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Principal Component Analyses 
(PCA)‑based findings in population 
genetic studies are highly biased 
and must be reevaluated
Eran Elhaik

Principal Component Analysis (PCA) is a multivariate analysis that reduces the complexity of datasets 
while preserving data covariance. The outcome can be visualized on colorful scatterplots, ideally 
with only a minimal loss of information. PCA applications, implemented in well-cited packages like 
EIGENSOFT and PLINK, are extensively used as the foremost analyses in population genetics and 
related fields (e.g., animal and plant or medical genetics). PCA outcomes are used to shape study 
design, identify, and characterize individuals and populations, and draw historical and ethnobiological 
conclusions on origins, evolution, dispersion, and relatedness. The replicability crisis in science has 
prompted us to evaluate whether PCA results are reliable, robust, and replicable. We analyzed twelve 
common test cases using an intuitive color-based model alongside human population data. We 
demonstrate that PCA results can be artifacts of the data and can be easily manipulated to generate 
desired outcomes. PCA adjustment also yielded unfavorable outcomes in association studies. PCA 
results may not be reliable, robust, or replicable as the field assumes. Our findings raise concerns 
about the validity of results reported in the population genetics literature and related fields that place 
a disproportionate reliance upon PCA outcomes and the insights derived from them. We conclude that 
PCA may have a biasing role in genetic investigations and that 32,000-216,000 genetic studies should 
be reevaluated. An alternative mixed-admixture population genetic model is discussed.

The ongoing reproducibility crisis, undermining the foundation of science1, raises various concerns ranging 
from study design to statistical rigor2,3. Population genetics is confounded by its utilization of small sample sizes, 
ignorance of effect sizes, and adoption of questionable study designs. The field is relatively small and may involve 
financial interests4–6 and ethical dilemmas7,8. Since biases in the field rapidly propagate to related disciplines like 
medical genetics, biogeography, association studies, forensics, and paleogenomics in humans and non-humans 
alike, it is imperative to ask whether and to what extent our most elementary tools satisfy risk criteria.

Principal Component Analysis (PCA) is a multivariate analysis that reduces the data’s dimensionality while 
preserving their covariance. When applied to genotype bi-allelic data, typically encoded as AA, AB, and BB, PCA 
finds the eigenvalues and eigenvectors of the covariance matrix of allele frequencies. The data are reduced to a 
small number of dimensions termed principal components (PCs); each describes a decreased proportion of the 
genomic variation. Genotypes are then projected onto space spanned by the PC axes, which allows visualizing 
the samples and their distances from one another in a colorful scatter plot. In this visualization, sample overlap 
is considered evidence of identity, due to common origin or ancestry9,10. PCA’s most attractive property for 
population geneticists is that the distances between clusters allegedly reflect the genetic and geographic distances 
between them. PCA also supports the projection of points onto the components calculated by a different dataset, 
presumably accounting for insufficient data in the projected dataset. Initially adapted for human genomic data in 
196311, the popularity of PCA has slowly increased over time. It was not until the release of the SmartPCA tool 
(EIGENSOFT package)10 that PCA was propelled to the front stage of population genetics.

PCA is used as the first analysis of data investigation and data description in most population genetic analyses, 
e.g., Refs.12–15. It has a wide range of applications. It is used to examine the population structure of a cohort or 
individuals to determine ancestry, analyze the demographic history and admixture, decide on the genetic simi-
larity of samples and exclude outliers, decide how to model the populations in downstream analyses, describe 
the ancient and modern genetic relationships between the samples, infer kinship, identify ancestral clines in the 
data, e.g., Refs.16–19, detect genomic signatures of natural selection, e.g., Ref.20 and identify convergent evolution21. 
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PCA or PCA-like tools are considered the ‘gold standard’ in genome-wide studies (GWAS) and GWAS meta-
analyses. They are routinely used to cluster individuals with shared genetic ancestry and detect, quantify, and 
adjust for population structure22. PCA is also used to identify cases, controls23–25, and outliers (samples or data)17, 
and calculate population structure covariates26. The demand for large sample sizes has prompted researchers to 
“outsource” analyses to direct-to-consumer companies, which employ discretion in their choice of tools, methods, 
and data—none of which are shared—and return the PCA loadings and other “summary statistics”27,28. Loadings 
are also offered by databases like gnomAD29 and the UK Biobank30. PCA serves as the primary tool to identify the 
origins of ancient samples in paleogenomics14, to identify biomarkers for forensic reconstruction in evolutionary 
biology31, and geolocalize samples32. As of April 2022,  32,000-216,000 genetic papers employed PC scatterplots 
to interpret genetic data, draw historical and ethnobiological conclusions, and describe the evolution of various 
taxa from prehistorical times to the present—no doubt Herculean tasks for any scatterplot.

PCA’s widespread use could not have been achieved without several key traits that distinguish it from other 
tools—all tied to the replicability crisis. PCA can be applied to any numerical dataset, small or large, and it always 
yields results. It is parameter-free and nearly assumption-free9. It does not involve measures of significance, effect 
size evaluations, or error estimates. It is, by large, a “black box” harboring complex calculations that cannot be 
traced. Excepting the squared cosines, which is not commonly used, the proportion of explained variance of 
the data is the single quantity to evaluate the quality of PCA. There is no consensus on the number of PCs to 
analyze. Price et al.10 recommended using 10 PCs, and Patterson et al.9 proposed the Tracy–Widom statistic to 
determine the number of components. However, this statistic is highly sensitive and inflates the number of PCs. 
In practicality, most authors use the first two PCs, which are expected to reflect genetic similarities that are dif-
ficult to observe in higher PCs. The remaining authors use an arbitrary number of PCs or adopt ad hoc strategies 
to aid their decision, e.g., Ref.33. Pardiñas et al.34, for example, selected the first five PC “as recommended for most 
GWAS approaches” and principal components 6, 9, 11, 12, 13, and 19, whereas Wainschtein et al.35 preferred 
the top 280 PCs. There are no proper usage guidelines for PCA, and “innovations” toward less restrictive usage 
are adopted quickly. Recently, even the practice of displaying the proportion of variation explained by each PC 
faded as those proportions dwarfed14. Since PCA is affected by the choice of markers, samples, populations, the 
precise implementation, and various flags implemented in the PCA packages—each has an unpredictable effect 
on the results—replication cannot be expected.

In population genetics, PCA and admixture-like analyses are the de-facto standards used as non-parametric 
genetic data descriptors. They are considered the hammer and chisel of genetic analyses36. Lawson et al.37 and 
Elhaik and Graur38 commented on the misuse of admixture-like tools and argued that they should not be used to 
draw historical conclusions. Thus far, no investigation has thoroughly explored PCA usage and accuracy across 
most common study designs.

Because PCA fulfills many of the risk criteria for reproducibility2 and its typical usage as a first hypothesis 
generator in population genetic studies, this study will assess its reliability, robustness, and reproducibility. As 
PCA is a mathematical model employed to describe the unknown truth, testing its accuracy requires a convinc-
ing model where the truth is unambiguous. For that, we developed an intuitive and simple color-based model 
(Fig. 1A). Because all colors consist of three dimensions—red, green, and blue—they can be plotted in a 3D plot 
representing the true colors (Fig. 1B). Applied to these data, PCA reduces the dataset to two dimensions that 
explain most of the variation. This allows us to visualize the true colors (still using their 3D values) in PCA’s 2D 
scatterplot, measure the distances of the PCs from each other, and compare them to their true 3D distances. 
We can thereby generate “color populations,” always consisting of 3 variables, analogous to SNPs, to aid us in 
evaluating the accuracy of PCA. If PCA works well, we expect it to properly represent the true distances of the 
colors from one another in a 2D plot (i.e., light Green should cluster near Green; Red, Green, and Blue should 
cluster away from each other). Let us agree that if PCA cannot perform well in this simplistic setting, where 
subpopulations are genetically distinct (FST is maximized), and the dimensions are well separated and defined, 
it should not be used in more complex analyses and certainly cannot be used to derive far-reaching conclusions 
about history. In parallel, we analyzed genotype data of modern and ancient human populations. Because the 
inferred population structure and population history may be debatable, we asked whether and to what extent 
PCA can generate contradictory results and lead to absurd conclusions (reductio ad absurdum), whether seem-
ingly “correct” conclusions can be derived without prior knowledge (cherry-picking or circular reasoning), and 
whether PCA grants a posteriori knowledge independent of experience (a priori). Let us also agree that if the 
answer to any of those questions is negative, PCA is of no use to population geneticists.

We carried out an extensive empirical evaluation of PCA through twelve test cases, each assessing a typical 
usage of PCA using color and human genomic data. In all the cases, we applied PCA according to the standards 
in the literature but modulated the choice of populations, sample sizes, and, in one case, the selection of markers. 
The PCA tool used here yields near-identical results to the PCA implemented in EIGENSOFT (Supplementary 
Figs. S1–S2). To illustrate the way PCA can be used to support multiple opposing arguments in the same debate, 
we constructed fictitious scenarios with parallels to many investigations in human ancestry that are shown in 
boxes. We reasoned that if PCA results are irreproducible, contradictory, or absurd, and if they can be manipu-
lated, directed, or controlled by the experimenter, then PCA must not be used for genetic investigations, and an 
incalculable number of findings based on its results should be reevaluated. We found that this is indeed the case.

Results
The near‑perfect case of dimensionality reduction.  Applying principal component analysis (PCA) to 
a dataset of four populations sampled evenly: the three primary colors (Red, Green, and Blue) and Black illus-
trate a near-ideal dimension reduction example. PCA condensed the dataset of these four samples from a 3D 
Euclidean space (Fig. 1B) into three principal components (PCs), the first two of which explained 88% of the var-
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Figure 1.   Applying PCA to four color populations. (A) An illustration of the PCA procedure (using the 
singular value decomposition (SVD) approach) applied to a color dataset consisting of four colors (nAll = 1). (B) 
A 3D plot of the original color dataset with the axes representing the primary colors, each color is represented 
by three numbers (“SNPs”). After PCA is applied to this dataset, the projections of color samples or populations 
(in their original color) are plotted along their first two eigenvectors (or principal components [PCs]) with (C) 
nAll = 1, (D) nAll = 100, and (E) nAll = 10,000. The latter two results are identical to those of (C). Grey lines and 
labels mark the Euclidean distances between the color populations calculated across all three PCs.
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iation and can be visualized in a 2D scatterplot (Fig. 1C). Here, and in all other color-based analyses, the colors 
represent the true 3D structure, whereas their positions on the 2D plots are the outcome of PCA. Although PCA 
correctly positioned the primary colors at even distances from each other and Black, it distorted the distances 
between the primary colors and Black (from 1 in 3D space to 0.82 in 2D space). Thereby, even in this limited and 
near-perfect demonstration of data reduction, the observed distances do not reflect the actual distances between 
the samples (which are impossible to recreate in a 2D dataset). In other words, distances between samples in a 
reduced dimensionality plot do not and cannot be expected to represent actual genetic distances. Evenly increas-
ing all the sample sizes yields identical results irrespective of the sample size (Fig. 1D,E).

When analyzing human populations, which harbor most of the genomic variation between continental popu-
lations (12%) with only 1% of the genetic variation distributed within continental populations39, PCA tends to 
position Africans, Europeans, and East Asians at the corners of an imaginary triangle, which closely resembles 
our color-population model and illustration. Analyzing continental populations, we obtained similar results 
for two even-sized sample datasets (Fig. 2A,C) and their quadrupled counterparts (Fig. 2B,D). As before, the 
distances between the populations remain similar (Fig. 2A–D), demonstrating that for same-sized populations, 
sample size does not contribute to the distortion of the results if the increase in size is proportional.

The case of different sample sizes.  The extent to which different-sized populations produce results with 
conflicting interpretations is illustrated through a typical study case in Box 1.

Note that unlike in Figs. 1C and 3A, where Black is in the middle, in other figures, the overrepresentation of 
certain “alleles” (e.g., Fig. 4B) shifts Black away from (0,0). Intuitively, this can be thought of as the most common 
“allele” (Green in Fig. 4B) repelling Black, which has three null or alternative “alleles”.

PCA is commonly reported as yielding a stable differentiation of continental populations (e.g., Africans vs. 
non-Africans, Europeans vs. Asians, and Asians vs. Native Americans or Oceanians, on the primary PCs40–43). 
This prompted prehistorical inferences of migrations and admixture, viewing the PCA results that position 
Africans, East Asians, and Europeans in three corners of an imaginary triangle as representing the post Out Of 
Africa event followed by multiple migrations, differentiation, and admixture events. Inferences for Amerindians 
or Aboriginals typically follow this reconstruction. For instance, Silva-Zolezzi et al.42 argued that the Zapote-
cos did not experience a recent admixture due to their location on the Amerindian PCA cluster at the Asian end 
of the European-Asian cline.

