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Walking (gait) irregularities and abnormalities are predictors and symptoms of disorder and disability. In the past, elaborate video
(camera-based) systems, pressure mats, or a mix of the two has been used in clinical settings to monitor and evaluate gait. This
article presents an artificial intelligence-based comprehensive investigation of ground reaction force (GRF) pattern to classify
the healthy control and gait disorders using the large-scale ground reaction force. The used dataset comprised GRF
measurements from different patients. The article includes machine learning- and deep learning-based models to classify
healthy and gait disorder patients using ground reaction force. A deep learning-based architecture GaitRec-Net is proposed for
this classification. The classification results were evaluated using various metrics, and each experiment was analysed using a
fivefold cross-validation approach. Compared to machine learning classifiers, the proposed deep learning model is found better
for feature extraction resulting in high accuracy of classification. As a result, the proposed framework presents a promising
step in the direction of automatic categorization of abnormal gait pattern.

1. Introduction

One of the most natural and frequent human characteristics is
walking. However, it is one of the most complicated occur-
rences from an analytical perspective. The brain, nerves, and
muscles work together to do this. Physiotherapists, orthope-
dists, and neurologists have long studied human motion in
order to assess a patient’s condition, rehabilitation, and therapy
[1] Gait is the pattern of limb movement during locomotion

that contains a variety of information about human individuals.
Gait analysis has traditionally been done subjectively through
visual assessment, but now, it can be done objectively and effec-
tively due to new technologies. The main aim is to find out the
problem that affects the patient’s gait pattern [2] As a result, it is
frequently utilized in various fields, including affect analysis,
sport science, health, and user identification. A variety of sens-
ing modalities, such as wearable sensors connected to the
human body, such as accelerometers, gyroscopes, and force
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and pressure sensors, can be used to record gait data. Nonwear-
able gait recognition systems are commonly referred to as
vision-based gait recognition since they rely heavily on vision.
These devices use image sensors to gather gait data from far
away distances with no cooperation from the participants. In a
medical environment, gait analysis and research can aid in the
diagnosis and monitoring of illnesses that affect gait. As a result,
automated gait analysis is becoming increasingly common.

Currently, various types of sensors can be used to obtain a
rich classification of gait detailed information. Floor sensors
are one of the types which can be used to detect GRF measure-
ments or the pressure employed on each area under the foot
[3]. The equipment utilized is restricted to constrained areas
and provides little information for abnormal gait categoriza-
tion. The technique utilizing foot pressure data, studied for
person identification by various organizations, is a different
method than using a camera. GRF quantification is a common
method for physicians to impartially specify human locomo-
tion and explain and assess gait patients’ detailed performance
[4] Force plates are used to calculate the ground reaction
forces produced by a body standing on or moving over them.
A load cell is an electrochemical device that measures forces
on a force plate. Load cells include piezoelectric elements,
beam loads, and strain gauge cells. The sensors flex when force
is applied to the plate, resulting in measurable voltage changes
proportional to the applied force. By orienting the sensors in
various directions, the direction and amount of forces in 3D
may be determined. It can acquire information such as the
center of force, pressure, and the moment around each axis.

Gait, a typical human behavior, can reveal mental illnesses
such as depression, dementia, intellectual impairment, and
musculoskeletal problems such as joint deformity. [5] An
essential aspect used in delivering and estimating the patient’s
rehabilitation and therapy is a detailed evaluation of the part
of activity completed throughout the day. Individuals with
lower leg impairments undergo therapy to help them recover
motor function in their lower legs. Walking is a pattern-
repeating motion that maintains static and dynamic balance.
A typical gait sequence begins with one foot tapping the ground
and ends with the same foot pounding the ground. A gait cycle
may be broken down into stance (when the foot makes contact
with the ground) and swing (when the leg does not touch the
ground) and then into gait tasks such as ipsilateral, contralat-
eral feet off, and foot contact.

