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Healthcare systems worldwide have been struggling since the beginning of the COVID-19 pandemic.
The early diagnosis of this unprecedented infection has become their ultimate objective. Detecting
positive patients from chest X-ray images is a quick and efficient solution for overloaded hospitals.
Many studies based on deep learning (DL) techniques have shown high performance in classifying
COVID-19 chest X-ray images. However, most of these studies suffer from a class imbalance problem
mainly due to the limited number of COVID-19 samples. Such a problem may significantly reduce
the efficiency of DL classifiers. In this work, we aim to build an accurate model that assists clinicians
in the early diagnosis of COVID-19 using balanced data. To this end, we trained six state-of-the-art
convolutional neural networks (CNNs) via transfer learning (TL) on three different COVID-19 datasets.
The models were developed to perform a multi-classification task that distinguishes between COVID-
19, normal, and viral pneumonia cases. To address the class imbalance issue, we first investigated the
Weighted Categorical Loss (WCL) and then the Synthetic Minority Oversampling Technique (SMOTE)
on each dataset separately. After a comparative study of the obtained results, we selected the model
that achieved high classification results in terms of accuracy, sensitivity, specificity, precision, F1 score,
and AUC compared to other recent works. DenseNet201 and VGG-19 claimed the best scores. With an
accuracy of 98.87%, an F1_Score of 98.21%, a sensitivity of 98.86%, a specificity of 99.43%, a precision
of 100%, and an AUC of 99.15%, the WCL combined with CheXNet outperformed the other examined
models.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, coronavirus is the most dreadful disease world-
ide. This pandemic started in Wuhan, China, in December 2019.
ince then, it has been rapidly spreading all over the globe. Re-
ently, the World Health Organization (WHO) reported that there
ad been 119,960,700 confirmed coronavirus cases worldwide,
ncluding 2,656,822 deaths in less than a year [1]. It is shown
n Fig. 1 that these numbers are exponentially growing every
ay, making the world’s first purpose is to reduce the number of
ontaminated individuals. Therefore, many strategies have been
aken worldwide, including isolating infected patients, curfew,
nd lockdown. The International Committee for the Taxonomy
f Viruses (ICTV) named the virus responsible for this disease
ARS-CoV-2 [2]. COVID-19 is the name of the illness caused by
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SARS-CoV-2 [3]. This virus possesses powerful pathogenicity and
transmissibility. It mainly attacks the human respiratory system
and brings on what clinicians call a respiratory tract infection [4].
For the most part, coronavirus spreads through person-to-person
contact. The contamination starts with droplets from an infected
person (cough, sneeze, or breath) ejected into the air or a surface
that a healthy individual could breathe or touch, then touches his
mouth, nose, or eyes [5].

Thus, the virus can reach the respiratory system. The spectrum
of COVID-19 ranges from asymptomatic to severe, often fatal
infection. Severe infections occur more frequently in males and
patients with chronic diseases such as diabetes, hypertension,
heart disease, and immunocompromised states [6].

This pandemic and the resulting lockdown have had a detri-
mental impact on several vital domains such as education, en-
tertainment, the economy, and especially the healthcare sector,
which is at the epicenter of the COVID-19 pandemic [4]. Indeed,
healthcare systems across the globe have undergone unprece-
dented crises. It is mainly due to unpredictable and massive
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Fig. 1. New confirmed deaths worldwide were caused by COVID-19 in March 2021 [1].
health challenges, including hospitals’ overloading with COVID-
19 patients. Therefore, the urgent mobilization of resources was
required. Unfortunately, these systems were not designed to
manage such a critical situation. The high medical expenses, the
deficiency of protective equipment, and the shortages of ICU beds
and ventilators highlighted the defects in the delivery of patient
care. Furthermore, medical staff contamination risk is one of the
significant vulnerabilities of healthcare systems worldwide. Given
that most healthcare workers have to work on-site, many proce-
dures have been employed to protect them, including the early
deployment of viral testing for asymptomatic and/or frontline
healthcare staff [7]. The early detection and isolation of infected
people have become the ultimate solutions to the issues above.

The diagnosis of COVID-19 disease is often performed us-
ing a Reverse Transcription Polymerase chain reaction (RT-PCR)
approach that consists of taking respiratory specimens for test-
ing [8]. Despite the widespread use of the RT-PCR test for the
clinical screening of COVID-19 patients, this technique is reported
as complicated, time-consuming, and requires human interven-
tion with only 63% accuracy [8]. Furthermore, the PCR machine
must be installed in a specialized biosafety lab that may cost 15
thousand to 90 thousand USD and the RT-PCR kit costs between
120 and 130 USD [9]. Even high-income countries consider this
tool too expensive [10]. Moreover, the shortage of these test-
ing kits is causing a significant delay in detecting contaminated
patients, making the situation more critical.

Medical imaging techniques such as Computed Tomography
(CT) and Chest X-ray (CXR) are also used for COVID-19 diagno-
sis [11]. Indeed, CT has proven to be more sensitive, significantly
faster, and cheaper than RTPCR in diagnosing COVID19 [12,13].
However, this imaging modality is not recommended in regions
of low disease spreading because of the significant rate of false
positives [14]. Moreover, CT is often available only in large med-
ical centers and is still in short supply in many countries. In
addition, performing a CT scan for a patient with mild symptoms
is unnecessary since patches can be detected even if the patient
is asymptomatic [15]. In this case, CXR would be the optimal
method for diagnosing COVID-19. Indeed, plain film chest x-
rays are omnipresent globally, cheaper and with radiation doses
30 to 70 times lower than CT scans [16]. Thus, they are com-
monly used as the first screening modality for COVID-19. The
American College of Radiology confirms that, for COVID-19, CXR
is portable and easy to clean compared to CT [17]. Therefore,
2

although chest CXR has lower sensitivity than chest CT [18], it is
the typical imaging modality employed for the early screening of
suspected cases [19]. Nevertheless, due to the similarity between
the CXR imaging features of COVID-19 and other viral pneumonia,
CXR represents a wide inter-observer variability. In the current
circumstances, radiologists are under increasing work pressure,
making their tasks more and more difficult.