Here we show that the appearance of continental populations at the corners of a triangle is an artifact of the 
sampling scheme since variable sample sizes can easily create alternative results as well as alternative “clines”. 
We first replicated the triangular depiction of continental populations (Fig. 3A,B) before altering it (Fig. 3C–F). 
Now, East Asians appear as a three-way admixed group of Africans, Europeans, and Melanesians (Fig. 3C), 
whereas Europeans appear on an African-East Asian cline (Fig. 3D). Europeans can also be made to appear in 
the middle of the plot as an admixed group of Africans-Asians-Oceanians origins (Fig. 3E), and Oceanians can 

Figure 2.   Testing the effect of even-sample sizes using two population sets. The top plots show nine populations 
with n = 50 (A) and n = 188 (B). The bottom plots show a different set of nine populations with n = 50 (C) and 
n = 192 (D). In both cases, increasing the sample size did not alter the PCs (the y-axis flip between (C) and (D) is 
a known phenomenon).
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cluster with (Fig. 3F) or without East Asians (Fig. 3E). The latter depiction maximizes the proportion of explained 
variance, which common wisdom would consider the correct explanation. According to some of these results, 
only Europeans and Oceanians (Fig. 3C) or East Asians and Oceanians (Fig. 3D) experienced the Out of Africa 
event. By contrast, East Asians (Fig. 3C) and Europeans (Fig. 3D) may have remained in Africa. Contrary to 
Silva-Zolezzi et al.’s42 claim, the same Mexican–American cohort can appear closer to Europeans (Fig. 3A) or as 
a European-Asian admixed group (Fig. 3B). It is easy to see that none of those scenarios stand out as more or 
less correct than the other ones.

Reich et al.44 presented further PCA-based “evidence” to the ‘out of Africa’ scenario. Applying PCA to Afri-
cans and non-Africans, they reported that non-Africans cluster together at the center of African populations 
when PC1 was plotted against PC4 and that this “rough cluster[ing]” of non-Africans is “about what would be 
expected if all non-African populations were founded by a single dispersal ‘out of Africa.’” However, observing 
PC1 and PC4 for Supplementary Fig. S3, we found no “rough cluster” of non-Africans at the center of Africans, 
contrary to Reich et al.’s44 claim. Remarkably, we found a “rough cluster” of Africans at the center of non-Africans 
(Supplementary Fig. S3C), suggesting that Africans were founded by a single dispersal ‘into Africa’ by non-
Africans. We could also infer, based on PCA, either that Europeans never left Africa (Supplementary Fig. S3D), 
that Europeans left Africa through Oceania (Supplementary Fig. S3B), that Asians and Oceanians never left 
Europe (or the other way around) (Supplementary Fig. S3F), or, since all are valid PCA results, all of the above. 
Unlike Reich et al.44, we do not believe that their example “highlights how PCA methods can provide evidence of 
important migration events”. Instead, our examples (Fig. 3, Supplementary Fig. S3) show how PCA can be used 
to generate conflicting and absurd scenarios, all mathematically correct but, obviously, biologically incorrect 
and cherry-pick the most favorable solution. This is an example of how vital a priori knowledge is to PCA. It is 
thereby misleading to present one or a handful of PC plots without acknowledging the existence of many other 
solutions, let alone while not disclosing the proportion of explained variance.

Box 1: Studying the origin of Black using the primary colors.  Three research groups sought to 
study the origin of Black. A previous study that employed even sample-sized color populations alluded that 
Black is a mixture of all colors (Fig. 1B–D). A follow-up study with a larger sample size (nRed = nGreen = nBlue = 10) 
and enriched in Black samples (nBlack = 200) (Fig. 4A) reached the same conclusion. However, the Black-is-
Blue group suspected that the Blue population was mixed. After QC procedures, the Blue sample size was 
reduced, which decreased the distance between Black and Blue and supported their speculation that Black 
has a Blue origin (Fig. 4B). The Black-is-Red group hypothesized that the underrepresentation of Green, 
compared to its actual population size, masks the Red origin of Black. They comprehensively sampled the 
Green population and showed that Black is very close to Red (Fig. 4C). Another Black-is-Red group contrib-
uted to the debate by genotyping more Red samples. To reduce the bias from other color populations, they 
kept the Blue and Green sample sizes even. Their results replicated the previous finding that Black is closer 
to Red and thereby shares a common origin with it (Fig. 4D). A new Black-is-Green group challenged those 
results, arguing that the small sample size and omission of Green samples biased the results. They increased 
the sample sizes of the populations of the previous study and demonstrated that Black is closer to Green 

Figure 3.   PCA of uneven-sized African (Af), European (Eu), Asian (As), and Mexican-Americans (Ma) or 
Oceanian (Oc) populations. Fixing the sample size of Mexican-Americans and altering the sample sizes of other 
populations: (A) nAf = 198; nEu = 20; nAs = 483; nMa = 64 and (B) nAf = 20; nEu = 343; nMa = 20; nAm = 64 changes 
the results. An even more dramatic change can be seen when repeating this analysis on Oceanians: (C) nAf = 5; 
nEu = 25; nAs = 10; nOce = 20 and (D) nAfr = 5; nEu = 10; nAs = 15; nOc = 20 and when altering their sample sizes: (E) 
nAf = 98; nEu = 25; nAs = 150; nOc = 24 and (F) nAf = 98; nEu = 83; nAs = 30; nOc = 15.
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(Fig. 4E). The Black-is-Blue group challenged these findings on the grounds of the relatively small sample 
sizes that may have skewed the results and dramatically increased all the sample sizes. However, believing 
that they are of Purple descent, Blue refused to participate in further studies. Their relatively small cohort 
was explained by their isolation and small effective population size. The results of the new sampling scheme 
confirmed that Black is closer to Blue (Fig. 4F), and the group was praised for the large sample sizes that, no 
doubt, captured the actual variation in nature better than the former studies.

The case of one admixed population.  The question of who the ancestors of admixed populations are 
and the extent of their contribution to other groups is at the heart of population genetics. It may not be surpris-
ing that authors hold conflicting views on interpreting these admixtures from PCA. Here, we explore how an 
admixed group appears in PCA, whether its ancestral groups are identifiable, and how its presence affects the 
findings for unmixed groups through a typical study case (Box 2).

To understand the impact of parameter choices on the interpretation of PCA, we revisited the first large-
scale study of Indian population history carried out by Reich et al.45. The authors applied PCA to a cohort of 
Indians, Europeans, Asians, and Africans using various sample sizes that ranged from 2 (Srivastava) (out of 132 
Indians) to 203 (Yoruban) samples. After applying PCA to Indians and the three continental populations to 
exclude “outliers” that supposedly had more African or Asian ancestries than other samples, PCA was applied 
again in various settings.

At this point, the authors engaged in circular logic as, on the one hand, they removed samples that appeared 
via PCA to have experienced gene flow from Africa (their Note 2, iii) and, on the other hand, employed a priori 
claim (unsupported by historical documents) that “African history has little to do with Indian history” (which 
must stand in sharp contrast to the rich history of gene flow from Utah (US) residents to Indians, which was 
equally unsupported). Reich et al. provided no justification for the exact protocol used or any discussion about 
the impact of using different parameter values on resulting clusters. They then generated a plethora of conflict-
ing PCA figures, never disclosing the proportion of explained variance along with the first four PCs examined. 
They then inferred based on PCA that Gujarati Americans exhibit no “unusual relatedness to West Africans 
(YRI) or East Asians (CHB or JPT)” (Supplementary Fig. S4)45. Their concluding analysis of Indians, Asians, and 
Europeans (Fig. 4)45 showed Indians at the apex of a triangle with Europeans and Asians at the opposite corners. 
This plot was interpreted as evidence of an “ancestry that is unique to India” and an “Indian cline”. Indian groups 
were explained to have inherited different proportions of ancestry from “Ancestral North Indians” (ANI), related 
to western Eurasians, and “Ancestral South Indians” (ASI), who split from Onge. The authors then followed up 
with additional analyses using Africans as an outgroup, supposedly confirming the results of their selected PCA 
plot. Indians have since been described using the terms ANI and ASI.

In evaluating the claims of Reich et al.45 that rest on PCA, we first replicated the finding of the alleged 
“Indian cline” (Fig. 5A). We next garnered support for an alternative cline using Indians, Africans, and Euro-
peans (Fig. 5B). We then demonstrated that PCA results support Indians to be European (Fig. 5C), East Asians 
(Fig. 5D), and Africans (Fig. 5E), as well as a genuinely European-Asian, admixed population (Fig. 5F). Whereas 
the first two PCs of Reich et al.’s primary figure explain less than 8% of the variation (according to our Fig. 5A, 

Figure 4.   PCA of uneven-sized samples of four color populations. (A) nRed = nGreen = nBlue = 10; nBlack = 200, 
(B) nRed = nGreen = 10; nBlue = 5; nBlack = 200, (C) nRed = 10; nGreen = 200; nBlue = 50; nBlack = 200 (D) nRed = 25; 
nGreen = nBlue = 50; nBlack = 200, (E) nRed = 300; nGreen = 200; nBlue = nBlack = 300, and (F) nRed = 1000; nGreen = 2000; 
nBlue = 300; nBlack = 2000. Scatter plots show the top two PCs. The numbers on the grey bars reflect the Euclidean 
distances between the color populations over all PCs. Colors include Red [1,0,0], Green [0,1,0], Blue [0,0,1], 
and Black [0,0,0].
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Reich et al.’s Fig. 4 does not report this information), four out of five of our alternative depictions explain 8–14% 
of the variation. Our results also expose the arbitrariness of the scheme used by Reich et al. and show how 
radically different clustering can be obtained merely by manipulating the non-Indian populations used in the 
analyses. Our results also question the authors’ choice in using an analysis that explained such a small proportion 
of the variation (let alone not reporting it), yielded no support for a unique ancestry to India, and cast doubt on 
the reliability and usefulness of the ANI-ASI model to describe Indians provided their exclusive reliability on 
a priori knowledge in interpreting the PCA patters. Although supported by downstream analyses, the plurality 
of PCA results could not be used to support the authors’ findings because using PCA, it is impossible to answer 
a priori whether Africa is in India or the other way around (Fig. 5E). We speculate tat the motivation for Reich 
et al.’s strategy was to declare Africans an outgroup, an essential component of D-statistics. Clearly, PCA-based 
a posteriori inferences can lead to errors of Colombian magnitude.

To evaluate the extent of deviation of PCA results from genetic distances, we adopted a simple genetic dis-
tance scheme where we measured the Euclidean distance between allelic counts (0,1,2) in the same data used 
for PCA calculations. We are aware of the diversity of existing genetic distance measures. However, to the best 
of our knowledge, no study has ever shown that PCA outcomes numerically correlate with any genetic distance 
measure, except in very simple scenarios and tools like ADMIXTURE-like tools, which, like PCA, exhibit high 
design flexibility. Plotting the genetic distances against those obtained from the top two PCs shows the deviation 
between these two measures for each dataset. We found that all the PC projections (Fig. 6) distorted the genetic 
distances in unexpected ways that differ between the datasets. PCA correctly represented the genetic distances for 
a minority of the populations, and just like the most poorly represented populations—none were distinguishable 
from other populations. Moreover, populations that clustered under PCA exhibited mixed results, questioning 
the accuracy of PCA clusters. Although it remains unclear which sampling scheme to adopt, neither scheme is 
genetically accurate. These results further question the genetic validity of the ANI-ASI model.

We are aware that PCA disciples may reject our reductio ad absurdum argument and attempt to read into these 
results, as ridiculous as they may be, a valid description of Indian ancestry. For those readers, demonstrating the 
ability of the experimenter to generate near-endless contradictory historical scenarios using PCA may be more 
convincing or at least exhausting. For brevity, we present six more such scenarios that show PCA support for 
Indians as a heterogeneous group with European admixture and Mexican-Americans as an Indian-European 
mixed population (Supplementary Fig. S4A), Mexican–American as an admixed African-European group with 
Indians as a heterogeneous group with European admixture (Supplementary Fig. S4B), Indians and Mexican-
Americans as European-Japanese admixed groups with common origins and high genetic relatedness (Supple-
mentary Fig. S4C), Indians and Mexican-Americans as European-Japanese admixed groups with no common 
origins and genetic relatedness (Supplementary Fig. S4D), Europans as Indian and Mexican-Americans admixed 
group with Japanese fully cluster with the latter (Supplementary Fig. S4E), and Japanese and Europeans cluster 
as an admixed Indian and Mexican-Americans groups (Supplementary Fig. S4F). Readers are encouraged to use 
our code to produce novel alternative histories. We suspect that almost any topology could be obtained by find-
ing the right set of input parameters. In this sense, any PCA output can reasonably be considered meaningless.