In recent years, some automatic analytic techniques based
on artificial intelligence algorithms have been published to
help physicians detect and categorize certain gait patterns into
clinically significant categories. Neural networks, convolu-
tional neural networks (CNN), Long Short-Term Memory
(LSTM), Support Vector Machine (SVM), nearest neighbor
classifiers, and other clustering algorithms are among the arti-
ficial intelligence methods used in this area. The input data
format has a big impact on how well these approaches work.
Pataky et al. [6] used dynamic plantar pressure data, picture
processing, and feature extraction to achieve high subject rec-
ognition accuracy (99.6%). Their discovery highlighted the
uniqueness of intersubject pressure patterns, implying that
foot pressure-based recognition might have a broad range of
applications in the security and health industries. Gul et al.
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[7] implemented a 3D convolutional neural network architec-
ture for gait identification that employs a comprehensive
approach in the form of gait energy images (GEI). This simpli-
fied representation captures the shape and motion properties
of the human gait. OULP and CASIA-B, two of the biggest
openly accessible datasets with significant age and gender var-
iation, were used to test the network. Khokhlova et al. [8] sug-
gested a gait model based on data from the Kinect v.2 sensors;
these sensor-generated skeletal sequences are broken down
into repeated sections (gait cycles). The low-limb flexion char-
acteristics are then computed for each gait cycle using Kinect
orientation data. These characteristics are employed in a
machine learning-based gait model.

To become acquainted with the distinction between nor-
mal and pathological gait based on kinematic properties sensor,
an ensemble LSTM-based architecture is trained using data
from a group of people. Lee et al. [9] suggested a deep
learning-based gait-type classification technique that uses a
smart insole with different sensor clusters to analyses gait data,
including a pressure sensor cluster, a gyrosensor cluster, and an
acceleration sensor cluster. Using a deep convolutional neural
network (DCNN), the feature of the gait pattern was extracted.
Experiments demonstrated that the developed technique has a
greater than 90% recognition accuracy for seven different gait
types (walking, running, stair climbing, hill descending, stair
descending, fast walking, and hill-climbing). They were using
a machine learning approach; Farah et al. [10] detect gait from
thigh kinematics. During walking, 31 able-bodied subjects were
measured for thigh angular velocity, knee angle, and thigh
acceleration (10 strides each). The characteristics were
retrieved using a 0.1-second sliding window after splitting the
strides into loading response, swing, terminal swing, and
push-oft. The knee angle parameter was used to classify gait
phases with and without it. The Decision Tree J-48 with knee
angle properties was the best classifier, with the second-
highest categorization accuracy of 97.5 per cent and the least
MAE (mean absolute error) of 0.014. Based on deep learning
evaluation of sagittal knee-joint angle obtained by one electro-
goniometer, Di Nardo et al. [11] propose a novel method for
binary gait phase categorization and gait event prediction. Neu-
ral networks were used by Horsak et al. [12] to separate imitate
gait (e.g., leg length disparity) using features from lower-leg
joint-angle data. In contrast, Manap et al. [13] used force plat-
form recordings of foot-ground reaction forces to classify nor-
mal and diseased gait. The dataset used a pressure-based sensor
for walking, and it is classified using kernel-based principal
component analysis (KPCA) and SVM in [14]. However, when
data is projected on orthogonal axes while conserving the most
variance, this approach reflects fluctuations that are not useful
for walking classification. As a result, it is inappropriate to cat-
egorize data with several classes or variations in gait patterns.
All over, the above study suggest a need of highly effective auto-
mated method for gait abnormality detection with effective
results for early detection of abnormality in real time.

The main contribution of this paper is use of artificial
intelligence techniques for the classification of healthy and
pathological gait conditions of the patient based on ground
reaction force. The experimental outcomes show that the pro-
posed CNN architecture gives the highest average accuracy of



PPAR Research

91.62%. The proposed framework presents a promising step in
the direction of automatic categorization of abnormal gait.
Precision, F1 score, and sensitivity are performance evaluation
metrics used to evaluate the machine learning classifiers and
proposed deep learning architecture GaitRec-Net.

The key characteristics of the study are as follows:

(1) Artificial intelligence technology is used to classify
healthy and pathological conditions of the patient
based on ground reaction force

(2) A deep neural architectures 1-D GaitRec-Net archi-
tecture is proposed. A machine learning classifier,
SVM, KNN, and Naive Bayes, using 5-fold cross-
validation is used for binary classification (gait disor-
der and healthy control).