Artificial Intelligence (AI) has recently shown the potential
to improve medical imaging abilities, including accurate anal-
ysis, higher automation, and enhanced productivity [20]. Using
AI, the research community has made a great effort to develop
computer-aided diagnosis (CAD) systems to assist clinicians in
their mission. Indeed, the second opinion of the CAD system can
help increase the diagnosis’s accuracy, reduce inter and intra-
observer variability, and avoid unnecessary procedures. Devel-
oping a CAD system can be challenging depending on the study
stage [21]. Most research in this field has followed the traditional
machine learning pipeline (ML). This pipeline requires a high
level of application-specific expertise, especially for extracting
and selecting the appropriate features from the images. Since
2012, Deep Learning (DL) based on Convolution Neural Networks
(CNNs) has become an outstanding technique in several computer
vision problems [22,23]. The medical imaging community has
adopted this technique for diagnosing or segmenting organs and
forms in medical images [23,24]. Many researchers investigating
deep learning for medical diagnosis have achieved ‘‘near’’ human
expert diagnosis performance [25].

In contrast with machine learning, CNNs do not need feature
engineering. They automatically learn an appropriate image rep-
resentation. A CNN has a unique architecture biologically inspired
by the Artificial Neural Network (ANN). It has layers arranged in a
hierarchical structure and is specially designed for learning visual
features [26]. Many CNN-based systems are developed to auto-
matically diagnose COVID-19 using both CT and X-ray imaging
modalities [27]. Some are designed based on a pre-trained model
with transfer learning [28,29], and a few others are built using
customized networks [30–32]. Most existing works suffer from a
class imbalance, a common problem in deep learning-based clas-
sifiers, particularly in medical diagnostics [33,34]. Class imbalance
occurs when some classes have significantly more samples in
the training dataset than others. It has been proven that class
imbalance may have a negative impact on training a CNN model.
Indeed, it can influence the convergence during the training step
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s well as the model generalization on the test set. It results in a
odel with poor predictive performance, specifically for the mi-
ority class [35]. There are two main categories of class imbalance
olutions [36]. The first category is data-level solutions in which
change is made in the class distribution of the dataset itself, ei-
her by oversampling or undersampling the training dataset. The
versampling techniques are widely employed in deep learning
nd have been shown to be reliable. Random minority oversam-
ling is the primary form of oversampling. It merely replicates
andomly chosen samples from minority classes. It has been
emonstrated to be efficient, although it can result in overfitting
roblems [35,37]. SMOTE [37] is a more sophisticated oversam-
ling technique that seeks to resolve this problem. It generates
ew synthetic samples by interpolating nearby data. The second
ategory is classifier-level solutions. These solutions operate on
he classification algorithm (model) while keeping the dataset un-
hanged. For example, some methods can alter the previous class
robabilities [38]. Others add weights to the misclassification of
amples from different classes [38]. Adding sample weights to
he loss function is a straightforward technique to handle class
mbalance. The idea is to weigh the loss calculated for different
amples differently based on whether they are associated with
he minority or the majority classes. A higher weight is assigned
o the loss computed by the samples of minor classes [39]. So-
utions from both categories can be combined to address the
lass imbalance problem [35]. Recently, Generative Adversarial
etworks(GANs) [40–42] have been demonstrated to be a pow-
rful technique to rebalance datasets [43] by generating artificial
amples. However, GANs are fairly challenging to train and have
igh computational resources. The second solution involves al-
ering the classification algorithm (model) while maintaining the
ataset. Only a few studies on the detection of COVID-19 from
-ray images addressed the issue of class imbalance [40–42].
In this work, our main contributions are as follows:

• Our objective is to develop an accurate deep learning model
trained on a balanced dataset that assists radiologists in the
early diagnosis of COVID-19 cases.

• To this end, we trained six popular CNNs, including Dense-
Net201, CheXNet, MobileNetV2, ResNet152, VGG19, and
Xception, via transfer learning (TL) on three different COVID-
19 datasets. The models were developed to perform a multi-
classification task that distinguishes between COVID-19,
normal (no infection), and viral pneumonia cases.

• To address the class imbalance issue, we first investigated
the Weighted Categorical Loss (WCL) [40] and then the
Synthetic Minority Oversampling Technique (SMOTE) [37]
on each dataset separately.

• After testing the developed models, we studied the out-
comes of different evaluation criteria. This step aims to find
the best model for the early detection of COVID-19 from CXR
images.

• After conducting an experimental comparison with other
works, we noticed that the use of WCL and SMOTE to bal-
ance the datasets provided models with prominent results
compared to the models that were trained with imbalanced
data.

he rest of this paper is organized as follows. Section 2 reviews
he state-of-the-art techniques employed for COVID-19 diagnosis
sing CXR images. Section 3 presents the methodology of this
tudy. Section 4 introduces the experimental setup. An ablation
tudy is provided in Section 5. Section 6 reports our results and
iscussion. Section 7 presents the limitations of our work. Finally,
ection 8 summarizes our contribution and presents our future
ork. The source code is publicly released for research purposes.1

1 https://github.com/EkramCh/COVID19_Detection_-SMOTE_WCL.
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2. Related works

Several deep learning-based COVID-19 diagnosis systems have
been developed based on data collected from CXR imaging sam-
ples. Some are built based on customized deep learning models.
Others used trained deep learning models via transfer learning.

2.1. Customized deep learning models

Wang et al. [44] developed an architecture called COVID-Net.
This work was one of the most popular approaches used to
diagnose COVID-19. The primary characteristic of this study is the
use of the COVIDx dataset, which contains around 13,975 CXR
images. However, it suffers from an imbalance in terms of the
number of images in each class. Oh et al. [30] succeeded in de-
veloping a CNN-based system with a limited number of trainable
parameters to categorize chest X-ray images into three different
classes, including COVID-19, non-COVID-19, and normal. The pro-
posed model presented better sensitivity than COVID-Net [44]
but not better accuracy. Li et al. [45] used the discriminative
cost-sensitive learning (DCSL) technique to screen COVID-19 au-
tomatically. This proposed approach was designed by combining
fine-grained classification and cost-sensitive learning. Although it
provided a good result, the dataset used in this work contained
only 239 COVID-19 images and 1000 samples for each of the
two other classes. Khobahi et al. [46] aimed to detect COVID-19
cases using a semi-supervised DL system built on auto-encoders
called CoroNet. In order to train this model, the authors merged
three open-access datasets to provide 18,529 images of different
classes. However, only 99 images were used for the COVID-19
class, while 9579 were of viral pneumonia and 8851 samples
were presented as normal cases.