Contrary to Reich et al.’s claims, a more common interpretation of PCA is that the populations at the corners 
of the triangle are ancestral or are related to the mixed groups within the triangle, which are the outcome of 
admixture events, typically referred to as “gradient” or “clines45”. However, some authors held different opinions. 

Figure 5.   Studying the origin of Indians using PCA. (A) Replicating Reich et al.’s 45 results using nEu = 99; 
nAs = 146; nInd = 321. Generating alternative PCA scenarios using: (B) nAf = 178; nEu = 99; nInd = 321, (C) nAf = 400; 
nEu = 40; nAs = 100; nInd = 321, (D) nAf = 477; nEu = 253; nAs = 23; nInd = 321, (E) nAf = 25; nEu = 220; nAs = 490; 
nInd = 320, and (F) nAf = 30; nEu = 200; nAs = 50; nInd = 320.
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Studying the African component of Ethiopian genomes, Pagani et al.46 produced a PC plot showing Europeans 
(CEU), Yoruba (western African), and Ethiopians (Eastern Africans) at the corners of a triangle (Supplementary 
Fig. S4)46. Rather than suggesting that the populations within the triangle (e.g., Egyptians, Spaniards, Saudi) 
are mixtures of these supposedly ancestral populations, the authors argued that Ethiopians have western and 
eastern African origins, unlike the central populations with “different patterns of admixture”. Obviously, nei-
ther interpretation is correct. Reich et al.’s interpretation does not explain why CEUs are not an Indian-African 
admix nor why Africans are not a European-Indian admix and is analogous to arguing that Red has Green and 
Blue origins (Fig. 1). Pagani et al.’s interpretation is a tautology, ignores the contribution of non-Africans, and 
is analogous to arguing that Red has Red and Green origins. We carried out forward simulations of populations 
with various numbers of ancestral populations and found that admixture cannot be inferred from the positions 
of samples in a PCA plot (Supplementary Text 1).

In a separate effort to study the origins of AJs, Need et al.47 applied PCA to 55 Ashkenazic Jews (AJs) and 
507 non-Jewish Caucasians. Their PCA plot showed that AJs (marked as “Jews”) formed a distinct cluster from 
Europeans (marked as “non-Jews”). Based on these results, the authors suggested that PCA can be used to detect 
linkage to Jewishness. A follow-up PCA where Middle Eastern (Bedouin, Palestinians, and Druze) and Caucasus 
(Adygei) populations were included showed that AJs formed a distinct cluster that nested between the Adygei (and 
the European cluster) and Druze (and the Middle Eastern cluster). The authors then concluded that AJs might 
have mixed Middle Eastern and European ancestries. The proximity to the Adygei cluster was noted as interesting 
but dismissed based on the small sample size of the Adygei (n = 17). The authors concluded that AJ genomes carry 
an “unambiguous signature of their Jewish heritage, and this seems more likely to be due to their specific Middle 
Eastern ancestry than to inbreeding”. A similar strategy was employed by Bray et al.48 to claim that PCA “confirmed 
that the AJ individuals cluster distinctly from Europeans, aligning closest to Southern European populations along 
with the first principal component, suggesting a more southern origin, and aligning with Central Europeans along 
the second, consistent with migration to this region.” Other authors49,50 made similar claims.

It is easy to show why PCA cannot be used to reach such conclusions. We first replicated Need et al.’s47 primary 
results (Fig. 7A), showing that AJs cluster separately from Europeans. However, such an outcome is typical when 
comparing Europeans and non-European populations like Turks (Fig. 7B). It is not unique to AJs, nor does it prove 
that they are genetically detectable. A slightly modified design shows that most AJs overlap with Turks in support 

Figure 6.   Comparing the genetic distances with PCA-based distances for the corresponding datasets of Fig. 5. 
Genetic and PCA (PC1 + PC2) distances between populations pairs (symbol pairs) and 2000 random individual 
pairs (grey dots) were calculated using Euclidean distances and normalized to range from 0 to 1. Population and 
individual pairs whose PC distances reflect their genetic distances are shown along the x = y dotted line. Note 
that the position of heterogeneous populations on the plot may deviate from that of their samples and that some 
populations are very small.
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of the Turkic (or Near Eastern) origin of AJs (Fig. 7C). We can easily refute our conclusion by including continental 
populations and showing that most AJs cluster with Iberians rather than Turks (Fig. 7D). This last design explains 
more of the variance than all the previous analyses together, although, as should be evident by now, it is not indica-
tive of accuracy. This analysis questions PCA’s use as a discriminatory genetic utility and to infer genetic ancestry.

There are several more oddities with the report of Need et al.47. First, they did not report the variance 
explained by their sampling scheme (it is, likely, ~1%, as in Fig. 7A). Second, they misrepresented the actual 
populations analyzed. AJs are not the only Jews, and Europeans are not the only non-Jews (Figs. 1, 7A)47. Finally, 
their dual interpretations of AJs as a mixed population of Middle Eastern origin are based solely on a priori belief: 
first, because most of the populations in their PCA are nested between and within other populations, yet the 
authors did not suggest that they are all admixed and second because AJs nested between Adygii and Druze51,52, 
both formed in the Near Eastern. The conclusions of Need et al.47 were thereby obtained based on particular 
PCA schemes and what may be preconceived ideas of AJs origins that are no more real than the Iberian origin of 
AJs (Fig. 7D). This is yet another demonstration (discussed in Elhaik36) of how PCA can be misused to promote 
ethnocentric claims due to its design flexibility.

Box 2: Studying the origin of Black using the primary and one secondary (admixed) color 
populations.  Following criticism on the sampling scheme used to study the origin of Black (Box 1), the 
redoubtable Black-is-Red group genotyped Cyan. Using even sample sizes, they demonstrated that Black is 
closer to Red (DBlack-Red = 0.46) (Fig. 8A), where D is the Euclidean distance between the samples over all three 
PCs (short distances indicate high similarity). The Black-is-Green school criticized their findings on the 
grounds that their Cyan samples were biased and their results do not apply to the broad Black cohort. They 
also reckoned that the even sampling scheme favored Red because Blue is related to Cyan through shared 
language and customs. The Black-is-Red group responded by enriching their cohort in Cyan and Black 
(nCyan, nBlack = 1000) and provided even more robust evidence that Black is Red (DBlack-Red = 0.12) (Fig. 8B). 
However, the Black-is-Green camp dismissed these findings. Conscious of the effects of admixture, they 
retained only the most homogeneous Green and Cyan (nGreen, nCyan = 33), genotyped new Blue and Black 
(nBlue, nBlack = 400), and analyzed them with the published Red cohort (nRed = 100). The Black-is-Green results 
supported their hypothesis that Black is Green (DBlack-Green = 0.27) and that Cyan shared a common origin 
with Blue (DBlue-Green = 0.27) (Fig. 8C) and should thereby be considered an admixed Blue population. Unsur-
prisingly, the Black-is-Red group claimed that these results were due to the under-representation of Black 
since when they oversampled Black, PCA supported their findings (Fig. 8A). In response, the Black-is-Green 
school maintained even sample sizes for Cyan, Blue, and Green (nBlue, nGreen, nCyan = 33) and enriched Black 

Figure 7.   Studying the origin of 55 AJs using PCA. (A) Replicating Need et al.’s results using nEu = 507; 
Generating alternative PCA scenarios using: (B) nEu = 223; nTurks = 56; (C) nEu = 400; nTurks+Caucasus = 56, and (D) 
nAf = 100, nAs = 100 (Africans and Asians are not shown), nEu = 100; and nTurks = 50. Need et al.’s faulty terminology 
was adopted in A and B.
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and Red (nRed, nBlack = 100). Not only did their results (DBlack-Green = 0.63 < DBlack-Red = 0.89) support their previ-
ous findings, but they also demonstrated that Green and Blue completely overlapped, presumably due to their 
shared co-ancestry, and that together with Cyan (DCyan-Green = 0.63 < DCyan-Red = 1.09) (Fig. 8B,D) they represent 
an antique color clade. They explained that these color populations only appeared separated due to genetic 
drift. However, they still retained sufficient cryptic genetic information that PCA can uncover if the cor-
rect sampling scheme is used. Further analyses by the other groups contested these findings (Supplementary 
Fig. S5A-D). Among else, it was argued that Black is a Green–Red admixed group (Supplementary Fig. S5C) 
and that Black and Cyan were the ancestors of Blue and Green (Supplementary Fig. S5D).

The case of a multi‑admixed population.  The question of how analyzing admixed groups with multiple 
ancestral populations affects the findings for unmixed groups is illustrated through a typical study case in Box 3.

To understand how PCA can be misused to study multiple mixed populations, we will investigate other PCA appli-
cations to study AJs. Such analyses have a thematic intepretation, where the clustering of AJ samples is evidence of a 
shared Levantine origin, e.g., Refs.12,13, that “short” distances between AJs and Levantines indicate close genetic rela-
tionships in support of a shared Levantine past, e.g., Ref.12, whereas the “short” distances between AJs and Europeans 
are evidence of admixture13. Finally, as a rule, the much shorter distances between AJs and the Caucasus or Turkish 
populations, observed by all recent studies, were ignored12,13,47,48. Bray et al.48 concluded that not only do AJs have a 
“more southern origin” but that their alignment with Central Europeans is “consistent with migration to this region”. In 
these studies,  "short" and “between” received a multitude of interpretations. For example, Gladstein and Hammer’s53 
PCA plot that showed AJs in the extreme edge of the plot with Bedouins and French in the other edges was interpreted 
as AJs clustering “tightly between European and Middle Eastern populations”. The authors interpreted the lack of “outli-
ers” among AJs (which were never defined) as evidence of common AJ ancestry.

Following the rationale of these studies, it is easy to show how PCA can be orchestrated to yield a multitude origins 
for AJs. We replicated the observation that AJs are “population isolate,” i.e., AJs form a distinct group, separated from 
all other populations (Fig. 9A), and are thereby genetically distinguishable47. We also replicated the most common yet 
often-ignored observation, that AJs cluster tightly with Caucasus populations (Fig. 9B). We next produced novel results 
where AJs cluster tightly with Amerindians due to the north Eurasian or Amerindian origins of both groups (Fig. 9C). 
We can also show that AJs cluster much closer to South Europeans than Levantines (Fig. 9D), and overlap Finns entirely, 
in solid evidence of AJ’s ancient Finnish origin (Fig. 9E). Last, we wish to refute our previous finding and show that 
only half of the AJs are of Finnish origin. The remaining analysis supports the lucrative Levantine origin (Fig. 9F)—a 
discovery touted by all the previous reports though never actually shown. Excitingly enough, the primary PCs of this 
last Eurasian Finnish-Levantine mixed origin depiction explained the highest amount of variance. An intuitive inter-
pretation of those results is a recent migration of the Finnish AJs to the Levant, where they experienced high admixture 
with the local Levantine populations that altered their genetic background. These examples demonstrate that PCA plots 
generate nonsensical results for the same populations and no a posteriori knowledge.

Figure 8.   PCA with the primary and mixed color populations. (A) nall = 100; nBlack = 200, (B) 
nRed = nGreen = nBlue = 100; nBlack = nCyan = 500, (C) nRed = 100; nGreen = nCyan = 33; nBlue = nBlack = 400; and (D) 
nRed = nBlack = 100; nGreen = nBlue = nCyan = 33; Scatter plots show the top two PCs. The numbers on the grey bars 
reflect the Euclidean distances between the color populations over all PCs. Colors include Red [1,0,0], Green 
[0,1,0], Blue [0,0,1], Cyan [0,1,1], and Black [0,0,0].
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Box 3: Studying the origin of Black using the primary and multiple mixed colors.  The value 
of using mixed color populations to study origins prompted new analyses using even (Fig. 10A) and vari-
able sample sizes (Fig. 10B–D). Using this novel sampling scheme, the Black-is-Green school reaffirmed that 
Black is the closest to Green (Fig. 10A, 10C, and 10D) in a series of analyses, but using a different cohort 
yielded a novel finding that Black is closest to Pink (Fig. 10B).

The extent to which PCA distances obtained by the top two PCs reflect the true distances among color 
population pairs is shown in Fig. 10E. PCA distorted the distances between most color populations, but the 
distortion was uneven among the pairs, and while a minority of the pairs are correctly projected via PCA, 
most are not. Identifying which pairs are correctly projected is impossible without a priori information. For 
example, some shades of blue and purple were less biased than similar shades. We thereby show that PCA 
inferred distances are biased in an unpredicted manner and thereby uninformative for clustering.