(3) An optimized layer, batch normalization, and drop-
out have been chosen for the suggested architecture
to minimize misclassification and overfitting issues

(4) The performance of the proposed model GaitRec-
Net CNN showed the highest accuracy of 91.624%
compared to other machine learning classifiers

The rest of this paper is structured as follows. The data used
in the paper is discussed in Section 2. The proposed methodol-
ogy is described in Section 3. The experiments and results are
covered in Section 4, while Section 5 wraps up the paper and
offers recommendations for future research reference.

2. Materials and Methodology

The proposed system is aimed at classifying the gait disorder
and healthy subjects from pressure-based data.

Data were obtained from both the healthy control and
the gait disorder patients after clinical and histopathological
evaluations. GaitRec is a preprocessed dataset that contains
75,732 bilateral trials. Before feeding the dataset, the prepro-
cessing such as data annotation, denoising, data normaliza-
tion, and substituting the NAN values with mean is done.
The dataset is divided into training and testing. The 5-fold
cross-validation is applied to evaluation by machine learning
(SVM, KNN, and Naive Bayes) and the proposed (GaitRec-
Net) deep learning architecture.

The proposed system’s schematic diagram is presented
in Figure 1. It is split into 3 parts for the automatic classifi-
cation of gait disorder. The first section is the data collection
and preprocessing, in which the GaitRec dataset is used after
proper preprocessing such as data annotation, data denois-
ing, and data normalization. The NAN value is substituted,
and the salient gait features are extracted, and statistically
based feature selection is performed using the extracted fea-
tures. The normalization and ranking procedures are then
applied to these selected salient gait features, followed by a
classification algorithm.

The second module is about training, and it employs an
n-fold cross-validation (CV). At random, the total samples
were split into n equal-sized subgroups. The rest of the n —
1 subset was used as a training set, with only one subset kept

as a test set for model validation. The cross-validation tech-
nique was then repeated » times. As a test set, each subset
was utilized exactly once because n was traditionally equal to
the number of courses; here, 5-fold CV is performed for a
thorough examination of the machine learning classifier and
the proposed GaitRec-Net architecture. Data is divided into
two sections for each fold: training and testing, with the classi-
fiers being trained and tested for each fold. The final categori-
zation outcome is calculated as a probability value of having a
gait problem or not, in the third module using the machine
learning classifier and proposed GaitRec-Net architecture.
The proposed GaitRec-Net architecture was compared to sev-
eral traditional machine learning techniques, which are widely
utilized to address classification issues in the intersubject
implementation. The remaining subsections go over the entire
process in great depth.

3. Dataset Description

The data considered in this study are from the currently avail-
able medical gait database and a unique pathological dataset
called GaitRec [12], which is kept by an Austrian Workers’
Compensation Board rehabilitation center (AUVA). The data
was collected between 2007 and 2018 while in clinical practice.
A physical therapist gathered GRF readings from 2085
patients with gait disorders (calcaneus, ankle, knee, and hip)
and samples from 161 healthy (N) based on each patient’s
known medical diagnosis, including men and women of vary-
ing physical features and gender. Patients having ligament
ruptures, joint replacement surgery, fractures, and other asso-
ciated diseases fall under the gait disorder (GD) categories.
One or more measurement sessions were completed by each
patient. Each session consisted of 8 recordings of two contin-
uous steps. In this study, each bilateral recording is known
as a trial. As a result, the used dataset includes 75,723 bilateral
trials, as shown in Table 1.

3.1. Data Collection and Preprocessing. Gait assessment was
conducted on a 10-meter pathway with 2 force plates (Kistler,
Type 9281B12) implanted in the middle. The force plates were
arranged in a row so that an individual could walk over them
by putting one foot on each plate. Subjects were asked to walk
without an assistive technology at a self-choose walking speed
on a 10-meter walkway with 2 force plates inserted in the mid-
dle to measure bilateral GRF (ground reaction force, which
occurs when the weight of the body acts vertically downward
on the ground). Figure 2 shows the data collection and labeling
process of the gait dataset.