2.2. Transfer learning models for detecting COVID-from chest X-ray
images

In order to automatically detect COVID-19 from chest X-ray
images, Chowdhury et al. [47] have explored different CNN mod-
els via transfer learning. The authors used a customized dataset
that contains 423 COVID-19, 1485 viral pneumonia, and 1579
normal chest X-ray images. A binary classification scheme (nor-
mal and COVID-19 pneumonia) and a multi-class classification
scheme (normal, viral, and COVID-19 pneumonia) are investi-
gated. The final evaluation showed that DenseNet201 outper-
forms other deep CNN networks by providing better accuracy
for the second scheme. However, addressing class imbalance,
effective fine-tuning, and validation of the models have not been
explored. Apostolopoulos and Tzani [48] published a transfer
learning method. They investigated five deep learning models
to classify a dataset of 1427 CXR images divided as follows:
224 COVID-19, 700 Bacterial Pneumonia, and 504 normal im-
ages. The proposed model achieved promising results. However,
these results are based on a small dataset. Bassi and Attux [49]
aimed to develop a CNN-based classifier for COVID-19 detection
from CXR images. The classifier was built using the DenseNet
architecture. First, it was pre-trained on ImageNet, then on the
ChestX-ray14 dataset, and finally, on a customized COVID-19
dataset. The proposed model classifies X-ray images as COVID-19,
viral pneumonia, and normal. The provided results demonstrate
that CNN-based CXR image analysis is an accurate and costless
approach for diagnosing the coronavirus. Yet, the data imbal-
ance between the classes has not been handled. Luz et al. [50]
used a dataset of 183 COVID-19, 16,132 normal images, and
14,348 pneumonia images to detect COVID-19 from chest X-
ray images. The idea is to create a deep learning method based

https://github.com/EkramCh/COVID19_Detection_-SMOTE_WCL
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n EfficientNet. Their experiment provided good results. How-
ver, larger and more heterogeneous datasets are still needed
o validate their method. Punn and Agarwal [51] employed a
andom oversampling technique, a weighted class loss function,
nd transfer learning in different deep learning architectures. The
uthors performed binary classification (as normal and COVID-
9 cases) and multi-class classification (as COVID-19, pneumonia,
nd normal cases) of posteroanterior chest X-ray images. The
xperimental results for each scheme were promising; however,
ASNetLarge displayed better scores than other architectures.
emdan et al. [52] developed a deep learning framework called
OVIDX-Net using the Covid Chest x-ray dataset [53]. This frame-
ork aims to detect COVID-19 from CXR images automatically.
even different deep CNN architectures were explored, including
or performance evaluation. The VGG19 and DenseNet201 models
utperform other deep neural classifiers in terms of accuracy.
l Asnaoui and Chawki [29] conducted a comparative study be-
ween different deep learning models to solve the problem of
XR image classification for COVID-19 detection. The dataset
ontained 2780 images of bacterial pneumonia, 1493 of coron-
virus, 231 of Covid19, and 1583 normal. After evaluation, the
uthors reported that inceptionResnetV2 and DenseNet201 had
etter performance than the other architectures. Loey et al. [40]
xplored three pre-trained models and a Generative Adversarial
etwork (GAN) to detect COVID-19 from the CXR image. The GAN
as used to increase the limited number of COVID-19 samples.
hree schemes have been investigated; the first included four
lasses from the dataset, the second included three classes, and
he final included two classes. Although the authors tried to
enerate balanced classes, the adopted dataset is still small for a
L approach. Bhattacharyya et al. [54] developed a new method
or detecting COVID-19 in X-ray images. The proposed method
onsists of three steps: the segmentation of x-ray images using C-
AN in order to extract lung images; then, the segmented images
eed into a novel pipeline that combines key point extraction
ethods and trained deep neural networks (DNN) to extract the

elevant features. The final evaluation showed that the VGG19
odels linked with the binary robust invariant scalable key points

BRISK) obtained a promising result that can be used efficiently to
iagnose infected patients. Demir [55] proposed a new approach
ased on a deep LSTM called DeepCoroNet to distinguish infected
OVID-19 patients from x-ray images. Indeed, this method is
ifferent from other techniques, such as transfer learning and
eep feature extraction, because it is learned from scratch. To
ncrease the performance of the final model, the author applied
he Sobel gradient as well as the marker-controlled watershed
egmentation operations during the preprocessing stage. The pro-
osed approach was a helpful tool for radiologists and experts
n detecting, determining quantity, and controlling the rise of
OVID-19 cases. Jain et al. [41] conducted a comparative study
sing three DL architectures to select the appropriate model for
OVID-19 detection using X-ray images. A total of 5467 chest
-ray scan samples were used to train the models, while 965
ere used for validation. The outcomes showed that the Xcep-
ion model achieved the highest accuracy in detecting COVID-19
atients compared to other studied models. Bargshady et al. [42]
mplemented a new approach called Inception-CycleGAN that can
etect COVID-19 infected X-ray and CT Chest Images. This work
ims to augment the number of training samples by applying the
emi-supervised CycleGAN (SSA-CycleGAN) technique. Then, the
nception V3 transfer learning model is developed and fine-tuned
o train the model for detecting COVID-19.

Despite their success, most of these works suffer from data
mbalance issues, which significantly impact classification results.
hus, the main goal of this work is to propose an accurate yet
fficient model of COVID-19 screening using chest X-ray images
rained on a balanced dataset.
4

3. Methodology

3.1. Deep learning

Deep learning is increasingly becoming a vital tool in arti-
ficial intelligence applications [26]. Indeed, convolution neural
networks produced excellent results in different areas, such as
speech recognition, natural language processing, and computer
vision [56]. Image classification is one of the tasks in which CNN’s
excel [57]. It aims to label distinct image according to a set of
potential classes. From a deep learning aspect, the image classifi-
cation challenge can be handled through transfer learning [58],
especially for medical image classification, which is an essen-
tial instrument for disease diagnosis in the healthcare sector.
Several up-to-date results in medical image classification have
been established on transfer learning solutions [59–61]. In fact,
with the advent of machine learning, the development of CAD
systems has become one of the most explored research directions.
However, the acquisition of medical images requires the use of
specific medical tools. Besides, only experienced clinicians are
often employed for their labeling. Thus, obtaining enough data
for CNN training is often tough and expensive. In this case, trans-
fer learning could be the ultimate solution for medical imaging
analysis.

3.1.1. Convolution neural network
CNNs were revealed to excel in various computer vision chal-

lenges [62]. Two of the main aspects driving the fame of CNN
over the last few years are its automatic and outstanding per-
formance. Fig. 2 illustrates this particular neural network. A CNN
has convolution and classifier parts. The convolution part is a pile
of convolutional and pooling layers that aim to extract features
from the image [63]. The classification part is composed of fully-
connected and softmax layers. The features extracted from the
first layers are general and can be reused in different problem
domains, while the features extracted from the final layer are
specific to the used dataset and task. The primary asset of CNNs is
that they can automatically learn and extract hierarchical feature
representations [21].