The case of multiple admixed populations without “unmixed” populations.  Unlike stochas-
tic models that possess inherent randomness, PCA is a deterministic process, a property that contributes to its 
perceived robustness. To explore the behavior of PCA, we tested whether the same computer code can produce 
similar or different results when the only variable that changes is the standard randomization technique used 
throughout the paper to generate the individual samples of the color populations (to avoid clutter).

We evaluated two color sets. In the first set, Black was the closest to Yellow (Fig. 11A), Purple (Fig. 11C), and 
Cyan (Fig. 11D,E). When adding White, in the second set, Black behaved as an outgroup as the distances between 
the secondary colors largely deviated from the expectation and produced false results (Fig. 11D–F). These results 
illustrate the sensitivity of PCA to tiny changes in the dataset, unrelated to the populations or the sample sizes.

To explore this effect on human populations, we curated a cohort of 16 populations. We carried out PCA 
on ten random individuals from 15 random populations. We show that these analyses result in spurious and 
conflicting results (Fig. 12). Puerto Ricans, for instance, clustered close to Europeans (A), between Africans and 
Europeans (B), close to Adygei (C), and close to Europe and Adygei (D). Indians clustered with Mexicans (A, 
B, and D) or apart from them (C). Mexicans themselves cluster with (A and D) or without (B and C) Africans. 
Papuans and Russians cluster close (B) or afar (C) from East Asian populations. More robust clustering was 
observed for East Asians, Caucasians, and Europeans, as well as Africans. However, these were not only indis-
tinguishable from the less robust clustering but also failed to replicate over multiple runs (results not shown). 
These examples show that PCA results are unpredictable and irreproducible even when 94% of the populations 
are the same. Note that the proportion of explained variance was similar in all the analyses, demonstrating that 
it is not an indication of accuracy or robustness.

We found that although a deterministic process, PCA behaves unexpectedly, and minor variations can lead 
to an ensemble of different outputs that appear stochastic. This effect is more substantial when continental popu-
lations are excluded from the analysis.

The cases of case–control matching and GWAS.  Samples of unknown ancestry or self-reported 
ancestry are typically identified by applying PCA to a cohort of test samples combined with reference popu-
lations of known ancestry (e.g., 1000 Genomes), e.g., Refs.22,54–56. To test whether using PCA to identify the 
ancestry of an unknown cohort with known samples is feasible, we simulated a large and heterogeneous Cyan 
population (Fig. 13A, circles) of self-reported Blue ancestry. Following a typical GWAS scheme, we carried out 

Figure 10.   PCA with the primary and multiple mixed color populations. (A) nall = 50, (B) nall = 50 or 10, 
(C,D) nAll = [50, 5, 100, or 25]. Scatter plots show the top two PCs. Colors codes are shown. (E) The difference 
between the true distances calculated over a 3D plane between every color population pair (shown side by 
side) from (D) and their Euclidean distances calculated from the top two PCs. Pairs whose PC distances 
from each other reflect their true 3D distances are shown along the x = y dotted line. One of the largest PCA 
distortions is the distances between the Red and Green populations (inset). The true Red-Green distance is 
1.41 (x-axis), but the PCA distance is 0.5 (y-axis).



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14683  | https://doi.org/10.1038/s41598-022-14395-4

www.nature.com/scientificreports/

PCA for these individuals and seven known and distinct color populations. PCA grouped the Cyan individuals 
with Blue and Black individuals (Fig. 13B), although none of the Cyan individuals were Blue or Black (Fig. 13A), 
as a different PCA scheme confirmed (Fig. 13C). A case–control assignment of this cohort to Blue or Black based 
on the PCA result (Fig. 13B) produced poor matches that reduced the power of the analysis. When repeating 
the analysis with different reference populations (Fig. 13D), the simulated individuals exhibited minimal overlap 
with Blue, no overlap with Black, and overlapped mostly with the Cyan reference population present this time. 
We thereby showed that the clustering with Blue and Black is an artifact due to the choice of reference popula-
tions. In other words, the introduction of reference populations with mismatched ancestries respective to the 
unknown samples biases the ancestry inference of the latter.

We next asked whether PCA results can group Europeans into homogeneous clusters. Analyzing four Euro-
pean populations yielded 43% homogeneous clusters (Fig. 14A). Adding Africans and Asians and then South 
Asian populations decreased the European cluster homogeneity to 14% and 10%, respectively (Fig. 14B,C). 
Including the 1000 Genome populations, as customarily done, yielded 14% homogeneous clusters (Fig. 14D). 
Although the Europeans remained the same, the addition of other continental populations resulted in a three to 
four times decrease in the homogeneity of their clusters.

The number of PCs analyzed in the literature ranges from 2 to, at least, 28035, which raises the question of 
whether using more PCs increases cluster homogeneity or is another cherry-picking strategy. We calculated the 
cluster homogeneity for different PCs for either 10 or 20 African (n10 = 337, n20 = 912), Asian (n10 = 331, n20 = 785), 
and European (n10 = 440, n20 = 935) populations of similar sample sizes (Fig. 14E). Even in this favorable setting 
that included only continental populations, on average, the homogeneous clusters identified using PCA were 
significantly smaller than the non-homogeneous clusters (µHomogeneous = 12.5 samples; σNon-homogeneous = 42.6 sam-
ples; µHomogeneous = 12.5 samples; µNon-homogeneous = 42.6 samples; Kruskal–Wallis test [nHomogeneous = nNon-homogeneous = 2
38 samples, p = 1.95 × 10–75, Chi-square = 338]) and included a minority of the individuals when 20 populations 
were analyzed. Analyzing higher PCs decreased the size of the homogeneous clusters and increased the size of 
the non-homogeneous ones. The maximum number of individuals in the homogeneous clusters fluctuated for 
different populations and sample sizes. Mixing other continental populations with each cohort decreased the 
homogeneity of the clusters and their sizes (results now shown). Overall, these examples show that PCA is a 
poor clustering tool, particularly as sample size increases, in agreement with Elhaik and Ryan57, who reported 
that PCA clusters are neither genetically nor geographical homogeneous and that PCA does not handle admixed 
individuals well. Note that the cluster homogeneity in this limited setting should not be confused with the amount 
of variance explained by additional PCs.

To further assess whether PCA clustering represents shared ancestry or biogeography, two of the most com-
mon applications of PCA, e.g., Ref.22, we applied PCA to 20 Puerto Ricans (Fig. 15) and 300 Europeans. The 
Puerto Ricans clustered indistinguishably with Europeans (by contrast to Fig. 12) using the first two and higher 
PCs (Fig. 15). The Puerto Ricans represented over 6% of the cohort, sufficient to generate a stratification bias in 
an association study. We tested that by randomly assigning case–control labels to the European samples with all 

Figure 11.   Studying the effects of minor sample variation on PCA results using color populations (nall = 50). 
(A–C) Analyzing secondary colors and Black. (D–E) Analyzing secondary colors, White, and Black. Scatter 
plots show the top two PCs. Colors include Cyan [0,1,1], Purple [1,0,1], Yellow [1,1,0], White [1,1,0], and Black 
[0,0,0].
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Figure 14.   Evaluating the cluster homogeneity of European samples. PCA was applied to the four European populations (Tuscan 
Italians [TSI], Northern and Western Europeans from Utah [CEU], British [GBR], and Spanish [IBS]) alone (A), together with an 
African and Asian population (B), as well as South Asian population (C), and finally with all the 1000 Genomes Populations (D). 
(E) Evaluating the usefulness of PCA-based clustering. The bottom two plots show the sizes of non-homogeneous and homogeneous 
clusters, and the top three plots show the proportion of individuals in homogeneous clusters. Each plot shows the results for 10 or 20 
random African, European, or Asian populations for the same PCs (x-axis).
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the Puerto Ricans as controls. We then generated causal alleles to the evenly-sized cohorts and computed the 
association before and after PCA adjustment. We repeated the analysis with randomly assigned labels to all the 
samples. In all our 12 case–control analyses, the outcome of the PCA adjustment for 2 and 10 PCs were worse 
than the unadjusted results, i.e., PCA adjusted results had more false positives, fewer true positives, and weaker 
p-values than the unadjusted results (Supplementary Text 3).

We next assessed whether the distance between individuals and populations is a meaningful biological or 
demographic quantity by studying the relationships between Chinese and Japanese, a question of major interest 
in the literature58,59. We already applied PCA to Chinese and Japanese, using Europeans as an outgroup (Sup-
plementary Fig. S2.4). The only element that varied in the following analyses was the number of Mexicans as the 
second outgroup (5, 25, and 50). We found that the proportion of homogeneous Japanese and Chinese clusters 
dropped from 100% (Fig. 16A) to 93.33% (Fig. 16B) and 40% (Fig. 16C), demonstrating that the genetic distances 
between Chinese and Japanese depend entirely on the number of Mexicans in the cohort rather than the actual 
genetic relationships between these populations as one may expect.

Some authors consider higher PCs informative and advise considering these PCs alongside the first two. In 
our case, however, these PCs were not only susceptible to bias due to the addition of Mexicans but also exhibited 
the exact opposite pattern observed by the primary PCs (e.g., Fig. 16G–I). It has also been suggested that in 
datasets with ancestry differences between samples, axes of variation often have a geographic interpretation10. 
Accordingly, the addition of Mexicans altered the order of axes of variation between the cases, making the 
analysis of additional PCs valuable. We demonstrate that this is not always the case. Excepting PC1, over 60% of 
the axes had no geographical interpretation or an incorrect one. An a priori knowledge of the current distribu-
tion of the population was essential to differentiate these cases. The addition of the first 20 Mexicans replaced 
the second axis of variation (initially undefined) with a third axis (Eurasia-America) in the middle and right 
columns and resulted in a minor decline of ~ 5% of the homogeneous clusters. Adding 25 Mexicans to the second 
cohort did not affect the axes, but the proportion of homogeneous clusters declined by 66%. The axes changes 
were unexpected and altered the interpretation of PCA results. Such changes were not detectable without an a 
priori knolwedge.

These results demonstrate that (1) the observable distances (and thereby clusters) between populations 
inferred from PCA plots (Figs. 14, 15, 16) are artifacts of the cohort and do not provide meaningful biological 
or historical information, (2) that distances betewen samples can be easily manipulated by the experimenter in a 
way that produces unpredictable results, (3) that considering higher PCs produces conflicting patterns, which are 
difficult to reconcile and interpret, and (4) that our extensive “exploration” of PCA solutions to Chinese and Japa-
nese relationships using 18 scatterplots and four PCs produced no insight. It is easy to see that the multitude of 
conflicting results, allows the experimenter to select the favorable solution that reflects their a priori knowledge.

Figure 15.   PCA of 20 Puerto Ricans and 300 random Europeans from the 1000 Genomes. The results are 
shown for various PCs.
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Figure 16.   The effect of varying the number of Mexican–American on the inference of genetic distances 
between Chinese and Japanese using various PCs. We analyzed a fixed number of 135 Han Chinese (CHB), 
133 Japanese (JPT), 115 Italians (TSI), and a variable number of Mexicans (MXL), including 5 (left column), 
25 (middle column), and 50 (right column) individuals over the top four PCs. We found that the overlap 
between Chinese and Japanese in PC scatterplots, typically used to infer genomic distances, was unexpectedly 
conditional on the number of Mexican in the cohort. We noted the meaning of the axes of variation whenever 
apparent (red). The right column had the same axes of variations as the middle one.
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The case of projections.  Incorporating precalculated PCA is done by projecting the PCA results calculated 
for the first dataset onto the second one, e.g., Ref.17. Here, we tested the accuracy of this approach by projecting 
one or more color populations onto precalculated color populations that may or may not match the projected 
ones. The accuracy of the results was dependent on the identity of the populations of the two cohorts. When the 
same populations were analyzed, they overlapped (Fig. 17A), but when unique populations were found in the 
two datasets, PCA created misleading matches (Figs. 17B–D). In the latter case, and when the sample sizes were 
uneven (Fig. 17C), the projected samples formed clusters with the wrong populations, and their positioning in 
the plot was incorrect. Overall, we found that PCA projections are unreliable and misleading, with correct out-
comes indistinguishable from incorrect ones.