People walked at 3 distinct rates (mean and variance, m/s).
Using a 2000 Hz sampling rate, the 3 analogue ground reac-
tion force signals (anterior-posterior, vertical, mediolateral,
and force elements) and the center of pressure (COP) were
transformed into digital data. In the force plate coordinate sys-
tem, COP and GRF were acquired. Raw feeds were only acces-
sible downsampled to 250Hz according to the center’s
internal standards. Prevent signal peaks and noise at begin-
ning and end of the signals, and all force sample was trans-
ferred to a 25N threshold, following which the COP was
computed. To minimize errors in COP computation at low
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FIGURE 1: Block diagram of the proposed system.
TABLE 1: Represent a total number of data in the GaitRec dataset.
. Sex . .
Class Subjects Male Female Body mass (kg) Mean Bilateral trials
Healthy (N) 211 104 107 73.9 15.6 7,755
Hip 450 373 77 82.4 15.6 12748
o Knee 625 426 199 84.3 18.6 19873
Gait disorder (GD)
Ankle 627 498 129 87.0 18.0 21386
Calcaneus 382 339 43 84.0 14.5 13970
Total 2295 1740 555 83.6 17.3 75,732
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FIGURE 2: Schematic of gait data collection.

force levels, the COP coordinates for the postprocessed dataset
were anterior-posterior, and mean-centered coordinates were
zero-centered. The processed signals were then time-
normalized to 100 per cent stance and filtered with a second-
order low-pass Butterworth filter with 20 Hz cut-off frequency
to minimize the noise. The amplitude values of the three force
components, namely, anterior-posterior (AP), mediolateral
(ML), and vertical (V), were expressed as a multiple of body
mass by dividing the force by the product of body mass times
acceleration due to gravity. The foot length determined
throughout each session, calculated as a product of foot length,
was used to normalize the COP waveforms from each trial.

In terms of annotation, a well-experienced physical thera-
pist manually annotated the dataset based on each patient’s
accessible medical diagnosis. The annotation labels are made
up of two strings joined by an underscore “X_xxx,” where “X
” stands for the general anatomical joint level where the ortho-
pedic impairment occurred. The second string (“xxx”) is joint-
dependent and provides a more thorough localization. The
classification in this research is based on postprocessed data.
The precision of the plates was not particularly verified during
the data-gathering period. The force plates and measuring
equipment, on the other hand, were examined and maintained

regularly throughout clinical practice. The forces that were
employed in the dataset are described in Table 2.

3.2. Classification Algorithm. In this subsection, four super-
vised algorithms: Naive Bayes, KNN, SVM, and a proposed
GaitRec architecture, are used for classification purpose,
where a set of the feature vector is given as an input for
training data and produces an inferred function, which can
be used for validating the test data. Here, in Naive Bayes,
normal distribution is estimated for each class by computing
the mean and standard deviation of the training data, a
Gaussian distribution (var_smoothing =1le—09) is widely
used to create the probabilistic model for biomechanical gait
data. The data is then assigned to the most likely class using
a decision rule [13]. Create a training database, ¢, and assign
it a class label, L. Following that, withLclasses labeled as N1,
N2,...., NL, each sample will be defined by ann-dimensional
vector,Y =Y1,Y2,---Yn, wherenrepresents the measured
characteristics,X1, X2, ---Xn, respectively, fitting the 1D
training data results in the creation of a Naive Bayes classi-
fier object. Following then, a new set will be assigned as
the classifier’s testing data. Each class testing dataset’s
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TaBLE 2: Description of postprocessed GaitRec dataset.

Variables

Description

Vertical GRF
Anterior-posterior GRF
Mediolateral GRF

COP anterior-posterior
COP mediolateral

Represent the postprocessed GRF

Represent the breaking and propulsive shear forces after they have been postprocessed

Mediolateral shear force after postprocessing

COP coordinate in walking direction after postprocessing

COP that has been postprocessed in mediolateral direction coordinates

posterior probability will be computed; based on the proba-
bility, the data is classified between healthy and gait disorder.