3.1.2. Pre-trained a CNN model
Considering the large size and high computational charge

of training a CNN model, importing and employing pre-trained
models using the ImageNet dataset [65] is widely used in the
research field. The above dataset was created for visual object
recognition research [66]. It contains over 14,000,000 human-
labeled images, millions of images with bounding boxes, and
more than 20,000 classes [67]. Pretrained models are often trained
with an ImageNet subset with 1000 classes. The pre-trained
models adopted in this study are the following:

– The Visual Geometry Group Network (VGG) [68] is a classi-
cal CNN architecture that performed well on the ImageNet
dataset. It used 3 x 3 filters to ameliorate the feature ex-
traction process. This architecture is defined as being effi-
cient and straightforward. VGG16 and VGG19 are the two
versions of this deep CNN. VGG19 has more layers than
VGG16.

– The Dense Convolutional Network (DenseNet) [69] has con-
siderably reduced the number of parameters, minimized
the vanishing-gradient issue, and boosted feature propaga-
tion [52]. Many versions of DenseNet exist. DenseNet201
has shown remarkable performance while dealing with the
COVID-19 diagnosis from CXR images [49]. A 121-layer
Dense Convolutional Network (DenseNet121), named Che-
XNet, has been trained on the Chest-ray 14 dataset [70]. This

dataset is the largest publicly available chest X-ray dataset,
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Fig. 2. Typical CNN architecture [64].
with more than 100,000 X-ray images and 14 categories.
After evaluation, CheXNet outperformed average radiologist
performance on the F1-score metric.

– Residual Neural Network (ResNet) [71] aimed to accomplish
powerful convergence behaviors by bouncing some network
layers. Trained on ImageNet, the residual nets are evaluated
with up to 152 layers of depth (ResNet152), which is eight
times deeper than VGG nets. This model was first ranked in
the ILSVRC 2015 classification task.

– Xception [72] is a new deep CNN model inspired by Incep-
tion, in which a depth-wise separable convolution takes the
place of Inception modules. This architecture has relatively
outperformed InceptionV3 on the ImageNet dataset. With
the wide use of smartphones, Sandler et al. [73] proposed an
architecture named MobileNetV2 for machines with limited
computing power. This architecture reduces not only the
number of learning parameters but also the memory con-
sumption. Furthermore, the pre-trained implementation of
this model is available in several well-known deep learning
frameworks.

3.1.3. Transfer learning mechanism
Transfer learning includes a variety of pre-trained models that

are built on large CNNs [74]. At the end of the learning step, the
extracted knowledge is ‘‘transferred’’ to the simplified tasks with
limited specific data. This approach is mainly employed because
it provides efficient models in a short amount of time. Indeed,
one of the most popular transfer learning approaches is to train
a CNN on the domain source and then fine-tune it according to
the samples from the target domain.

Roughly speaking, it consists of using the features learned
when solving a different problem rather than performing the
learning procedure from scratch. In computer vision, the idea
of transfer learning is built on the use of pre-trained models.
Thus, this approach is efficient when training a deep neural
network with a limited computational resource. Recently, Zhuang
et al. [58] provided a comprehensive survey on transfer learning.
Fig. 3 illustrates the idea behind transfer learning.

3.2. Imbalanced learning approach

In predictive modeling, imbalanced classifications are a chal-
lenging problem because most ML classification algorithms were
developed with the assumption that all the classes have the
same number of samples [76]. Class imbalance occurs when the
classes in the dataset are not equally distributed. Some classes
have a significantly smaller number of samples in the train-
ing dataset (minority classes) than the other classes (majority
classes). Training a classification algorithm with imbalanced data
provides inefficient predictive models, which may poorly classify
5

the minority class. Thus, the minority class, often the most essen-
tial for the classification task, is more sensitive to classification
errors than the majority class. Buda et al. [35] reported that class
imbalance has a negative impact on training CNN models [35].
Indeed, it can influence both the convergence during the training
phase and the model generalization during the test phase. To ad-
dress this problem, the research community developed different
solutions [36], including data-level methods and classifier-level
methods. In this work, the adopted datasets are significantly
imbalanced. This can generate biased learning of the investigated
models. Therefore, class-balancing techniques are used to equal-
ize the learning procedure. This study used two-class imbalance
strategies: weighted loss and SMOTE.

3.2.1. Weighted loss
While training a neural network, the cost function is crucial

because it regulates the layers’ weights to produce an adequate
ML model. The neural network is fed with a training set during
forwarding propagation and generates outputs. The produced
outcome is then compared to the target label, and the loss func-
tion computes the cost for any variation between the output and
the target label. The loss function’s partial derivative is deter-
mined for each trainable weight of the backward propagation.
Thus, the weights are adjusted automatically to provide a model
with as minimal loss as possible [63].

The loss function can be changed to overcome the class im-
balance problem. Additional weights are applied to the calculated
loss for different samples based on the class to which the sample
belongs. Introducing these sample weights aims to measure the
importance of the computed loss for different samples, depending
on whether the samples belong to the majority class or the mi-
nority class. A higher weight is assigned to the loss encountered
by the samples associated with minor classes, which is the case of
the COVID-19 class in this study. This approach of class balancing
is known as the weighted class approach [39]. Eq. (1) represents
the formula with which the weights of each class are determined.

w (c) = Cc .

∑K
c=0 kc
K .kc

(1)

where Cc represents the class constant for class c, K is the num-
ber of classes, and kc is the number of samples in class c. The
generated weight of each class is later included in the loss func-
tion, which is, in our case, the standard weighted categorical
cross-entropy loss represented by Eq. (2)

Jwcce = −
1
M

K∑
k=1

M∑
m=1

wk × ykm × log(hθ (xm,k)) (2)

where M is the number of training samples, K represents the
number of classes. wk is the weight for class k. xm is the target
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l
t

Fig. 3. The architecture of transfer learning inspired by [75].
Fig. 4. An illustration of SMOTE oversampling technique.
abel for training example, m for class k. xm is the input for
raining example m. hθ is the model with neural network weights
θ .

3.2.2. SMOTE
The imbalanced data problem has an impact on the quality of

the built model. A model trained with imbalanced data cannot
efficiently learn the decision boundary because of the lack of mi-
nority class samples. To address this problem, one of the widely
used methods is the Synthetic Minority Oversampling Technique
(SMOTE), proposed by Chawla et al. [37]. This technique aims
to synthesize new samples of the minority class rather than
duplicate them. Fig. 4 illustrates how the SMOTE increases and
evens out the class distribution of the minority class.