To evaluate the reliability of projections for human populations, we tested whether the projected populations 
cluster with their closest groups and to what extent these results can be manipulated. We found that popula-
tions can be shown to correctly align with continental populations when the base (or test) populations and the 
projected populations are very similar (Fig. 18A), which gives us confidence in the accuracy of PCA projections. 
However, even in the simplest scenario of using three continental populations, it is unclear how to interpret the 
overlap between the base and projected populations since the Spanish would not be considered genetically closer 
to Finns than Italians, as suggested by PCA. In another simple scenario, where Europeans are projected onto 
other Europeans, distinct populations like AJs, Iberians, French, CEU, and British overlap entirely (Fig. 18B), 
whereas Finns and Italians were separate. Not only do the results share no apparent resemblance to the geo-
graphical distribution, but they also produce conflicting information as to the genetic distances between these 
populations—two properties that PCA enthusiastics claim it represents. Adding more populations, even if only to 
the projected populations, contributes to further distortions with previously distinct populations (Fig. 18B) now 
clustering (Fig. 18C). In a different dataset, projecting Japanese onto a base dataset of Africans and Europeans 
places them as an admixed African-European population. The projected Finns cluster with other Europeans 
(Fig. 18D), at odds with the previous results (Fig. 18B) that singled them out.

To test the behavior of PCA when projecting populations different from the base populations, we projected 
Chinese, Finns, Indians, and AJs onto Levantine and two European populations (Fig. 18E). The results imply 
that the Chinese and AJs are of an Indian origin originating from a European-Levantine mix. Replacing Levan-
tines with Africans does not stabilize the projected results (Fig. 18F). Now the projected Chinese and Japanese 
overlap, and AJs cluster with Iranians.

Overall, our results show that it is unfeasible to rely on PCA projections, particularly in studies involving 
different populations, as is commonly done. Even when the projected populations are identical to the base ones, 
the base and projected populations may or may not overlap.

Figure 17.   Examining the accuracy of PCA projections. The PCA results of one dataset (circles) were projected 
onto another (squares). In (A), testing the case of varying sample sizes between the first (nRed = 200, nGreen = 10, 
nBlue = 200, nPurple = 10) and second (nRed = 200, nGreen = 200, nBlue = 10, nPurple = 10) datasets, where in the second 
dataset, colors varied a little (e.g., [1,0,0] → [1,0.1,0.1]). In (B–D), the sample size varied (10 ≤ n ≤ 300) for 
both datasets. Colors include Red [1,0,0], Green [0,1,0], light Green [1,0.2,1], Cyan [0,1,1], Blue [0,0,1], Purple 
[1,0,1], Yellow [1,1,0], Grey [0.5,0.5,0.5], White [1,1,1], and Black [0,0,0].
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The case of ancient DNA.  PCA is the primary tool in paleogenomics, where ancient samples are initially 
identified based on their clustering with modern or other ancient samples. Here, a wide variety of strategies is 
employed. In some studies, ancient and modern samples are combined60. In other studies, PCA is performed 
separately for each ancient individual and “particular reference samples”, and the PC loadings are combined61. 
Some authors projected present-day human populations onto the top two principal components defined by 
ancient hominins (and non-humans)62. The most common strategy is to project ancient DNA onto the top 
two principal components defined by modern-day populations14. Here, we will investigate the accuracy of this 
strategy.

Since ancient populations show more genetic diversity than modern ones14, we defined “ancient colors” (a) 
as brighter colors whose allele frequency is 0.95 with an SD of 0.05 and “modern colors” (m) as darker colors 
whose allele frequency is 0.6 with an SD of 0.02. Two approaches were used in analyzing the two datasets: 
calculating PCA separately for the two datasets and presenting the results jointly (Fig. 19A,B), and projecting 
the PCA results of the “ancient” populations onto the “modern” ones (Fig. 19C,D). In both cases, meaningful 
results would show the ancient colors clustering close to their modern counterparts in distances corresponding 
to their true distances.

These are indeed the results of PCA when even-sized “modern” and “ancient” samples from color populations 
are analyzed and the color pallett is balanced (Fig. 19A). In the more realistic scenario where the color pallet 
is imbalanced and sample sizes differ, PCA produced incorrect results where ancient Green (aGreen) clustered 
with modern Yellow (mYellow) away from its closest mGreen that clustered close to aRed. mPurple appeared as 
4-ways mixed of aRed, aBlue, mCyan, and mDark Blue. Instead of being at the center (Fig. 19A), Black became 
an outgroup and its distances to the other colors were distorted (Fig. 19B). Projecting “ancient” colors onto 
“modern” ones also highly misrepresented the relationships among the ancient samples as aRed overlapped 
with aBlue or aGreen, mYellow appeared closer to mCyan or aRed, and the outgroups continuously changed 
(Fig. 19C,D). Note that the first two PCs of the last results explained most of the variance (89%) of all anlyses.

Recently, Lazaridis et al.14 projected ancient Eurasians onto modern-day Eurasians and reported that ancient 
samples from Israel clustered at one end of the Near Eastern “cline” and ancient Iranians at the other, close to 
modern-day Jews. Insights from the positions of the ancient populations were then used in their admixture 
modeling that supposedly confirmed the PCA results. To test whether the authors’ inferences were correct and 
to what extent those PCA results are unique, we used similar modern and ancient populations to replicate the 
results of Lazaridis et al.14 (Fig. 20A). By adding the modern-day populations that Lazaridis et al.14 omitted, 
we found that the ancient Levantines cluster with Turks (Fig. 20B), Caucasians (Fig. 20C), Iranians (Fig. 20D), 
Russians (Fig. 20E), and Pakistani (Fig. 20F) populations. The overlap between the ancient Levantines and other 
populations also varied widely, whereas they cluster with ancient Iranians and Anatolians, Caucasians, or alone, 
as a “population isolate.” Moreover, the remaining ancient populations exhibited conflicting results inconsistent 
with our understanding of their origins. Mesolithic and Neolithic Swedes, for instance, clustered with modern 
Eastern Europeans (Fig. 20A–C) or remotely from them (Fig. 20D–F). These examples show the wide variety of 

Figure 18.   PCA projections of populations (italic and black star inside the shape) onto base populations 
with even-sized sample (n = 50, unless noted otherwise) (regular font). In (A) nprojected = 100, (B) nprojected = 50, 
(C) nprojected = 20, (D) nprojected = 100, (E) nprojected = 80 and nprojected = 100, and (F) 80 ≤ nprojected ≤ 100 and 
12 ≤ nprojected ≤ 478.
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results and interpretations possible to generate with ancient populations projected onto modern ones. Lazaridis 
et al.’s14 results are neither the only possible ones nor do they explain the most variation. It is difficult to justify 
Lazaridis et al.’s14 preference for the first outcome where the first two components explained only 1.35% of the 
variation (in our replication analysis. Lazaridis et al. omitted the proportion of explained variation) (Fig. 20A), 
compared to all the alternative outcomes that explained a much larger portion of the variation (1.92–6.06%).

We note that for high dimensionality data where markers are in high LD, projected samples tend to “shrink,” 
i.e., move towards the center of the plot. Corrections to this phenomenon have been proposed in the literature, 
e.g., Ref.63. This phenomenon does not affect our datasets, which are very small (Fig. 19) or LD pruned (Fig. 20).

The case of marker choice.  The effect of marker choice on PCA results received little attention in the 
literature. Although PCA is routinely applied to different SNP sets, the PCs are typically deemed comparable. In 
forensic applications, that typically employ 100–300 markers, this is a major problem. To evaluate the effect of 
various markers on PCA outcomes, it is unfeasible to use our color model, although it can be used to study the 
effects of missing data and noise, which are common in genomic datasets and reflect the biological properties 
of different marker types in capturing the population structure. Remarkably, the addition of 50% (Fig. 21A) and 
even 90% missingness (Fig. 21B) allowed recovering the original population structure. The structure decayed 
when random noise was added to the latter dataset (Fig. 21C). To further explore the effect of noise, we added 
random markers to the dataset. An addition of 10% of noisy markers increased the dataset’s disparity, but it still 
retained the original structure (Fig. 21D). Interestingly, even adding 100% noisy markers allowed identifying the 
original structure’s key features (Fig. 21E). Only when adding 1000%, noisy markers did the original structure 
disappear (Fig. 21F). Note that the introduction of noise has also sliced the percent of variation explained by the 
PCs. These results highlight the importance of using ancestry informative markers (AIMs) to uncover the true 
structure of the dataset and accounting for disruptive markers.

To evaluate the extent to which marker types represent the population structure, we studied the relationships 
between UK British and other Europeans (Italians and Iberians) using different types of 30,000 SNPs, a number 

Figure 19.   Merging PCA of “ancient” (circles) and “modern” (squares) color populations using two approaches. 
First, PCA is calculated separately on the two datasets, and the results are plotted together (A,B). Second, PCA 
results of “ancient” populations are projected onto the PCs of the “modern” ones (C,D). In (A), even-sized 
samples from “ancient” (n = 25) and “modern” (n = 75) color populations are used. In (B), different-sized samples 
from “ancient” (10 ≤ n ≤ 25) and “modern” (10 ≤ n ≤ 75) populations are used. In (C) and (D), different-sized 
samples from “ancient” (10 ≤ n ≤ 75) are used alongside even-sized samples from “modern” populations: (C) 
(n = 15) and (D) n = 25. Colors include Red [1,0,0], dark Red [0.6,0,0], Green [0,1,0], dark Green [0,0.6,0], Blue 
[0,0,1], dark Blue [0,0,0.6], light Cyan [0,0.6,0.6], light Yellow [0.6,0.6,0], light Purple [0.6,0,0.6], and Black 
[0,0,0].
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of similar magnitude to the number of SNPs analyzed by some groups64,65. According to the full SNP set, the 
British do not overlap with Europeans (Fig. 22A). However, coding SNPs show considerable overlap (Fig. 22B) 
compared with intronic SNPs (Fig. 22C). Protein coding SNPs, RNA molecules, and upstream or downstream 
SNPs (Fig. 22D–F, respectively) also show small overlap. The identification of “outliers,” already a subjective 
measure, may also differ based on the proportions of each marker type. These results not only illustrate how the 
choice of markers and populations profoundly affect PCA results but also the difficulties in recovering the popula-
tion structure in exome datasets. Overall, different marker types represent the population structure differently.

The case of inferring a personal ancestry.  PCA is used to infer the ancestry of individuals for various 
purposes, however a minimal sample size of one, may be even more subjected to biases than in population stud-
ies. We found that such biases can occur when individuals with Green (Fig. 23A) and Yellow (Fig. 23B) ancestries 
clustered near admixed Cyan individuals and Orange, rather than with Greens or by themselves, respectively. 
One Grey individual clustered with Cyan (Fig. 23C) when it is the only available population, much like a Blue 
sample clustered with Green samples (Figs. 23D).

Arguably, one of the most famous cases of personal ancestral inference occurred during the 2020 US presiden-
tial primaries when a candidate published the outcome of their genetic test undertaken by Carlos Bustamante that 
tested their Native American ancestry (https://​eliza​bethw​arren.​com/​wp-​conte​nt/​uploa​ds/​2018/​10/​Busta​mante_​
Report_​2018.​pdf). Analyzing 764,958 SNPs, Bustamante sought to test the existence of Native American ances-
try using populations from the 1000 Genomes Project and Amerindians. RFMix66 was used to identify Native 
American ancestry segments and PCA, elevated to be a “machine learning technique,” to verify that ancestry inde-
pendently of RFMix. The longest of five genetic segments, judged to be of Native American origin, was analyzed 
using PCA and reported to be “clearly distinct from segments of European ancestry” and “strongly associated 
with Native American ancestry” as it clustered with Native Americans distinctly from Europeans and Africans 
(Fig. 1 in their report) and between Native American samples (Fig. 2 in their report). Bustamante concluded that 
“While the vast majority of the individual’s ancestry is European, the results strongly support the existence of an 
unadmixed Native American ancestor in the individual’s pedigree, likely in the range of 6–10 generations ago”.

We have already shown that AJs (Fig. 9C) and Pakistanis (Fig. 14D) can cluster with Native Americans. With 
the candidate’s DNA unavailable (and their specific European ancestry undisclosed), we tested whether the 
two PCA patterns observed by Bustamante can be reproduced for modern-day Eurasians without any reported 
Native American ancestry (Pakistani, Iranian, Even Russian, and Moscow Russian) (Figs. 24A–D, respectively).

These analyses show that the experimenter can easily generate desired patterns to support personal ancestral 
claims, making PCA an unreliable and misleading tool to infer personal ancestry. We further question the accu-
racy of Bustamante’s report, provided the biased reference population panel used by RFMix to infer the DNA 
segments with the alleged Amerindian origin, which excluded East European and North Eurasian populations. 
We draw no conclusions about the candidate’s ancestry.

