progression-free survival [54]. However, even though the 

findings from these clinical studies have been supported by a large clinical practice-based 

study (ATHENA), the efficacy of bevacizumab in terms of overall survival showed no 

significant benefit [54]. At an average cost of $100,000 a year for treatment and an 

average increase in overall survival of an average of two-four months, many clinicians have 

restricted the use bevacizumab. The FDA reversed the fast-track approval for bevacizumab in 

2010, leaving the future of this agent in limbo.

Six years later in 2012, aflibercept, an antiangiogenic VEGF inhibitor, was approved by the 

FDA as a second-line treatment for mCRC in combination with the FOLFIRI chemotherapy 

regimen (leucovorin calcium, fluorouracil, and irinotecan hydrochloride) [56]. Aflibercept 

(Zaltrap®/Eylea®) is meant to be used for mCRC patients who failed to respond to 

previous FOLFOX-based chemotherapy [57]. In a phase III clinical trial (NCT00561470), 

the addition of aflibercept to FOLFIRI improved overall median survival from 12.1 to 13.5 

months and progression-free survival from 4.7 to 6.9 months for stage IV mCRC patients 

[58]. In an update to this same phase III clinical trial, published in 2014, investigators found 
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that overall survival increased by 0.8 months for mCRC patients with no prior treatment and 

1.5 months for patients with no prior treatment [59].

5.1.2. Anti-epidermal growth factor receptors (anti-EGFRs)—EGFRs are cellular 

receptor located on a cell’s surface that activates tyrosine kinase that phosphorylates 

intracellular substrates responsible for the genetic transcription for cell proliferation, 

angiogenesis, and invasion (Fig. 2).

In 2004, the FDA approved cetuximab to treat advanced CRC patients who have failed 

standard chemotherapy [62–65]. Cetuximab, also approved for use in breast cancer, targets 

the ligand-binding domain of EGFR, as a mutation (i.e. Kristen rat sarcoma (KRAS) gene 

mutation) in this pathway results in an increase in uncontrolled cell growth. A clinical 

trial conducted by the North Central Cancer Treatment Group (NCCTG) N0147 compared 

the use of FOLFIRI with and without cetuximab in stage III CRC with both wild-type 

KRAS and mutant KRAS. In the clinical trial, a combination treatment with cetuximab plus 

FOLFIRI showed that 5-year disease-free survival, overall survival and time to recurrence in 

patients with wild-type KRAS improved from 64% to 83% (p = 0.10), 76% to 87% (p-0.21), 

and 67% to 86% (p = 0.09), respectively after 10 to 11 months [66]. Based in part on this 

study, as well as the CEGOG trial, the FDA approved cetuximab in 2012 as a first-line 

treatment in KRAS−/EGFR+ mCRC in combination with FOLFIRI.

In 2017, panitumumab, another EGFR inhibitor, was granted FDA approval to treat mCRC 

patients with wild-type KRAS as a first-line treatment in combination with FOLFOX 

[69,70]. A study by Leone et al. used panitumumab in combination with capecitabine plus 

oxaliplatin (XELOX) to study its efficacy in patients with liver only mCRC. Out of the 

forty-six patients, the objective response rate was 54% with two patients with complete 

responses and 23 with a partial response. Overall, the combination of panitumumab with 

XELOX (P-XELOX) yields a high response for patients with liver only mCRC [71].

Like many other clinically approved drugs, anti-VEGFs and anti-EGFRs also have their 

limitations in mCRC and other cancer types. Many clinicians and researchers have listed 

a number of explanations for the generally limited efficacy for these inhibitors. One 

explanation is that the formation of tumor blood vessels and how they are maintained is 

not fully understood113. After treatment with an anti-VEGF therapy, it has been shown 

that residual hypoxic tumor cells are simulated to increase production in VEGF-A which 

can inhibit the anti-VEGF therapy [72]. Also, in many pre-clinical studies, many protocols 

induce mice with tumor xenografts and immediately start treatment after implantation [72]. 

This treatment pattern does not follow the clinical treatment pathway in tumors that have 

already established tumor vasculature [72]. In conclusion, the limitations of anti-VEGF and 

anti-EGFR therapies have pushed researchers to create new clinical trials and pre-clinical 

trials to use other cytokine pathways for mCRC treatment.