The SMOTE algorithm chooses samples close to the feature
space, draws a separation line between the feature space’s sam-
ples, and creates a novel example at a point near that line. First, a
random sample is selected from the minority class. Then, k of that
sample’s nearest neighbors are found. In most cases, k is equal to
5. Finally, a neighbor is chosen randomly, and a synthetic sam-
ple is generated at a randomly selected point between the two
samples in the feature space. The procedure is repeated enough
times until the minority class has the same proportion as the
majority class. The Algorithm SMOTE below is the pseudo-code
for SMOTE [37].
6

3.3. Proposed method

In this study, we trained six state-of-the-art pre-trained CNN
models, including DenseNet201, CheXNet, MobileNetV2, ResNet-
152, VGG19, and Xception, to classify X-ray images from three
well-known COVID-19 datasets. To address the class imbalance of
these datasets, we investigated the effectiveness of two different
class balancing techniques: WCL and SMOTE. To this end, our
proposed method contains three major phases: data preprocess-
ing, classification, and a testing phase. First, the datasets are
preprocessed, split, and balanced. Then, the balanced datasets are
used for the training of the CNN architectures separately. In this
phase, we built and tested six models that classify each dataset
into COVID-19, normal (no infection), and viral pneumonia cases.
Finally, we conducted a comparative study to determine the
model that predicts the best COVID-19 cases from X-ray images.
Fig. 5 represents an overview of our proposed method.

3.3.1. Data preprocessing
Due to computational limitations, the input images in this

phase are normalized and downsized. In the first experiment in
which we applied the WCL, the images of the three datasets were
resized to (224 × 224). Indeed, the used hardware was not capa-
ble of high-resolution training models. In the second experiment,
in which we applied the SMOTE, the images of the three datasets

were resized to (128 × 128). We did not keep the same size as the
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Fig. 5. An overview of the proposed approach.
irst experiment because more significant amounts of random-
ccess memory were needed to perform the SMOTE balancing
echniques with images larger than (128 × 128). Due to the small
umber of images, we applied a data augmentation procedure to
atasets 1 and 2 to increase the variety of training sets and reduce
verfitting when training the models. We performed a rotation
f 10◦ and translation with a shift of (15,15) for the training
ets of dataset1 and dataset 2. According to [77], these geometric
ransformations result in realistic chest x-ray images and help
7

train an ML model for COVID-19 detection. We emphasize that
the data augmentation procedure is not used here to balance the
dataset. It is only used to avoid overfitting problems. The size
of the training sets before and after augmentation is detailed in
Table 1.

Finally, the Contrast Limited Adaptive Histogram Equalization
(CLAHE) has been applied to get more explicit images. CLAHE is
a variant of the adaptive histogram equalization (AHE) algorithm.
It was developed to reduce the noise amplification problem [78].
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Table 1
The size of the training sets for dataset 1 and dataset 2 before and after data
augmentation.
Datasets Class Before DA After DA

Dataset 1
COVID-19 155 465
Viral pneumonia 1085 3255
Normal 1085 3255

Dataset 2
COVID-19 200 600
Viral pneumonia 950 2850
Normal 950 2850

Dataset 3
COVID-19 800 –
Viral pneumonia 5000 –
Normal 5000 –

Fig. 6. (a) is the original image and (b) is the image with Contrast Limited
daptive Histogram Equalization (CLAHE).

LAHE aims to increase the contrast of the image’s small tiles
nd to associate the adjacent tiles through bilinear interpolation.
his process removes the artificially induced edges. Haghanifar
t al. [79] described CLAHE as the most popular enhancement
ethod for various image types. This image enhancement algo-

ithm generated improved nodular-shaped opacity of COVID-19
nfection in X-ray images. Fig. 6 shows the results before and after
sing CLAHE on an image from dataset 2.
At the end of this step, the preprocessed images in each

ataset are split using an 80-10-10 scheme. That means 80% of
mage data is used for the training phase. At the same time, 10% of
he dataset is given for the validation and test sets, respectively.
hen, the weighted loss balancing technique is applied. In fact,
he class weights are computed and assigned to each class in
he training set. Then, the weighted categorical cross-entropy loss
unction is used to train the deep learning models.

In the second part of this study, the SMOTE is applied to
enerate new images from the minority class [80]. The training
amples are first flattened to create a vector embedding of each
mage (typically known as latent space). Then, this latent space is
ed to the SMOTE algorithm, which adds a random factor to the
atent space of the image to create a slightly different latent space
han the original image of the minority class.

.3.2. Training and classification
Transfer learning starts by loading the chosen deep learning

lassification models. The fully connected output layers of the
odel are fine-tuned, allowing novel head layers to be added
nd trained. A global spatial average pooling layer is added to
reate a vector that can be used as a feature descriptor for the
nput. Finally, three neurons are added, one neuron for each class,
ollowed by the SoftMax activation function for the classification.
uring the training for each architecture, extensive trials are con-
ucted with different hyper-parameters (optimizer, learning rate,
atch size, and the number of epochs). We adopted the Adam
8

optimizer, or adaptive moment optimization algorithm [81], to
adjust the learning rate. Indeed, this optimizer requires relatively
low memory and often gives good results with a little hyperpa-
rameter tuning. The most relevant results are obtained using a
learning rate of 0.0001. The number of epochs and batch size are
randomly altered in order to find the values that provide the best
results. For each epoch, the evaluation metrics are calculated in
the training and validation steps to control the model’s perfor-
mance during these steps and to improve the generated results.
All these steps are implemented using Python and executed via
Google Collab (25 GB Ram, GPU).

3.3.3. Testing and evaluation
Finally, the testing data is fed to the tuned deep learning

classifier to categorize all the image patches into one of three
cases: confirmed positive COVID-19, normal, and viral pneumonia
(negative COVID-19). At the end of the workflow, the overall
performance analysis for each deep learning classifier will be
assessed based on the evaluation metrics described in Section 5.

4. Experimental setup

4.1. Datasets description

Since COVID-19 is a recent illness, there are a limited number
of publicly available CXR images of infected patients. In this study,
three well-known datasets are used. More details about these
datasets are presented below. Note that the reported number of
images was on the date of access. It is expected to rise over time
with more available x-ray images.