Figure 20.   PCA of 65 ancient Palaeolithic, Mesolithic, Chalcolithic, and Neolithic from Iran (12), Israel (16), 
the Caucasus (7), Romania (10), Scandinavia (15), and Central Europe (5) (colorful shapes) projected onto 
modern-day populations of various sample sizes (grey dots, black labels). The full population labels are shown 
in Supplementary Fig. S8. In addition to the modern-day populations used in (A), the following subfigures 
also include (B) Han Chinese, (C) Pakistani (Punjabi), (D) additional Russians, (E) Pakistani (Punjabi) and 
additional Russians, and (F) Pakistani (Punjabi), additional Russians, Han Chinese, and Mexicans. The ancient 
samples remained the same in all the analyses. In each plot (A–F), the ancient Levantines cluster with different 
modern-day populations.

https://elizabethwarren.com/wp-content/uploads/2018/10/Bustamante_Report_2018.pdf
https://elizabethwarren.com/wp-content/uploads/2018/10/Bustamante_Report_2018.pdf
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Discussion
The reproducibility crisis in science called for a rigorous evaluation of scientific tools and methods. Due to PCA’s 
centrality in population genetics, and since it was never proven to yield correct results, we sought to assess its 
reliability, robustness, and reproducibility for twelve test cases using a simple color-based model where the true 
population structure was known and real human populations. PCA failed in all three measures.

PCA did not produce correct and\or consistent results across all the design schemes, whether even-sampling 
was used or not, and whether for unmixed or admixed populations. We have shown that the distances between 
the samples are biased and can be easily manipulated to create the illusion of closely or distantly related popula-
tions. Whereas the clustering of populations between other populations in the scatter plot has been regarded as 
“decisive proof ” or “very strong evidence” of their admixture18, we demonstrated that such patterns are artifacts 
of the sampling scheme and meaningless for any bio historical purposes. Sample clustering, a subject that received 
much attention in the literature, e.g., Ref.9, is another artifact of the sampling scheme and likewise biologically 
meaningless (e.g., Figs. 12, 13, 14, 15), which is unsurprising if the distances are distorted. PCA violations of 
the true distances and clusters between samples limit its usability as a dimensional reduction tool for genetic 
analyses. Excepting PC1, where the distribution patterns may (e.g., Fig. 5a) or may not (e.g., Fig. 9) bear some 
geographical resemblance, most of the other PCs are mirages (e.g., Fig. 16). The axes of variation may also change 
unexpectedly when a few samples are added, altering the interpretation.

Specifically, in analyzing real populations, we showed that PCA could be used to generate contradictory 
results and lead to absurd conclusions (reductio ad absurdum), that “correct” conclusions cannot be derived 
without a priori knowledge and that cherry-picking or circular reasoning are always needed to interpret PCA 
results. This means that the difference between the a posteriori knowledge obtained from PCA and a priori 
knowledge rests solely on belief. The conflicting PCA outcomes shown here via over 200 figures demonstrate the 
high experimenter’s control over PCA’s outcome. By manipulating the choice of populations, sample sizes, and 
markers, experimenters can create multiple conflicting scenarios with real or imaginary historical interpretations, 
cherry-pick the one they like, and adopt circular reasoning to argue that PCA results support their explanation.

Overall, the notion that PCA can yield biologically or historically meaningful results is a misconception 
supported by a priori knowledge and post hoc reasoning. PCA “correct” results using some study designs are 
utterly indistinguishable from incorrect results constructed using other study designs, and neither design could 
be justified a priori to be the correct one. Likewise, PCA correctly represented the genetic distances and clusters 
for a  miniscule fraction of the samples (e.g., Fig. 6) who were otherwise indistinguishable from the remaining 
samples whose genetic distances were distorted. Therefore, like a broken clock, PCA can be tuned by the experi-
menter (e.g., Fig. 20) to yield presumed “correct” results, and “correct” results can be cherry-picked if known a 
priori, but neither is evidence to the accuracy of PCA. Just like a broken clock, working clocks (i.e., other tools) 
are essential to decide on the “correct” PCA results. This begs the question of why use PCA at all, particularly 
as a first hypothees generator.

Figure 21.   Testing the effects of missingness and noise in a PCA of six fixed-size (n = 50) samples from color 
populations. The top plots show the effect of missingness alone or combined with noise: (A) 50% missingness, 
(B) 90% missingness, and (C) 90% missingness and low-level random noise in all the markers. The bottom plots 
test the effect of noise when added to the original markers in the above plots using: (D) 30 random markers, 
(E) 300 random markers, and (F) 3000 random markers. Colors include Red [1,0,0], Green [0,1,0], Blue [0,0,1], 
Cyan [0,1,1], Yellow [1,1,0], and Black [0,0,0].
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Some authors67 revealed the cards by proposing to use PCA for “exploration” purposes; however, the “explora-
tion” protocol was never scripted, and neither was the method by which a posteriori knowledge can be garnered 
from this journey to the unknown. “Exploration” is thereby synonymous with cherry-picking specific PCA results 
deemed similar to those generated by other tools. If this was a realistic approach, the practice of PCA could 
have been simply dismissed as cumbersome and unnecessary. However, in the literature, the reverse procedure 
is dominant, i.e., the broken clock is used to call the hours for the other clocks. We believe that such design is 
popular because downstream analyses are equally manuverable or designed to address specific questions, allow-
ing the experimenter a control over the general narrative.

Indeed, after “exploring” 200 figures generated in this study, we obtained no a posteriori wisdom about the 
population structure of colors or human populations. We showed that the inferences that followed the standard 
interpretation in the literature were wrong. PCA is highly subjected to minor alterations in the allele frequencies 
(Fig. 12), study design (e.g., Fig. 9), or choice of markers (Fig. 22) (see also Refs.57,68). PCA results also cannot be 
reproduced (e.g., Fig. 13) unless an identical dataset is used, which defeats the usefulness of this tool. In that, our 
findings thereby join similar reports on PCA’s unexpected and arbitrary behavior69,70. Note that variations in the 
implementations of PCA (e.g., PCA, singular value decomposition [SVD], and recursive PCA), as well as various 
flags, as implemented in EIGENSOFT, yield major differences in the results—none more biologically correct 
than the other. That the same mathematical procedure produces biologically conflicting and false results proves 
that bio historical inferences drawn only from PCA are fictitious.

Several aspects of this study are important to emphasize. First, this study does not ask whether the PC 
transformation is correct. If properly implemented, the computational procedure that computes the principal 
components and uses them to change the basis of the data is considered correct. This study asks whether the PC 
transformation produces correct or wrong outcomes for the original datasets, consisting of colors populations, 
where the truth is known. For real populations, we avoided judging results to be correct or not since many of 
those questions are subjects of ongoing debates. Instead, we asked whether PCA results are consistent with each 
another, align with their interpretation in the literature, and can lead to absurd conclusions. Second, this study 
focuses on genetic variation data, particularly human data, that have particular characteristics. For other data 
types or datasets not tested here, PC analyses may be more successful, e.g., Ref.71, if they survive the test criteria 
presented here. We note, however, that PCA produced incorrect results in our simple model (e.g., Fig. 3) and that 
criticism is neither rare nor unique to genetics (see criticism of PCA in geology72 and physical anthropology73). 
To better understand how PCA reached prominence, we shall review the historical debate on whether the PCA 
trnasformation represents the genetic data correctly.

A brief history of PCA and its application to population genetics.  It is well-recognized that 
Pearson74 introduced PCA and Hotelling75 the terminology. Hotelling’s motivation was to address the problem 
of evaluating independent mental traits in psychology. Thurstone presented another principal axes solution to 

Figure 22.   PCA of Tuscany Italians (n = 115), British (n = 105), and Iberians (n = 150) across all markers 
(p ~ 129,000) (A) and different marker types (p ~ 30,000): (B) coding SNPs, (C) intronic SNPs, (D) protein-
coding SNPs, (E) RNA molecules, and (F) upstream and downstream SNPs. Convex hull was used to generate 
the European cluster.
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the problem of factor analysis75. However, he later reconciled, as he could not see how they describe a meaning-
ful psychological model76. The argument about the truthfulness and reliability of PCs continues to this day77.

In population genetics, PCA is primarily used to reduce the dimensionality of multivariate datasets by linearly 
transforming the genotypes into a set of mutually uncorrelated principal components (PCs) ranked according 
to their variances. As most of the original variability is contained in the primary two PCs, they are typically 
visualized on a colorful scatter plot. The early work of Cavalli-Sforza suggested that PCA can detect ancient 
migrations and population spreads78,79 in the genomic data. The authors proposed that PCA will “give us new 
insight into the evolutionary history of the populations represented in the map”78 although later they explained 
their inability to interpret the PCA results for Africans because “the genetic and archeological knowledge in 
these regions is not as detailed as in Europe”79, i.e., in the lack of a priori knowledge. Cavalli-Sforza’s arguments 
were not very convincing.

During the twentieth century, PCA was sparsely employed in genomic analyses alongside other multidimen-
sional scaling tools. The next-generation sequencing revolution in the early twenty-first century produced large 
genomic datasets that required new and powerful computational tools with appealing graphical interfaces, like 
STRU​CTU​RE80. PCA was not used in the publications of the first two HapMaps nor the HGDP dataset81–83.

In 2006, Price et al.10 introduced the SmartPCA tool (EIGENSOFT package) and claimed that PCA has “a 
solid statistical footing” that can “discover structure in genetic data” even in admixed populations. Those claims 
were made based on a simulated dataset and an application of PCA to a dataset of European Americans, which 
revealed an incoherent pattern claimed to reflect genetic variation between northwest and southeast Europe. 
Simultaneously, Patterson et al.9 applied PCA to three African and three Asian populations claiming that the 
dispersion patterns of the primary two PCs reflect the true population structure. SmartPCA offered no remedy 
to the known problems with PCA, only new promises.

The next milestone in the rise of PCA to prominence was the work of Novembre and colleagues32 that showed 
a correlation between PCA and geography among Europeans. The authors applied PCA to a dataset of European 
genotypes, positioned the PCs on Europe’s map, and rotated their axes to increase the correlation with Europe’s 
map. After fitting a model of longitude and latitude that included PC1, PC2, and their interactions, samples 

Figure 23.   Inferring single individual ancestries using reference individuals. In (A) Using even-sized samples 
from reference populations (n = 37): Red [1,0,0], Green [0,1,0], bright Cyan [0, 0.9, 0.8], dark Cyan [0, 0.9, 0.6], 
heterogeneous darker Cyan [0, 0.9, 0.4] with high standard deviation (0.25) with a light Green test individual 
[0, 0.5, 0]. In (B) Using the same reference populations as in (A) with uneven-sizes: Red (n = 15), Green (n = 15), 
bright Cyan (n = 100), dark Cyan (n = 15), heterogeneous darker Cyan (n = 100), with a Yellow test indiviaul 
(1,1,0). In (C) A heterogeneous Cyan population [0, 1, 1] (n = 300) with high standard deviation (0.25) and a 
Grey test individual (0.5, 0.5, 0.5). In (D) Red [1,0,0] (n = 10), Green [0,1,0] (n = 10), a heterogeneous population 
[1, 1, 0.5] (n = 200) and a Blue test individual (0,0,1).
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were positioned on Europe’s map. The authors claimed that “the resulting figure bears a notable resemblance to a 
geographic map of Europe” and reported that, on average, 50% of samples from populations with greater than six 
samples were predicted within less than 400 km of their country. Most of those populations, however, were from 
the extreme ends of the map (Italy, UK, and Spain) and were predicted most accurately because PCA maximizes 
the variance along the two axes. By contrast, samples from mid and north-Europe were predicted most poorly. 
Overall, the authors’ approach classified about 50% of the samples in the final dataset to within 400 km of their 
countries. Only 24% of the samples from all European countries (Table 3 in Ref.32) were predicted to their correct 
country, 50% of the populations were predicted within 574 km (about the distance from Berlin to Warsaw), and 
90% of the populations were predicted within 809 km (about the distance from Berlin to Zurich). Overall, it is 
fair to say that in practice, this method does not perform as implied because it strongly depends on the specific 
cohort. Therefore, it does not have any practical applications. A more proper title for the paper would have been 
“populations can be selected to mirror geography in a quarter of Europe”. Novembre et al.’s study was iconic, 
which in retrospect may be unwarranted, since authors always claimed to see geographical patterns in PCA results 
irrespective to Novembre et al.’s transformation. Later, Yang et al.84 claimed to have expanded the method to 
global samples. Elhaik et al.85 showed that the new method has less than 2% accuracy, with some samples being 
predicted outside our planet. Thus far, no PCA or PCA-like application has ever reached an accuracy higher than 
2% worldwide86. By contrast, an admixture-based approach achieved 83% accuracy in classifying individuals to 
countries and even islands and villages85.