5.2. Clinical studies

Table 3 shows a list of ongoing clinical trials using cytokine inhibitors.
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5.3. Pre-clinical studies

The effect of modulating cytokines and chemokines in the human CRC TME is mostly 

hypothesized and has not yet been rigorously tested in clinical trials. Most CRC cytokine 

modulation research, besides the aforementioned interleukins, exists in the pre-clinical and 

basic biology realms.

Two chemokine receptors, C-C chemokine receptor type 1 (CCR1) and chemokine C-C 

motif receptor-like 2 (CCRL2), have been recently implicated in aiding in liver metastasis 

[48], the primary cause of death for CRC patients [73]. Ligands for CCR1 and CCRL2 are 

the chemokines CCL3, CCL5, CCL7, and CCL23, and are suggested as potential targets 

for cytokine-targeted immunotherapy [48]. CCL2 and CCL24 were also found to be highly 

elevated (> 100-fold) in CRC liver metastases compared to healthy adjacent liver tissue, 

implying that these chemokines could also be targets for cytokine-targeted immunotherapy 

[74].

Chemokine neutralization, especially of CCL2, has gained traction in both CRC and 

non-CRC studies of mice [75]. CRC, independent of subtype [76,77], recruits circulating 

monocytes via chemotaxis to the TME primarily through the release of CCL2, also known 

as monocyte chemoattractant protein-1 (MCP1), a highly elevated chemokine in CRC 

[68–71]. In the TME, monocytes differentiate into TAMs, partially as a result of CCL2. 

TAMs, the most abundant immune cell in the TME, also have the most substantial and 

pervasive effect of any immune cell in the TME [72–,73,74,75]. In CRC, TAMs have 

been shown to have both anti-tumor and pro-tumor functions, depending on whether they 

are polarized more towards an M1 (classical) or M2 (alternative) phenotype and their 

physical location within the tumor [76]. Pro-tumor functions of alternatively activated 

M2-polarized TAMs include tumor growth, angiogenesis, immunosuppression, and matrix 

remodeling [77]. Additionally, CCL2 binding to its receptor, CCR2, on endothelial cells 

increases vascular permeability and metastatic risk [78]. Thus, targeting CCL2 to reduce 

M2-polarized, pro-tumor TAMs is an attractive ongoing cytokine-targeted immunotherapy 

strategy in pre-clinical settings. In mouse models, CCL2 blockade has resulted in reduced 

neovascularization and tumor size of orthotopic colon tumors in Balb/c mice, suggesting 

that CCL2 may be a promising target for treating colitis-associated colon cancer [79]. 

Additionally, anti-CCL2 immunotherapy prolonged survival in C57BL/6 mice with GL261 

glioma [80], and reduced TAM infiltration in FVB/N mice with MCF-7 breast cancer [81]. 

However, few cytokine-targeted immunotherapy techniques have been tested for efficacy in 

human CRC, although oral N-acetyl-L-cysteine (NAC) co-administered with mesalamine, 

an anti-inflammatory, has benefitted ulcerative colitis patients, attributed in part to the 

down-regulation of CCL2 and IL-8 [82]. In summary, many investigators now believe that 

CCL2-neutralizing immunotherapy will play an important role in early-stage CRC treatment 

in future clinical studies [83].

Besides CCL2, other cytokines and chemokines have been explored. For example, blocking 

the pro-angiogenic and pro-tumor chemokine ligand 1 (CXCL1), whose gene is also known 

as growth-regulated oncogene-α, using an anti-CXCL1 neutralizing antibody inhibited 

tumor growth and angiogenesis in a mouse xenograft model of human CRC [84]. Blockade 

of IL-1β reduced tumor formation in a mouse model of colitis-associated CRC [85]. TNF 
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blockade reduced CRC carcinogenesis in an AOM/DSS (colitis-induced) mouse model [86]. 

On the other hand, the addition of IL-15, which has anti-tumor effects in CRC, was shown 

to increase the therapeutic effects of anti-PD-L1 and anti-CTLA4 treatment in a CT26 

colon carcinoma mouse model [87]. The overarching current hypothesis is that cytokine-

targeted immunotherapy, especially the blockade of pro-tumor cytokines in CRC, may 

enhance tumor therapeutic response in CRC tumors treated with chemotherapy, radiation, or 

approved checkpoint inhibitors.