– COVID-19 Radiography Database2 is one of the first CXR
datasets collected for the COVID-19 diagnosis. A group of
researchers from the Middle East and Asia, in collaboration
with clinicians, has collected this CXR images database for
COVID-19 positive cases along with normal and viral pneu-
monia images. When used in our experiment, this dataset
contained 219 COVID-19 positive images, 1341 normal im-
ages, and 1345 viral pneumonia images. The size of the CXR
images is 1024 × 1024 [47].

– Covid Chest Xray Dataset3 was collected by Cohen et al. [53]
as part of the COVID-19 Image Data Collection of CXR and
CT images. It contained 481 chest X-ray images. Normal
and viral pneumonia images have been collected from the
RSNA Pneumonia Detection Challenge. We chose to use
1500 images for each class. The CXR images in this dataset
have different sizes.

– COVIDx dataset4 is one of the most used datasets in the
literature, which is employed to train and evaluate the pro-
posed COVID-Net. It includes a total of 13,975 CXR images of
13,870 patients. The COVIDx dataset is the largest publicly
available dataset in terms of the number of COVID-19 sam-
ples. To generate the COVIDx dataset, five different open-
source and accessible data repositories have been combined
and modified.

4.2. Evaluation criteria

In order to evaluate the efficiency of our proposed approaches,
seven metrics are used for assessing the performance of the
CNNs,including accuracy, sensitivity, specificity, precision, F1

2 https://www.kaggle.com/tawsifurrahman/covid19-radiography-database.
3 https://github.com/ieee8023/covid-chestxray-dataset.
4 https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md.

https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md
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Table 2
Classification results: without balancing technique.
Dataset CNN ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) F1 (%) AUC (%)

Dataset 1

DenseNet201 97.51 97.51 98.01 97.50 95.41 97.50 97.59
CheXNet 96.15 96.14 98.07 96.15 94.18 96.14 97.01
Xception 97.05 97.05 98.53 97.05 96.65 97.05 97.10
ResNet152 95.46 95.46 95.50 95.46 94.43 95.48 96.60
VGG19 97.15 97.15 98.59 97.16 96.42 97.15 97.43
MobileNetV2 94.10 94.08 97.16 94.13 93.21 94.10 95.58

Dataset 2

DenseNet201 92.60 92.30 96.10 92.34 93.54 92.25 94.41
CheXNet 90.49 90.43 95.47 90.50 82.90 90.40 93.40
Xception 88.94 88.91 93.96 88.90 90.42 91.44 92.34
ResNet152 90.19 90.20 95.59 90.18 89.92 90.20 92.52
VGG19 92.58 92.50 96.28 92.57 91.86 92.50 93.52
MobileNetV2 89.94 89.90 94.49 90.28 87.58 90.10 92.42

Dataset 3

DenseNet201 91.63 93.85 96.92 91.69 91.15 91.66 88.70
CheXNet 89.38 89.34 94.88 86.38 84.66 88.72 88.00
Xception 91.44 91.42 95.72 91.40 89.56 91.44 88.61
ResNet152 91.89 91.96 96.94 92.00 90.05 91.91 88.06
VGG19 91.60 91.60 95.80 91.60 90.98 91.57 93.85
MobileNetV2 91.44 91.51 95.72 91.44 90.07 91.57 88.45
score, and area under a receiver operating characteristic curve
(AUC).

In this study, we are solving a multiclassification problem.
herefore, our models are evaluated using a multi-class confusion
atrix [82]. These metrics are derived from the following values:
P stands for true positive, which is the number of COVID-19
atients that correctly predicted infection cases. FN false nega-
ive, representing the number of COVID-19 patients, is wrongly
redicted as carrying no infection of COVID-19, and P is the total
umber of COVID-19 patients. TN is true negative and repre-
ents the number of non-COVID-19 patients who are correctly
redicted as carrying no infection of COVID-19. FP false posi-
ive represents the number of non-COVID-19 patients who are
rongly classified as having the virus, and N is the total number
f non-COVID-19 patients.

– Sensitivity (SEN) represents the percentage of COVID-19
patients that are correctly predicted as carrying the virus.
It is represented by Eq. (3):

Sensitivity =
TP

TP + FN
(3)

– Specificity (SPE) represents the percentage of non-COVID-19
patients that are correctly classified as having no infection
of COVID-19 as shown in Eq. (4):

Specificity =
TN

TN + FP
(4)

– Accuracy (ACC) of the classification is represented by Eq. (5):

Accuracy =
TP + TN

TP + FP + FN + TN
(5)

– Positive Predictive Value (PPV) is the exactness that repre-
sents the number of positive class predictions that belong
to the positive class. It is a measure of the proportion of
patients detected by COVID-19 that had the virus. It is
defined by Eq. (6):

PPV =
TP

TP + FP
(6)

– Negative Predictive Value (NPV) is the probability that fol-
lowing a negative test result, that individual will truly not
have that specific disease. It is represented by Eq. (7):

NPV =
TN

(7)

TN + FN

9

– F1-Score: is a harmonic mean of Sensitivity and Precision
value. It strikes the perfect balance between Precision and
Sensitivity, thereby providing a correct evaluation of the
model’s performance in classifying COVID-19 patients. It is
represented by Eq. (8):

F1 − Score = 2 ×
PRE × SEN
PRE + SEN

(8)

– AUC: it allows us to compute how much the model can
distinguish between patients infected by COVID-19 or not.
It is represented by Eq. (9):

AUC =
SEN + SPE

2
(9)

5. Ablation study

Before applying a balancing technique, the chosen models
are trained on the three above-mentioned imbalanced datasets
to compare the results and investigate which model has been
improved or deteriorated. The models are trained using the cate-
gorical weighted loss function. Table 2 presents the classification
outcomes obtained from the transfer learning of the six chosen
deep learning models without applying a data balancing tech-
nique. By making an overview of this table, notice that all the
pre-trained CNNs achieved high accuracy, sensitivity, specificity,
precision, F1 score, and AUC. Especially VGG19 and DenseNet201,
which generated the highest results on the three datasets. When
training using dataset 1, DenseNet201 achieved the highest clas-
sification results with an accuracy of 97.51% and AUC of 97.
59%. Additionally, VGG19 provides slightly inferior results with
an accuracy of 97.15% and an AUC of 97.73%. While MobileNetV2
generated the lowest results with only 94.10% of accuracy and
95.58% of AUC, The results are lower when the models are trained
using datasets 2 and 3. Probably because some chest X-ray images
collected in the above datasets contain artifacts including arrows,
symbols, texts, and pixel-level noise. Nevertheless, DenseNet201
is still on top with accuracy and an AUC of 92.6% and 94.41%,
respectively, using dataset 2. followed by VGG19, which gen-
erated an accuracy of 92.58%. When trained using dataset 3,
DenseNet201 and VGG19 yielded good results. They provide an
accuracy of 91.63% and 91.6%, respectively. Still, Xception and