Ignoring these methodological problems and further promoting their PCA tool, Reich et al.44 wrote in an 
editorial for the Novembre et al.’s study that “PCA has a population genetics interpretation and can be used to 
identify differences in ancestry among populations and samples, regardless of the historical patterns underlying 
the structure,” that “PCA is also useful as a method to address the problem of population stratification—allele 
frequency differences between cases and controls due to ancestry differences—that can cause spurious associa-
tions in disease association studies,” and finally that “PCA methods can provide evidence of important migration 
events”—none of which were supported by the work of Novembre et al.

Figure 24.   Evaluation of Native American ancestry for four Eurasians. (A) Using even-sample size (n = 37) for 
Africans, Mexican-Americans, British, Puerto Ricans, Colombians, and a Pakistani. (B) Using uneven-sample 
sizes, for Africans (n = 100), Mexican-Americans (n = 20), British (n = 50), Puerto Ricans (n = 89), Colombians 
(n = 89), and an Iranian. (C) Analyzing a whole-Amerindian cohort of Colombian (n = 93), Mexican-Americans 
(n = 117), Peruvian (n = 75), Puerto Ricans (n = 102), and an Even Russian. (D) Using uneven-sample sizes, for 
Africans (n = 100), Mexican-Americans (n = 53), British (n = 20), Puerto Ricans (n = 30), Colombians (n = 89), 
and a Moscow Russian. All the samples were randomly selected.
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After its applications to the HGDP87 and HapMap 388 datasets, PCA became the foremost utility in popula-
tion genetic investigations, reaching ”fixation” by 2013, the point where it is used almost in every paper in the 
field (Fig. 25).

Evaluating the core properties of PCA.  Table 1 summarizes the main findings of the twelve test cases 
analyzed here. Several additional limitations of PCA are worth highlighting since they may not have been evi-
dent in the test cases. First, PCA typically explains a tiny part of the variation (Supplementary Fig. S9) that may 
have a genealogical interpretation69, but not only does it grow smaller as more samples are added (Supplemen-
tary Fig. S9), it also grows in inaccuracy (Fig. 9). This leads to a paradox, whereas increasing the sample size, 
which intuitively should be expected to increase the accuracy of analyses, decreases the proportion of explained 
variance and accuracy. Second, analyzing only the top two PCs does not solve the rapid decline in the propor-
tion of explained variation (Supplementary Fig. S10). Interestingly, the average variance explained by the two 
primary PCs over hundreds and thousands of individuals from different populations is very small (Supplemen-
tary Fig. S10, inset). Third, PCs higher than three not only explain a minuscule amount of variation, but they 
also cannot differentiate the true data structure from noise (Supplementary Fig. S11). In other words, PC plots 
where the first two PCs explain ~ 1% of the variance, as we calculated for Lazaridis et al.14, capture as much of the 
population structure as they would from a randomized dataset. Recall that all the datasets analyzed here include 
AIMs that improve the discovery of population structure. The fourth limitation concerning PCA’s characteristic 
is the “big-p, little-n,” where p stands for dimensions and n for samples, otherwise known as the p >  > n problem 
or the curse of dimensionality89. Briefly, it refers to the phenomenon that arises when analyzing data in high-
dimensional spaces unobserved in lower-dimensional spaces. As a dimensionality reduction technique, PCA 
aims to address this problem. However, PCA introduces biases of its own. PCA misrepresents the distances and 
clusters. In high-dimensional space, the distances between the data points increase compared to low-dimen-
sional space (Supplementary Fig. S12). As such, formerly close population samples appear more distanced and 
no longer cluster. In other words, cases and controls cannot be reliably identified in high-dimensional data, as 
is commonly done. Finally, PCA adjustments may be disadvantageous. We show that applying PCA adjustment 
to case–control data yielded a higher proportion of false positives, a smaller proportion of true positives, and 
weaker p-values (Supplementary Text 3).

Misuses of PCA in the literature.  To understand how and why a tool with so many limitations became 
the foremost tool in population genetics, we will briefly review how authors handled those limitations.

We have already demonstrated that authors misinterpret PCA findings and do not disclose the amount of 
variation explained by PCA. Fascinatinglyedly, in 2008 Reich and colleagues found it necessary to assess “whether 
the proportion of the variance explained by the first PC is sufficiently large,” most likely before they realized just 
how small this variation really is. To the best of our knowledge, they omitted this information in their numerous 
publications that employed PCA, e.g., Refs.14,45,62,90–93.

Remarkably, Novembre and Stephens94 warned that “PCA results depend on the details of a particular dataset, 
they are affected by factors in addition to population structure, including distribution of sampling locations and 
amounts of data. Both these features limit the utility of PCA for drawing inferences about underlying processes” 
but nonetheless found PCA to be “undoubtedly an extremely useful tool for investigating and summarizing 
population structure,” and correctly anticipated that it will play “a prominent role in analyses of ongoing studies 
of population genetic variation”.

Although authors were aware that PCA results depended on the sample cohort, they continued using it, 
presenting only the results that fit their a priori hypotheses. For example, Tian et al.49 recognized that PCA “is 
sensitive to differences in the inclusion or exclusion of specific population groups” and that it “can be dramatically 
affected by differences in relatively small genomic regions that may not reflect true population substructure”. 
Likewise, Tian et al.50 noted that Ashkenazic Jews (AJs) “have a unique genotypic pattern that may not reflect 

Figure 25.   Evaluating the usability of a PCA in population genetic publications by sampling four random 
population genetic papers per year from Nature and PNAS. The percent of publications that used at least one 
PCA is shown.
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geographic origins” and that “the inclusion or exclusion of particular ethnic groups… shifted the relationships 
in PCA”. They acknowledged that their findings “show that PCA results are highly dependent on which popula-
tion groups are included in the analysis”. Still, both groups drew conclusions based on PCA and their a priori 
perceptions. Price et al.95 needed no Leavnatine populations to conclude from a PCA plot with Ashkenazic Jews 
and Europeans that “both Ashkenazi Jewish and southeast European ancestries are derived from migrations/
expansions from the Middle East and subsequent admixture with existing European populations”. Provided its 
flexibility, it should come as no surprise that PCA and, in one case, Multi-dimensional scaling (MDS)96 spear-
headed claims of Levantine origin for AJs97. We showed that PCA could be easily engineered to foster American, 
Iberian, West, Central, and South European, Britain, Scandinavian, South Central Asian, Central Asian, Middle 
Eastern, Caucasian, and even Levantine origins for AJs.

PCA applications in biology have been criticized by several groups. McVean69 cautioned that “Sub-sampling 
from populations to achieve equal representation, as in Novembre et al.32, is the only way to avoid this prob-
lem [= the distortion of the projection space]” and that “the influence of uneven sample size can be to bias the 
projection of samples on the first few PCs in unexpected ways”. However, these statements are incorrect. First, 
Novembre et al.’s sample sizes ranged from 1 to 219. Second, McVean’s simulation was limited to the case of sym-
metric populations arranged in a lattice formation, as in Figs. 1C or 19A. This led McVean to believe that accuracy 
can be achieved when sample sizes are even and thereby have some merit (“The result provides a framework 
for interpreting PCA projections in terms of underlying processes, including migration, geographical isolation, 
and admixture”). Had McVean explored the slightly more realistic case of populations sampled evenly with 
uneven contributions to the covariance matrix (e.g., Figs. 4A, 9A), he would have realized that PCA’s accuracy is 
extremely limited to well-controlled simulations of even-sized samples from isotropic populations (symmetrically 
distributed across all the dimensions). In reality, “populations” are unknown, are of uneven population sizes, are 
anisotropic, and sampled unevenly using different markers. These limitations invalidate PCA as a useful tool for 
population genomic studies. Elhaik and Ryan57 showed that PCA could not model admixed samples, resonating 
our findings using forward simulation (Supplementary Text 1). Elhaik et al.85 showed that PCA-like tools could 
not be used for biogeography, which is not surprising if PC distances are meaningless. François et al.67 noticed 
that the gradients observed in the first PC often contradict formulated expectations and offered a biological 
explanation for the phenomenon. They concluded that PCA should be considered as a data exploration tool 
(i.e., cherry-picking) and that interpreting the results in terms of past routes of migration “remains a complicated 
exercise”. Björklund98 raised concerns about sampling problems that render PCA biologically meaningless and 
provided several recommendations, like evaluating the distinctness of the PC’s and presenting the percent of 
explained variance. The practice of ignoring sample dates in paleogenomic analyses that incorporates ancient 
and modern samples has also been criticized99. Recently, Chari et al.70 showed that in single-cell gene expression 
analyses, where PCA pre-conditioned t-SNE and UMAP visuals are often used to infer or confirm relationships 
between cells in qualitative and quantitative manners for many purposes, including to “validate” clustering, PCA 
caused major distortion of the data and when analyzing equidistant points was tantamount to applying a ran-
dom projection. The authors developed an art model and showed that it produces comparable metrics to those 
produced by the PCA-refined dataset on which t-SNE and UMAP were applied. The authors reported that the 
“application of PCA to a set of equidistant points produces an arbitrary projection that will depend on software 
implementation details, including random number seeds and the numerical methods implemented for computing 
eigenvalues and eigenvectors”. Our findings, albeit in population genetics, demonstrate that with the exceptions 
discussed above, all PCA results are wrong and are independent of the level of “cautiousness” exhibited by the 
experimenter even for “exploration” purposes.

PCA as a Dataism exercise in population genetics.  Dataism describes an ideology formed by the 
emergence of Big Data, where measuring the data is the ultimate achievement100. Dataism proponents believe 
that with sufficient data and computing power, the world’s mysteries would reveal themselves. Dataism enthu-
siasts rarely ask themselves if PCA results are correct but rather how to interpret the results correctly. As such, 
clustering is interpreted as identity, due to common ancestry and its absence as genetic drift. Populations nested 
between other populations are admixed or isolates, and those at the corners of the PC scatter plot are unmixed, 
pure, or races.

Although a newly coined term, the roots of the dataism philosophy are traceable to the Hotelling-Thurstone 
debate and specifically to the Cavalli-Sforza-Sokal conundrum. Cavalli-Sforza et al.101 (p338) explained the 
first six components in ancient human cross-continental expansions, but they never explained to what extent 
those historical inferences were distinguished from the null hypothesis since they did not have any. Sokal and 
colleagues showed that the PCA maps are subject to substantial errors and that apparent geographic trends may 
be detected in spatially random data (the null). Sokal et al. did not express doubt in human history, only that 
it reveals itself in the PC maps, as do we. Cavalli-Sforza’s group responded that Sokal et al.’s sampling scheme 
was extremely irregular102 and questioned Sokal et al.’s disbelief in a wrong method that yields a conclusion that 
they were willing to accept otherwise. Sokal et al.103 were concerned with the lack of response to their original 
inquiries, the PC’s interpolation (to overcome gaps in the data) and smoothing technique that introduced more 
noise, the specific sampling scheme of Cavalli-Sforza and colleagues that appeared incidental rather than genu-
inely comprehensive, and the continued absence of a null model. In further criticism of Cavalli-Sforza et al.101, 
they claimed that whereas some of the results appear biologically sound, others are not, yet both are discussed 
equally seriously. Cavalli-Sforza104 stuck by PCA and the historical inferences (The Neolithic spread to Europe 
made “between 8000 and 5000 years ago”) that can be allegedly derived from it. In other words, whereas Cavalli-
Sforza and colleagues believed that once sufficient data are available, the value of PCA for bio-history would 
reveal itself, Sokal and colleagues questioned the robustness and reliability of the approach to generate valid 
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historical and ethnobiological results and cautioned that data that “have been interpolated or smoothed, invite 
ethnohistorical interpretation by the unwary”105. The issues at the heart of the debate were not as much about 
biostatistics as about dataism.

At first, Sokal and colleagues had the upper hand in the debate. PCA was not used in the first Big Data 
analyses of 2003–2005 until resurrected by Price et al.10. Price et al. ignored Sokal’s reasoning. They produced 
no null model nor proved that the method yields biologically correct results. The appeal of their tool was mainly 
its applicability to the large genetic datasets that had begun emerging at that time and the visual appeal of PC 
scatterplots that condensed these data. Interestingly, Novembre and Stephens94 showed that the PCA structured 
patterns that Cavalli-Sforza and others have interpreted as migration events are no more than mathematical 
artifacts that arise when PCA is applied to standard spatial data in which the similarity between locations decays 
with geographic distance. Nonetheless, their warning was largely ignored, perhaps because the parallel study of 
Novembre et al.32 left a stronger impact, and Cavalli-Sforza’s dataism was vindicated.