5.4. Conclusion

Cytokine-targeted immunotherapy research lags other discussed CRC immunotherapy 

methods, although further investigation is justified. The biggest challenge facing this type 

of therapy is determining which pharmacokinetic and pharmacodynamic variables are 

important navigating cytokine pathways while decreasing systemic toxicity in CRC patients. 

Additionally, the FDA approved drugs, cetuximab and panitumumab are ineffective in 

patients with RAS mutations (∼23% of stage IV CRC patients). Overall, cytokine therapies 

will likely be most effective in combination with other immunotherapies or chemo- and/or 

radiotherapy.

6. Assessing tumor therapeutic response

In addition to new CRC therapies being investigated, there is significant interest in the 

development of clinically-translatable methods to rapidly assess whether a therapy regimen 

is effective on a per patient basis [87–90]. Rapid assessment of therapy can prevent 

unnecessary chemotherapy in both responders and non-responders [91]. Currently, tumors 

are assessed based on the widely accepted Response Evaluation Criteria in Solid Tumors 

(RECIST) criteria, which grades tumors as, from most desirable to least desirable, complete 

responders, partial responders, stable disease, or progressive disease [92–94]. The overall 

goal of assessing tumor therapeutic response is adjusting treatment if necessary, avoiding 

surgery and reducing morbidity [95]. The standards for monitoring tumor therapeutic 

response to neoadjuvant therapy (chemotherapy, radiation, and/or immunotherapy) using 

RECIST are digital rectal examination (DRE), rigid proctoscopy, biopsy, carcinoembryonic 

antigen (CEA) level, and a radiological technique such as CT [96], PET-CT, MRI, or 

Diffusion-Weighted (DW)-MRI [97]. However, following neoadjuvant treatment initiation, 

assessing tumor response does not occur for approximately two months [10]. Additionally, 

for patients showing evidence of partial or complete response after these two months of 

neoadjuvant treatment, they must wait an additional 1–2 months for follow-up as part of the 

“Wait and Watch Protocol.” Finally, studies have shown that current radiological techniques 

are insufficient to identify responders with positive predictive values less than 50% [93]. 

Several research groups are investigating emerging optical and imaging methods to rapidly 

assess therapeutic response on a scale of days or weeks, rather than months.

Some advantages to using optical methods to monitor tumor response include non-ionizing 

radiation, better spatial resolution, sensitivity to biological molecules, etc. Since the CRC 

screening, diagnostic, and, in some cases, therapeutic standard (in early CRC stages only) 

is colonoscopy, investigators are aiming to create minimally-invasive endoscopy-compatible 
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techniques. Techniques currently being evaluated, mostly in pre-clinical laboratory settings, 

for use in CRC include nonlinear optical imaging, fluorescence-based endoscopy, and 

diffuse reflectance spectroscopy.

6.1. Fluorescence-based endoscopy

Fluorescence-based endoscopy integrates colonoscopy with optical imaging. This technique 

is a “robust method for early detection of CRC owing to its intrinsic coupling of detection 

with the underlying molecular-level pathology of the disease”. With the use of molecular 

imaging, this type of optical system can detect variations in tissues unlike other system that 

only detect changes in structure [94].

In a study by Mitsunaga et al., they developed a “rapid fluorescent detection method” 

using a “topically applied enzymatically activatable probe (gGlu-HMRG)” to detect 

the γ-glutamyltranspeptidase (GGT) enzyme during a colonoscopy. Expression of GGT 

was higher in mouse models with CRC than those without. Five minutes after 

topical administration, gGlu-HMRG fluorescent lesions were detected using fluorescent 

microscopy. Based on these results, the use of gGlu-HMRG can improve detection of 

colitis-associated colon cancer (CAC) with a “higher target to background ratio” compared 

to conventional white light colonoscopy [98].

In a human study by Watanabe et al., used the PINPOINT® Endoscopic Fluorescence 

Imaging System intraoperatively to identify tumor sites using indocyanine green during 

laparoscopic surgery. Using this system, surgeons saw a tumor visibility rate of 93.8%. 