In general, SVM is one of the most used machine learn-
ing approaches used for gait classification. This is a feature-
based classifier that maximizes the margin between distinct
classes to create hyperplane borders and is based on Vapnik’s
statistical learning theory [14]; they treat the learning problem
as a quadratic optimization problem with a global optimum
and no local minima on the error surface. In this experiment,
linear kernel is used which plots a single data item in an M
-dimensional space (M—number of attributes), with the value
of each attribute being the value of a particular coordinate. It
can be done by finding the hyperplane that distinguishes the
two classes. The set of parameters used for SVM is kernel =
linear, C = 1.0, class_weight = none, and penalty = 12",

The third classifier is K-nearest neighbours (KNN) which
is a nonparametric technique categorized by the majority vote
of its neighbours. The object is classified as the most general
class among its K-nearest neighbours. The KNN classifier is
a frequently used machine learning method that is one of the
simplest. It decides whether to allocate a new point in the fea-
ture space to a certain class based on the similarity measure of
the distance between the analysed point and the K-nearest
neighbours (KNN). An object’s distance from its neighbours
is used to classify it, with the object being allocated to the most
common class among its K-nearest neighbours. Each item in a
multidimensional feature space is represented by position vec-
tors. Euclidean distance is utilized to calculate the distances
between training and test vectors. The set of parameters used

for KNN is neighbours =3, weight = uniform, metrics="
Minkowski , and p = 2.

3.3. Proposed GaitRec-Net Architecture. 1D CNN is widely
used for feature extraction and signal data categorization
because of the advancement of computer power and the huge
volume of labeled data. 1D CNNs are feed-forward networks
in which information passes from the input to the output in
only one way. In a 1D CNN, the input, usually a one-
dimensional tensor, is processed layer by layer. Convolutional
neural networks are advantageous for sequence classification
because they can learn directly from raw time series data,
reducing the requirement for domain knowledge to manually
generate input features. The model should learn an embedding
layer from the signal data and, in theory, perform similarly to
models trained on a dataset that has been artificially aug-
mented. The kernel slides overall spatial places in the input
“signal” when the convolution layer is used. Figure 3 repre-
sents the layers of the proposed architecture.

An input layer in the proposed 1D-GaitRec-Net archi-
tecture has a dimension of 505 1, and an output layer has
a dimension of 2. After multiple experiments, the metrics
(stride, filters, and kernel) were optimal. The network is set
up so that it learns from small, localised patterns in the gait
signal. Midlevel features are created by combining these tiny
and localised patterns. More sophisticated and high-level
characteristics are created by combining these midlevel fea-
tures. These characteristics are employed in the gait phase
detection classification job.

The suggested model’s filter convolves the input “signals”
by moving one unit at a time with padding. Numerous
response maps can be obtained by using multiple convolution
layers. In contrast to the previous machine learning manual
procedures, the convolution operation is considered the foun-
dation of a CNN architecture, where feature extraction occurs
automatically, saving time throughout the process. In this
model, there are three convolution layers, 2 maxpooling layers,
1 average pooling layer, 1 dropout layer, and 1 dense layer, as
mentioned in Table 3. Here, every convolutional layer with
10 * 10 kernel size and 100 * 200 filter size is followed by a
maxpooling layer having activation function ReLu, to capture
the nonlinear relationship of the features. The size of the input
is not changed by a ReLu layer. Rectified Linear Unit (ReLu)
activation meansAandBhave the same size, as represented
mathematically in equation ((1)).The ReLu activation function
is used in all of the layers until the last one.

B(N) = max (0, A(N)). (1)

The softmax activation function is used in the dense layer
to normalize the outputs into probabilities of the two classifi-
cations. The softmax function is based on Luce’s choice axiom
[15] and is represented mathematically in the following
equation:

Y(a)i _ kelxe“f . (2)

The weights are updated using the Adam optimizer. Fol-
lowing a convolution layer with ReLu activation, use a flatten
layer to eliminate all but one dimension. The dropout size is
0.5, and it is applied as the last layer to reduce overfitting.
Finally, a dense layer of two neurons depicts two types of peo-
ple: healthy and gait disorder. TensorFlow [16] and Keras [17]
APIs in Python 3 were used to create the above architecture.
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TaBLE 3: A proposed GaitRec-Net model summary with various parameters.
S. No. Layer (type) Output shape Kernel size Activation function Parameters
0 Input layer (None, 505, 1)
1 ConvlD (None, 496, 100) 10 ReLu 1100
2 MaxPooling1 D (None, 248, 100) — — 0
3 ConvlD (None, 48, 200) 10 ReLu 200200
4 MaxPooling1D (None, 24, 200) — — 0
5 ConvlD (None, 3, 400) 10 ReLu 800400
6 Global_average_poolingl D (None, 400) — — 0
7 Dropout (None, 400) — — 0
8 Dense (None, 2) Softmax 802
Nontrainable parameters 0
Trainable parameters 1,002,502
Total parameters 1,002,502

3.4. Hyperparameter Optimisation. The GaitRec-Net archi-
tecture uses 5-fold cross-validation with suitable hyperpara-
meter tuning. While training in every fold, the overfitting of
the data is avoided using early stopping conditions with 50
epochs. The hyperparameters utilized to train the developed
GaitRec-Net architecture for the categorization of healthy
and gait disorders are listed in Table 4.