MobileNetV2 have the lowest outcomes.
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Table 3
Classification results of experiment 1: Using weighted class balancing technique.
Dataset CNN ACC (%) SEN (%) SPE (%) PPV (%)(%) NPV (%) F1 (%) AUC (%)

Dataset 1

DenseNet201 121 96.60 96.59 98.29 96.58 94.58 96.36 97.80
CheXNet 98.87 98.86 99.43 100.00 98.61 98.21 99.15
Xception 95.92 95.91 97.95 95.92 92.90 95.91 96.94
ResNet152 97.51 97.50 98.75 97.51 95.22 97.50 98.13
VGG19 98.41 98.41 99.20 98.41 96.43 98.41 98.81
MobileNetV2 95.69 95.69 97.84 95.69 93.90 95.69 96.76

Dataset 2

DenseNet201 93.58 93.58 96.79 93.58 90.18 93.58 95.38
CheXNet 91.82 91.82 95.91 97.27 95.70 73.00 94.09
Xception 89.94 89.91 94.96 90.05 88.15 89.55 92.34
ResNet152 87.55 87.56 93.77 89.29 90.29 90.86 93.81
VGG19 92.97 92.87 96.48 92.92 91.86 92.97 91.21
MobileNetV2 91.57 91.57 95.78 91.57 90.17 91.68 93.86

Dataset 3

DenseNet201 94.00 93.85 96.92 93.94 92.04 94.87 94.08
CheXNet 92.97 92.96 96.48 92.96 90.41 92.93 93.06
Xception 93.00 92.91 96.45 93.00 90.12 92.87 93.62
ResNet152 90.43 90.43 95.21 90.42 89.37 90.37 89.00
VGG19 94.87 94.87 97.43 94.92 92.98 94.87 94.86
MobileNetV2 95.69 91.51 95.51 91.62 88.53 91.57 90.69
6. Results and discussion

First, the weighted categorical cross-entropy loss function is
mployed for the training of the CNN models with the three
hosen imbalanced datasets. The outcomes of this experiment
re shown in Table 3. After several trials, it is observed that
heXNet provided the best classification results while trained on
ataset 1. CheXNet showed a PPV of 100% and almost a perfect
UC of 99.15 as well as high sensitivity, specificity, and F1_score
f 98.86%, 99.43%, and 98.21%, respectively. The good results
re probably due to the classification framework’s hierarchical
tructure, which considers correlations between different labels.
his structure is detailed in [69]. CheXNet, which is originally a
enseNet121, pre-trained on 14 classes of Chest-ray 14 dataset.
his architecture consists of one convolution layer with a (7 × 7)
ernel, fifty-eight convolution layers with a (3 × 3) kernel, and

sixty-five convolution layers of (1 × 1) kernel, four average
pooling layers, and one fully connected layer. DenseNets simplify
the connectivity pattern between layers [69]. In this work, we
replace the final fully-connected layer with one that has three
outputs, after which we apply a SoftMax. The weights of the
network are initialized with weights from a model pre-trained on
ImageNet [65]. The training parameters are detailed in Table 5. On
the other hand, VGG19 succeeded in classifying the CXR images
with an accuracy of 98.41% and an AUC of 98.81%. Using dataset
2, DenseNet201 provided an overall accuracy of 93.58% and an
AUC of 95.38%, while ResNet152 provided the lowest accuracy
of 87.55%. For dataset 3, DenseNet201 and VGG19 generated the
highest outcomes with accuracy and an AUC over 94%. However,
VGG19 has slightly outperformed DenseNet201 in this case. It is
observed in Fig. 7 that the use of categorical weighted loss has
improved the classification results of the DenseNet201 model.
The improvement is highly remarkable with dataset 3. However,
with dataset 1 and dataset 2, there is a weak improvement.

The same observation can be concluded from Fig. 8. The
VGG19 successfully classified the x-ray images better using the
weighted loss techniques on the three datasets. Later, SMOTE
is used to balance the training set before it feeds to the CNN
models. The outcomes of this experiment are shown in Table 4.
The results of experiment 1 and experiment 2 are quite close
in terms of top performing models and datasets. However, it
is noticeable that DenseNet201 trained on dataset 1 with the
application of SMOTE outperformed all the other scenarios in
all the used evaluation metrics with an accuracy of 98.64%, a
sensitivity of 98.36%, a specificity of 99.35%, a precision of 98.64%,
an F1-Score of 98.63% and an AUC of approximately 99%. Followed
10
by the VGG19, which provided very close outcomes. ResNet152’s
results have improved slightly more than experiment 1’s results,
while Xcpetion’s classification results have decreased somewhat.
MobileNetV2 succeeded in classifying the image with high accu-
racy and AUC when trained with dataset 1 but generated poor
results with datasets 2 and 3.

As depicted in Figs. 7 and 8, SMOTE enhanced the AUC values
of DenseNet201 and VGG19 compared to the AUC of the training
with an imbalanced dataset. The proposed balancing techniques
have remarkably increased the classification results of the chosen
pre-trained deep learning models even though, in some cases,
one of the techniques surpassed the other in terms of results. A
summary of the proposed models that provided the best results
is presented in Table 5, in addition to the hyper-parameters used
for their training.

The best-obtained results are compared with the other re-
cently proposed approaches to detect COVID-19 from X-ray im-
ages. Table 6 shows that our proposed model outperformed
other works with the three datasets in terms of performance.
For dataset 1, our model achieved an accuracy of almost 99%,
while Chowdhury et al. [47] achieved only 97.9%. In addition, our
model provided a perfect precision of 100%, compared with only
98% for Chowdhury et al. [47]. For dataset 2, our proposed WCL
with the DenseNet201 model achieved a higher classification
rate compared to the models proposed by Ozturk et al. [83]
and Haghanifar et al. [79] in terms of accuracy and F1-score,
as shown in Table 5. Our model that applied WCL with VGG19
on dataset 3 outperformed the COVID-NET model developed
by Wang et al. [44] that, achieved an accuracy of 92.4%, a sensi-
tivity of 88%, and a precision of 91%, while our approach achieved
on the same dataset an accuracy of 94.87%, a sensitivity of 94.87%
and a precision of almost 95%. Our approach also succeeded in
classifying X-ray images for COVID-19 diagnosis better than Oh
et al. [30] in terms of accuracy and F1-score.