Evidently, PCA produces patterns no more historical than Alice in Wonderland and bear no more similarity 
to geographical maps. Overall, the positioning of a method that lacks any measurable power, a test of significance, 
or a null model, which any diligent scientist should seek at the forefront of population genetic analyses, is prob-
lematic at the very least. It would not be an exaggeration to consider PCA the Rorschach of population genetics, 
a procedure that is almost entirely open to manipulations and consequent interpretations, where researchers 
may see “geographical maps” or “Neolithic clines” as they will. In PCA-driven science, almost all the answers 
are equally acceptable, and the truth is in the eyes of the beholder.

Moving beyond PCA.  As an alternative to PCA, we briefly note the advantages of a supervised machine-
like model implemented in tools like the Geographic Population Structure (GPS)85 and Pairwise Matcher 
(PaM)57. In this model, gene pools are simulated from a collection of geographically localized populations. The 
ancestry of the tested individuals is next estimated in relation to these gene pools. In this model, all individuals 
are represented as the proportion of gene pools. Their results do not change when samples are added or removed 
in the second part of the analysis. Population groups are bounded within the gene pools, and inclusion in these 
groups can be evaluated. This model was shown to be reliable, replicable, and accurate for many of the applica-
tions discussed here, including biogeography85, population structure modeling106, ancestry inference107, paleog-
enomic modeling108, forensics86, and cohort matching57. An evaluation of other tools that may be useful to infer 
the population structure and their limitations can be found elsewhere37,109.

Conclusions
PCA is a mathematical transformation that reduces the dimensionality of the data to a smaller set of uncorre-
lated dimensions called principal components (PCs), which has numerous applications in science. In population 
genetics alone, PCA usage is ubiquitous, with dozen standard applications. PCA is typically the first and primary 
analysis, and its outcomes determine the study design. That PCA is completely non-parametric is the source of 
its strength. Any genotype dataset can be rapidly processed with no concerns about parameters or data validity. It 
is also a weakness because the answer is unique and depends on the particular dataset, which is when reliability, 
robustness, and reproducibility become a concern. The implicit expectation employed by PCA users is that the 
variance explained along the first two PCs provides a reasonable representation of the complete dataset. When 
this variance is minuscule (as often with human populations), it poorly represents the data. Rather than consider 
using alternative analyses, authors often choose not to report the variation explained by PCA. Regardless, it is 
not a proxy for the reliability of the results.

Here, we carried out extensive analyses on twelve PCA applicaitons, using model- and real-populations to 
evaluate the reliability, robustness, and reproducibility of PCA. We found that PCA failed in all criteria and 
showed how easily it could generate erroneous, contradictory, and absurd results. This is not surprising because 
PCA is blind to the data and their meaning. The covariance matrix is calculated from the centered matrix itself 
created simply by subtracting the mean Au from the original matrix A, disregarding the weights and geography. 
The remaining transformation consists of the dimensionality reduction, which is less problematic; however, 
that the first two PCs that capture most, but still a very small part of the genetic variation, are typically analyzed 
creates further misinterpretations. Given the omnipresence of PCA in science, an intriguing question is whether 
multidisciplinary PCA results should be reevaluated? Based on our analyses and critical evaluations published 
elsewhere, we cannot dismiss this possibility.

As PCA lacks any measurable significance or accuracy, we argue that its dominance in population genetics 
could not have been achieved without the adoption of two fallacies: cherry-picking or circular reasoning (i.e., 
“exploration”), the screening and selecting PCA scatterplots that fit preconceived hypotheses while ignoring 
the other plots, and the a priori where PCA results are interpreted based on pre-existing knowledge because 
PCA scatterplots are uninformative a posteriori. As a “black box” basking in bioinformatic glory free from any 
enforceable proper usage rules, PCA misappropriations, demonstrated here for the first time, are nearly impos-
sible to spot.

The fact that population affinities vary appreciably between closely related, ostensively equivalent datasets is 
deeply worrying (PCA applications were cited 32,000-216,000 times). Researchers from adjacent fields like animal 
and plant or medical genetics may be even less aware of the inherent biases in PCA and the variety of nonsensical 
results that it can generate. We consider PCA scatterplots analogous to Rorschach plots. We find PCA unsuitable 
for population genetic investigations and recommend reevaluating all PCA-based studies.
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Methods
Generating the color populations.  All the color populations were generated in a similar way with the 
number of dimensions p equals 3. Every individual color was represented by [P1*R*N, P2*R*N, P3*R*N], where 
P1–3 are the three color dimensions or components that range from 0 to 1, R is pseudorandom value drawn from 
the standard normal distribution (Matlab’s function randn). N is noise set to 0.01 in almost all analyses, with 
the following exceptions where a larger noise was needed in Figs. 17 (N = 0.02), 19 (N = 0.02 or 0.05), 13B, 13C 
(N = 0.05), 13A (N = 0.17), and Supplementary Fig. S2.3C (N = 0.015). Colors are represented by a name and 
value (i.e., Red is [1,0,0] to which R and N were added), rounded up for brevity.

Sample collection.  Alongside the simulated color datasets, we employed three human genotype datasets:

Table 1.   A summary of the main findings of the twelve test cases studied here.

Test case Main findings

The near-perfect case of dimensionality reduction
The observed distances in a PC plot do not reflect the distances 
between the samples
Even sample size changes do not affect the topography of the out-
comes for same-size populations

Different sample sizes
Changing sample sizes creates alternative results
A priori knowledge is vital to interpreting PCA results. Without it, 
interpreting PCA plots leads to nonsensical conclusions

One admixed population

The proportion of explained variance by the PCs is not biologically 
meaningful and is not a measure of PCA accuracy
Clines like the “Ancestral North Indians” (ANI) and “Ancestral South 
Indians” (ASI) are artifacts of the PCA scheme
PCA results do not reflect genetic or biological distances
Admixture levels and direction cannot be inferred from PCA
PCA schemes can be manipulated to support ethnocentric claims, as 
with the case of Ashkenazic Jews (AJs)
Experimenters can use PCA to produce near-endless conflicting and 
absurd historical scenarios, all mathematically correct but biologically 
incorrect

Two or three-way admixed population (Supplementary Text 2.1)
PCA outcomes may appear, in part, meaningful based on a priori 
knowledge but are biologically meaningless and contradictory 
otherwise

Multiple admixed population

Alternating reference populations creates alternative results
Including multiple admixed populations does not improve PCA 
accuracy
PCA schemes can be manipulated to support origin or genetic 
distinctiveness claims

The case of multiple admixed populations without “unmixed” popula-
tions

Including multiple admixed populations without “unmixed” ones 
does not improve PCA accuracy
Although a deterministic process, PCA behaves unexpectedly as 
minor variations can lead to an ensemble of different outputs that 
appear stochastic. Consequently, PCA results are irreproducible

Pairwise comparisons (Supplementary Text 2.2)
PCA can lead to erroneous conclusions concerning clustering, iden-
tity, and distance cross-dimensionally
PCA clustering and distances are unpredictable and unreliable for 
studying the relationships between populations

Case–control matching and GWAS

Analyzing reference populations with mismatched ancestries respec-
tive to the unknown samples biases the ancestry inference of the latter
PCA exhibits a high error rate when used to create genetically homo-
geneous clusters
Analyzing higher PCs decreases the size of the homogeneous clusters 
and increases the size of the non-homogeneous ones
Studying genetic association in a case–control setting, PCA adjusted 
results had more false positives, fewer true positives, and weaker 
p-values than unadjusted results
“Exploring” PC plots yields no insight. The sole purpose of “explora-
tion” is to allow experimenters to select their favorable solution based 
on their a priori knowledge

Projections PCA projections are unreliable and misleading, with correct out-
comes indistinguishable from incorrect ones

Ancient DNA
Projecting ancient populations onto modern ones allows the experi-
menter to choose favorable results
Authors typically omit the amount of variance explained by the 
primary PCs because it is minuscule

Marker choice
Analyzing different markers creates alternative results
Ancestry informative markers (AIMs) are more robust to noise and 
errors when studying the population structure

Inferring a personal ancestry
Using PCA to infer individual ancestry is unreliable and misleading
Using PCA, experimenters can easily generate desired patterns to 
support personal ancestral claims
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(1)	 2068 global modern-DNA samples genotyped over 621,799 SNPs14 available at https://​reich.​hms.​harva​rd.​
edu/​sites/​reich.​hms.​harva​rd.​edu/​files/​inline-​files/​NearE​astPu​blic.​tar.​gz,

(2)	 the overlap of dataset 1, 2504 humans from the 1000 genome project110 available at ftp://​ftp-​trace.​ncbi.​nih.​
gov/​1000g​enomes/​ftp, and 471 Ashkenazic Jews48 available at http://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​
cgi?​acc=​GSE23​636 (overall 5,043 samples) and

(3)	 the overlap of dataset 2 and 514 ancient DNA samples from Allen Ancient DNA Resource (AADR) (version 
44.3)14 (Supplementary Table S1) (overall, 5,557 samples).

	   We used Lazaridis et al.’s14 dataset to LD-prune all the datasets. After LD pruning using PLINK command 
(50 10 0.8) and removing SNPs with missingness, allowing no more than five missing SNPs per sample, the 
datasets included: p1 = 230,569, p2 = 128,568, and p3 = 128,568 autosomal SNPs, respectively.

Data analyses.  All calculations PCA were carried out using Matlab’s (R2020a, Statistics and Machine Learn-
ing Toolbox Version 11.7) PCA function, which uses singular value decomposition (SVD), like SmartPCA, and 
yields nearly identical results to the basic SmartPCA tool9 (Version 7.2.1 without removing outliers, normaliza-
tion, or projection) (Supplementary Figs. S1–S2).

In test cases where simulated data were used, we manipulated the colors and the sample size, both shown in 
each figure legend and caption. We evaluated the accuracy of PCA’s projections of the colors on a 2D plane as 
deviations from the true distances of the colors from each other on a 3D plane.

In test cases where human data were used, we modulated the choice of populations and sample size (indi-
viduals were always randomly sampled), both shown in each figure legend and caption. Dataset 1 was used to 
produce Supplementary Figs. S1–S2. All the human test cases were carried out on dataset 2, except of the case of 
ancient DNA, where the 3rd dataset was used. By large, we refrained from commenting on the accuracy of the 
prediction, even when it is well established, and instead focused on conflicting interpretations produced by PCA.

To evaluate the proportion of homogeneous clusters, we applied a k-means clustering (Matlab’s kmean func-
tion) to the two top PCs. Cluster homogeneity was calculated by using k-means clustering to PC1 and PC2 for K 
clusters (unless stated otherwise), where k was the square root of the number of samples. Clusters were considered 
homogeneous if they harbored only samples from one population.

Evaluating missingness and noise.  To evaluate the effects of missingness and noise in the case of marker 
choice, each color component was evenly divided across a window size of 200, generating a dataset of 600 “SNPs”. 
Missingness was then simulated by randomly nullifying different values of the matrix. The tri-color component 
structure was recovered by the reverse operation of summing the three 200-SNP-sets. The noise was generated 
by adding random markers (generated using Matlab’s rand function) to the color SNP set.

Projection of ancient samples.  A major challenge in projecting ancient samples onto modern-day sam-
ples is handling the high data absences. Lazaridis et al.14 addressed this problem using the least-squares projec-
tion (lsqproject) implemented in EIGENSOFT. Wang et al.68 cautioned that this method does not address the 
shrinkage problem (where all the projected samples cluster together) and that the results might be misleading. 
To avoid this problem and the difficulties associated with missing data, in the case of ancient DNA, we analyzed 
65 out of 102 of the ancient samples of interest with over 10,000 SNPs in our dataset (with a median of 48,249 
SNPs). We then projected one ancient sample at a time, based on the modern-day samples, using only the geno-
typed SNPs of the former.

Estimating the citation number of PCA tools.  Very conservatively, we estimate that, as of 4/2022, 
32,000 genetic studies employed PCA based on Google Scholar’s citation count for the most commonly used 
PCA tools using the following searches: “EIGENSTRAT OR EIGENSOFT OR smartPCA” (8300), “PLINK AND 
PCA -EIGENSOFT -SNPRelate” (8390), “genalex AND PCA” (5990), “FlashPCA OR FlashPCA2” (365), “PCA 
in R AND genetics” (530), “adegenet AND PCA” (5350), ClustVis AND PCA (2170), and pcadapt AND PCA 
(624). A search for “(population Genetics) AND ("PCA")” yielded 159,000 results. This is also likely a small frac-
tion of the true number of studies that employed PCA. Searching for “(Genetics OR genome) AND ("PCA")” 
yielded 216,000 results.

Data availability
All our data and scripts that can replicate our results and figures are available via GitHub: https://​github.​com/​
eelha​ik/​PCA_​criti​que.
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