Various parameters such as the batch size, padding, opti-
mizer, epoch, and loss based on early stop criteria have been
calculated experimentally through a series of experiments.
The binary crossentropy is being used together with Adam
(Adaptive Moment Estimation) optimization function for
loss calculation.

4. Experimental Results

The recently Gait-Rec dataset was split into a binary classifi-
cation for training three machine learning classifiers and a
proposed CNN architecture. The presented GaitRec-Net
architecture was trained on training data and validated on
test data using fine-tuned parameters. The trained model
can predict whether the patient has a gait disorder or not.
The training is done on a workstation with twin Intel Xeon

TaBLE 4: Hyperparameters and their values.

Hyperparameter Value

Batch size 128

Epochs 100
Multiprocessing “False”
Padding “Valid”
Optimisation “Adam”

Early stopping 50 epochs

Loss “Binary crossentropy”

Platinum 8168, 2.7 GHz, 24-cores, and 64 GB RAM running
64-bit Windows 10 Pro. The graphics card is a 16X NVI-
DIA® Tesla® V100 with 512 GB of total graphics memory.
In the Jupyter Notebook environment, the programming
language utilized is Python version 3.6.9.

The various machine learning and proposed GaitRec-Net
approaches for gait disorder classification are analysed using
5-fold cross-validation based on various performance metrics:
precision, accuracy, recall or sensitivity, and F1 score. These
performance matrices are obtained using true positive (TP),
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TaBLE 5: The confusion matrix for the proposed GaitRec-Net model on the GaitRec dataset.
1-fold 2-fold 3-fold 4-fold 5-fold

HC 98.71% 1.28% 98.63% 1.37% 98.54% 1.45% 98.65% 1.34% 99.11% 00.88%

GD 70.10% 29.10% 70.38% 29.61% 69.72% 30.27% 68.82% 31.17% 74.61% 25.39%
Ground truth

HC GD HC GD HC GD HC GD HC GD
Prediction Prediction Prediction Prediction Prediction

false negative (FN), false positive (FP), and true negative (TN), .
which can be calculated using the obtained confusion matrices i Test | Train | Train | Train | Train —>KI
as shown in Table 5. To make the GaitRec-Net trained model 3 | tom [N i | Tein | T [—K2
more resilient, an exhaustive analysis is done utilizing the . . . . . .

5 . . o rain rain rain rain — ~— K= i
model’s performance matrix. In equations (3) to (6), the g s ‘ = ‘ : KEUSZ K
matrix components are specified on which the model’s perfor- Z | mrin | Train | Train | Test | Train [—Kd
mance is assessed. l Train Train Train Train Test [K5

pr= P 1000, (3)
(TP + EP)
TP
Re= TP 1000, (4)
(TP +FN)
Prx R
Fl. =2x % x 100%, (5)
r

TP+ TN

= 100%, 6
“~ Total number of gait signal 8 ° (©)

where TP (true positive) denotes the samples that are associ-
ated with the class of healthy condition that are correctly clas-
sified as belonging to it, FP (false positive) represents the
samples that are associated with gait disorder and are incor-
rectly classified as belonging to the class of healthy condition.
TN (true negative) represents the samples which are actually
associated with the class healthy condition and are correctly
classified as belonging to gait disorder. FN (false negative) rep-
resents the samples that are actually associated with the class
of gait disorder but incorrectly classified as belonging to
healthy condition. Here, in the above-mentioned equations;
Pr denotes precision; Re denotes sensitivity; F1 denotes the
F1 score, which is the HM (harmonic mean) of sensitivity
and precision; and Ac denotes accuracy, which is the propor-
tion of TP + TN and a total number of gait signals.