No adverse effects were observed during these procedures. As a result, this study provided 

evidence that the PINPOINT® system was able to identify colorectal tumors without adverse 

effects [99].

6.2. Diffuse reflectance spectroscopy

Diffuse reflectance spectroscopy (DRS) is a non-invasive or minimally-invasive technique 

that uses a small probe to deliver broadband light to tissue and collect the diffusely reflected 

light with a spectrometer [97]. DRS can provide relevant clinical information such as total 

hemoglobin content, tissue oxygen saturation, oxy- and deoxyhemoglobin, lipid and water 

content, and tissue scattering properties, and can thus be applied to monitoring tumor 

response to therapy [97,99].

DRS has recently been used in an ex vivo study of resected human colon tissue to 

differentiate tissue type with an overall accuracy of 95%. The investigators hope to 

eventually apply this technology in an in vivo setting for real-time guidance during CRC 

surgery. DRS has also been integrated into a fiber-optic biopsy needle to assess functional 

tissue properties in an in vivo study of lung cancer patients. Greening et al. used their 

DRS system to monitor tumor response to chemotherapy in a murine subcutaneous colonic 

tumor model. The investigators are currently studying short-term vs long-term data points 

after various treatment modalities and believe this technology can someday help optimize 

personalized cancer treatments.146
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One of the primary limitations with optical methods, such as DRS, is relatively poor 

sampling depth into highly scattering tissues, especially when compared to methods such 

as MRI. However, DRS sampling depth is greater than 0.5 mm at 630 nm at source-detector 

separations (< 1 mm) compatible with the biopsy port of standard colonoscop (1.5 mm) [97]. 

This indicates that data obtained via DRS endoscopy could yield data from a similar region 

of the tumor as can be obtained via endoscopic biopsy. Although the entire tumor volume 

may not be accessible, this may provide enough functional information to guide clinical 

decision-making with respect to therapeutic monitoring.

As of yet, DRS applied to CRC is in its infancy; it has only been applied to monitor 

tumor therapeutic response to chemotherapy in mouse models, although investigators 

believe DRS technology can be used to quantify volumetric tumor perfusion in response 

to immunotherapies, which can eventually help guide clinicians in identifying potential 

responders and non-responders during early therapy [97].

7. Conclusion

Colorectal cancer is still one of the most prominent cancer types within the United States. 

Although current treatment standards (neoadjuvant therapy, surgery, and adjuvant therapy) 

treat a wide spectrum of cancer patients, recurrence, patient heterogeneity, toxicity, and poor 

survival rate remain problematic. Therefore, research into antibody-based immunotherapies 

in both clinical and pre-clinical settings is highly active. Clinical research into immune 

checkpoint inhibitors is more mature than cytokine-targeted immunotherapy. At present, 

cytokine-targeted immunotherapy is limited to anti-VEGF, anti-VEGFR, and anti-EGFR 

therapies for mCRC patients, although there is a growing interest in interleukin and 

chemokine therapies in both pre-clinical and early clinical trials. Additionally, monitoring 

CRC tumor response is a major problem, and investigators are continuing to engineer 

optical methods to improve the state-of-the-art. One of the biggest emerging challenges for 

immunotherapy in CRC is elucidating the genomic biomarkers for identifying patients likely 

to be responders or non-responders for certain immunotherapy regimens and monitoring 

response in real-time.
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Fig. 1. 
Schematic representation of CTLA-4 and PD-1/PD-L1 pathway through T-cell deactivation 

in CRC, along with T-cell activation through antibody binding. T-cell deactivation begins 

when the T-cell receptor (TCR) binds to the Major Histocompatibility Complex II (MHCII) 

and binding of PD1 and PDL1/2 and CTLA4 and CD80/86. When anti-CTLA4, anti-PDL1 

and anti-PD1 are present, the antibodies bind to their respective ligands, inducing T cell 

activation.
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Fig. 2. 
A). Through the activation of the A) VEGF and B) EGF pathway, intercellular pathways 

are also activated. These intercellular signaling pathways control cell survival, migration and 

proliferation, affecting the production of blood vessels (angiogenesis). Binding of an anti-

VEGF/EGF to a VEGF/EGF receptor, inhibits receptor dimerization, preventing activation.
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