7. Limitations

Due to a lack of computational resources and low memory,
the training process of most DL networks takes many hours,
an average of 3.5 h for each algorithm. Indeed, seven different
deep convolution neural networks were trained with a multi-
classification head in this work. Each CNN was trained with a
batch size chosen randomly between 8, 16, or 32, with an input
image of the size (244 × 244) while applying the WCL and the
size of (128 × 128) while using the SMOTE. Overall, the training
on the three datasets took 300 h. The computational complexity
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Fig. 7. Comparison of AUC metric provided by DenseNet201 for each dataset: (Left bar) without data balancing, (middle bar) with WCL and (right bar) with SMOTE.
Table 4
Classification results of experiment 2: Using SMOTE balancing technique.
Dataset CNN ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) F1 (%) AUC (%)

Dataset 1

DenseNet201 98.64 98.36 99.35 98.64 98.64 98.63 98.97
CheXNet 97.51 97.50 98.75 97.51 97.51 97.50 98.20
Xception 96.15 96.15 98.07 96.15 96.15 96.14 96.94
ResNet152 95.46 95.64 97.73 95.46 95.46 95.46 96.60
VGG19 98.19 98.19 99.09 98.19 98.19 98.19 98.63
MobileNetV2 97.51 97.51 98.75 97.54 97.54 97.50 98.13

Dataset 2

DenseNet201 92.28 92.20 96.10 92.20 92.20 92.20 94.38
CheXNet 91.19 91.19 95.59 91.18 91.18 91.12 93.42
Xception 89.44 89.43 94.71 89.43 89.43 89.43 91.81
ResNet152 91.82 91.82 95.91 91.82 91.82 91.82 93.84
VGG19 92.08 92.07 96.03 92.08 92.08 92.07 93.95
MobileNetV2 83.31 89.30 94.65 89.41 89.41 89.29 92.16

Dataset 3

DenseNet201 92.71 92.71 96.36 92.77 92.77 92.71 90.66
CheXNet 92.02 92.02 92.02 96.01 96.01 92.10 89.54
Xception 90.00 90.01 95.00 90.00 90.00 90.02 86.53
ResNet152 91.32 91.32 95.66 91.32 91.32 91.32 88.93
VGG19 93.66 93.66 96.83 93.66 93.66 93.66 92.00
MobileNetV2 91.38 91.38 95.69 91.65 91.65 91.35 89.00
Table 5
A summary of the proposed models and training hyperparameters with best results.
Dataset Models Loss function Activation function Classifier Optimizer (lr:learning rate) Batch Epochs

Dataset 1 WCL + CheXNet WCL RELU Softmax Adam (lr = 104) 32 50
SMOTE + DenseNet201 Categorical cross-entropy RELU Softmax Adam (lr = 104) 8 72

Dataset 2 WCL + DenseNet201 WCL RELU Softmax Adam (lr = 104) 8 20
SMOTE + DenseNet201 Categorical cross-entropy RELU Softmax Adam (lr = 104) 8 50

Dataset 3 WCL + VGG19 WCL RELU Softmax Adam (lr = 104) 8 20
SMOTE + VGG19 Categorical cross-entropy RELU Softmax Adam (lr = 104) 8 50
is proportional to the dataset size, the used balancing technique,
and the depth of the trained CNN. The training of DensNet201
has the longest training time, 8h16m50s (for a 128 × 128 input
mage, batch size of 8 and 72 epochs). In contrast, the VGG19 had
he lowest training time since it has fewer layers. The application
f the WCL had a neglectable execution time compared to SMOTE.
ndeed, the use of SMOTE as a balancing technique was very
11
memory and time-consuming. The overall time of SMOTE running
was between 15 and 90 min, depending on the size of the training
set. One of the major limitations of this work was the high com-
putational consumption. Moreover, the proposed model needs to
be validated externally before undergoing any clinical use. This
step is crucial as it properly assesses the model’s performance
against real cases in different settings.
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Fig. 8. Comparison of AUC metric provided by VGG19 for each dataset: (Left bar) without data balancing, (middle bar) with WCL, and (right bar) with SMOTE.
Table 6
Comparative analysis of the proposed model with recently proposed models.
Dataset Author Model ACC (%) SEN (%) SPE (%) PPV (%) F1 (%) AUC (%)

Dataset 1

Chowdhury et al. [47] DenseNet201 97.9 97.9 98.8 97.95 – –
Bassi et al. [49] DenseNet121 98.3 – – 98.3 98.30 –

Proposed models WCL + CheXNet 98.87 98.86 99.43 100 98.21 99.15
SMOTE + DenseNet201 98.64 98.36 99.35 98.64 98.63 98.97

Dataset 2

Haghanifar et al. [79] CheXNet – – – – 85 –
Ozturk et al. [83] DarkNet 87.02 – – – – –

Proposed models WCL + DenseNet201 93.58 93.58 96.79 93.58 93.58 95.38
SMOTE + DenseNet201 92.28 92.20 96.10 92.20 92.20 94.38

Dataset 3

Wang et al. [44] COVID-Net 92.4 88 – 91 – –
Oh et al. [30] ResNet-18 91.9 – – 76.9 – –

Proposed models WCL + VGG19 94.87 94.87 97.43 94.92 94.87 94.86
SMOTE + VGG19 93.66 93.66 96.83 93.66 93.66 92.00
8. Conclusion

One of the major issues identified in most related works
oncerning the COVID-19 disease diagnosis using X-ray images
s class imbalance. This paper presents an investigation of two
lassic data balancing techniques applied to three well-known
atasets. Six deep learning models are trained on the selected
atasets separately to identify which combination of the balanc-
ng technique and CNN architecture provides the best classifica-
ion results. Each trained model was evaluated using benchmark
erformance metrics,e.g., accuracy, precision, area under curve,
pecificity, and F1 score under two different experiences con-
erned with imbalanced learning. With extensive trials, it was
bserved that models achieve different scores in different sce-
arios, among which DenseNet201 and VGG19 displayed better
erformance for the multi-classification of COVID-19 samples.
his study was developed using limited computational resources,
ausing a long training time, especially when applying the SMOTE
s a data balancing technique. As an extension to this work, we
an investigate, using more powerful computational resources,
ther deep learning models and data balancing techniques such
s data generation using generative adversarial networks (GAN).
urthermore, we can explore other datasets that contain more
amples of COVID-19.
12
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