In the initial step, the various machine learning techniques
and GaitRec architecture were trained and tested for classifica-
tion. For an extensive evaluation of the classifiers, data from
healthy control and gait disorder were fed to several algo-
rithms using the 5-fold cross-validation approach. The artifi-
cial intelligence algorithm performance cannot be explained
purely by splitting the dataset into separate training and test-
ing sets. Cross-validation is distinguished by the fact that it
employs all of the data points in the dataset, resulting in min-
imal bias. Dataset was split into 5-fold cross-validation, where
onefold is used for testing purposes, and another fourfold is
used for training purposes. During fivefolds, there was no data
sample collision in the testing set. Figure 4 represents the pro-
cess of fivefold cross-validation.

| Training dataset |

FIGURE 4: Fivefold cross-validation process.

In this paper, the dataset is tested and trained using the
proposed GaitRec-Net architecture and various machine
learning classifiers using 5-fold cross-validation. The data
were separated into five equal sections, where 70% is for the
training set, and the remaining 30% is used to test the model’s
effectiveness. For the performance test, the confusion matrix
and various performance measures such as precision, F1 score,
and recall are used. Each set’s training and testing results (loss
and accuracy) are evaluated. To determine its worth, the out-
come was also compared to existing methodologies.

The different output parameters of the proposed GaitRec-
Net model in the GaitRec dataset are explained in Table 6.
Other variables are used in a 5-fold cross-validation (validation
accuracy, validation loss, training accuracy, and training loss)
on that fold (epoch, validation samples, and training samples).
The Adam function is employed for optimization, with a learn-
ing rate of 0.001. The suggested model architecture has a total
of 1,002,502 trainable parameters. For each fold, the model is
trained using 100 epochs and a batch size of 128. For the Gai-
tRec dataset, the achieved average validation and training accu-
racies are 91.622% and 91.624%, respectively, and the obtained
average validation loss and training loss are 0.23186 and
0.24582, respectively. The suggested system correctly classified
gait signals as healthy and gait disorder with an average accu-
racy of 91.624%.

For both sets of training, Table 5 compares the ground-
truth labels to the confusion matrix for all 5-fold binary clas-
sification predictions (healthy condition and gait disorder).
In a 1D CNN, more training data leads to higher accuracy;
thus, more accuracy with a larger dataset is reflected in the
confusion matrix. In the performed experiment, fifth-fold
99.11% samples are correctly classified as healthy condition
and 74.61% samples are correctly classified for gait disorder
in comparison with other folds.

Table 7 represents different performance matrices such as
sensitivity, precision, and F1 score of the proposed deep learn-
ing architecture (GaitRec-Net) that are used for the
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TaBLE 6: Fivefold cross-validation result of GaitRec-Net architecture on the GaitRec dataset.

Fold Training samples Valid samples Loss Ac. Valid loss Valid Ac. Total epochs
1 271992 30936 0.2299 0.9169 0.2999 0.9168 52
2 271960 30968 0.2352 0.9157 0.2351 0.9157 43
3 271862 31066 0.2335 09154 0.2334 09154 49
4 271774 31154 0.2299 09171 0.2299 09171 58
5 272093 30835 0.2308 0.9161 0.2308 0.9161 44

Average: 0.23186 0.91624 0.24582 0.91622 49.2

TaBLE 7: Fivefold cross-validation result on the GaitRec dataset.
HC GD

Fold Pr Re F1 Pr Re Fl1
1 0.73 0.33 0.42 0.93 0.99 0.96
2 0.71 0.30 0.42 0.92 0.99 0.95
3 0.70 0.30 0.42 0.93 0.99 0.95
4 0.73 0.31 0.44 0.93 0.99 0.96
5 0.77 0.25 0.38 0.92 0.99 0.96

TaBLE 8: The average accuracy of classifiers at each fold.
SN Classifier Onefold Twofold Threefold Fourfold Fivefold Accuracy (%)
1 SVM 90.01 90.14 89.98 89.88 89.98 89.998
2 NB 55.29 55.16 55.24 55.33 55.20 55.244
3 KNN 91.28 91.24 91.34 91.32 91.30 91.296
4 GaitRec-Net 91.68 91.57 91.54 91.71 91.61 91.622
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F1GURE 5: The plot of (a) training accuracy vs. validation accuracy in each fold. (b) Accuracy vs. epoch in each fold.

classification of gait signals on the GaitRec free-access dataset
for all 5-fold cross-validation, where the highest precision of
healthy control is 77% at fold five, the highest recall is 33%
at fold one, and the highest F1 score is 44% at fold four. For

gait disorder, the highest precision is 93% at fold one, three,
and four; the highest recall is 99% on each fold; and the highest
F1 score is 96% at fold one, four, and five. Average accuracy of
each classifier with respect to each fold is presented in Table 8.
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TaBLE 9: State of the art of previous work.

Reference Dataset Methodology NO" of Classification & accuracy
subjects
Binary class
[19] Private dataset Logistic regression; SVM & MARS 8 MARS = 88.3%; logistic regression = 68.5%
& SVM = 84.8%
[20] MEC data SVM 58 83.3%
Binary class
. CNN =91.9%; SVM =67.6% & KNN =48.7%
[18] Private dataset PCA + (SVM, KNN) & CNN 37 .
Multiclass
CNN =83.8%; SVM =51.4% & KNN =32.4%
Binary class
. . Linear SVM =90.8%; RBF SVM =89.1%
[21] Private dataset PCA +linear SVM; RBF SVM 440 .
Multiclass
Linear SVM =54.3; RBF SVM =51.2%
. Multiclass
[22] Private dataset KPCA + (SVM; ANN; random forest[RF]) 239

Proposed method GaitRec dataset

SVM; KNN; Naive Bayes; 1D CNN

SVM =89%; ANN =90% & RF=73%
Binary class

SVM =89.998%; KNN =91.296%; Naive
Bayes =55.244% & 1D CNN =91.624%

2295

Machine learning classifiers such as SVM, Naive Bayes,
and KNN are also trained on the same data configuration with
70% for training and the remaining 30% to test the model.
Fivefold CV is applied to these classifiers. The various accura-
cies at each fold are presented in Table 8. The proposed deep
learning model achieved the highest average accuracy of
91.624% compared to other machine learning classifiers.

Figure 5(a) shows the graph of training and validation
accuracy on each fold of 5-fold CV in the given GaitRec
dataset. The solid lines show the training accuracy, and the
dotted lines show the validation accuracy. Figure 5(b) shows
the graph of training accuracy on each epoch of GaitRec-Net
architecture at each 5-fold cross-validation.

Table 9 shows the comparison table of previous work
and the proposed work for binary classification of gait disor-
der using pressure-based data. Fricke et al. [18] reported
higher accuracy of 91.9% on a CNN with 37 subjects. The
proposed method achieved 91.624% accuracy for test data.
This is a significant performance improvement, indicating
the GaitRec-Net network’s supremacy on gait data.

The performance of various machine learning techniques
and the proposed CNN architecture was analysed, and the
best-performing models were chosen as the final approach. To
avoid underfitting, ensure that the learning algorithm or
method fits the data well enough and achieves accurate results.
In order to avoid overfitting, resampling approaches were used
in this work to evaluate method accuracy while analysing
machine learning techniques. The most frequently used resam-
pling approach is n-fold cross-validation, which is the preferred
method in learning algorithms for testing model accuracy in
unrevealed data. It trains and tests the k-times model on various
subsets of training data to give an assessment of a model’s per-
formance using unseen data. The proposed deep learning-based
technique on 5-fold cross-validation yielded very accurate gen-
eralised results for the trained models.

5. Conclusion

In this research, an automatic deep learning framework was
proposed which classifies healthy and gait disorder. The pro-
posed GaitRec-Net is based on 1-dimensional convolutional
neural network architecture. The experiment involves three
machine learning classifiers and one proposed deep learning
architecture. The overall average classification accuracy of
the proposed architecture was 91.624% using 5-fold cross-
validation. The following are the three machine learning
algorithms, i.e., SVM (89.998%), Naive Bayes (55.244%),
and KNN (91.296%). The work reveals that the proposed
deep learning-based architecture may be used to build non-
invasive tools for the classification of gait in clinical settings.
Future research will concentrate on broadening the scope of
the study by including additional diseased populations and
improving classification accuracy and multiclass gait impair-
ment classification.
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