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Patients with familial pulmonary fibrosis represent a subset of patients with pulmonary fibrosis

in whom inherited gene variation predisposes them to disease development. In the appropriate

setting, genetic testing allows for personalized assessment of disease, recognition of clinically

relevant extrapulmonary manifestations, and assessing susceptibility in unaffected relatives.

However currently, the use of genetic testing is inconsistent, partly because of the lack of

guidance regarding high-yield scenarios in which the results of genetic testing can inform

clinical decision-making. To address this, the Pulmonary Fibrosis Foundation commissioned a

genetic testing work group comprising pulmonologists, geneticists, and genetic counselors from

the United States to provide guidance on genetic testing in patients with pulmonary fibrosis.

This CHEST special feature presents a concise review of these proceedings and reviews pul-

monary fibrosis susceptibility, clinically available genetic testing methods, and clinical scenarios

in which genetic testing should be considered. CHEST 2022; 162(2):394-405
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conveyed to families with two or more members with
pulmonary fibrosis within three degrees of relationship.1

Currently, it is estimated that 20% of patients with
pulmonary fibrosis fulfill the FPF designation and may
experience worse survival.2-4 Genetic studies have
identified numerous rare genetic variants in multiple
genes that cause disease manifestations. In aggregate,
results from these studies suggest that genetic
determinants underlying FPF may inform clinical
decision-making for individual patients and their
relatives.

Despite the growing appreciation of the role of
inherited genetic variants in disease development,
indications for genetic testing in clinical practice are
not well described, and such testing is used
inconsistently when high-yield indications are present.
To address these uncertainties and inconsistencies, the
Pulmonary Fibrosis Foundation commissioned the
Genetic Testing Work Group comprising US-based
pulmonologists, geneticists, and genetic counselors
who participate in the care of patients with pulmonary
fibrosis to provide guidance on genetic testing in these
patients. The goals of the Genetic Testing Work
Group guidelines were (1) to summarize genetic
variation in FPF, (2) to describe clinically available
genetic testing methods, (3) to review indications for
genetic testing, and (4) to discuss special
considerations for genetic testing. Two documents
were produced as part of this work group, one for
care providers and one for patients.5,6 This CHEST
special feature details the findings and
recommendations of the care provider document
produced by the Pulmonary Fibrosis Foundation
Genetics Testing Work Group.

Genetic Underpinnings of FPF
Within FPF, associated variants can be categorized as
common or rare based on their allele frequency within
the population. Common variants, otherwise known as
single nucleotide polymorphisms (SNPs), occur in
approximately every 1,000 nucleotides in the human
genome and have a frequency of 1% or higher in a
population.7 Disease-associated SNPs also can be
found in healthy individuals, generally reside at
specific loci within noncoding regions, and may
influence gene expression.8 For example, the
rs35705950 SNP in the promoter region of the
MUC5B gene is associated strongly with idiopathic
pulmonary fibrosis risk.9 Although common variants
influence risk of disease development, they usually are
chestjournal.org
insufficient to cause disease in isolation. In contrast,
rare variants are found infrequently in the general
population at less than 1%. Instead, their frequency is
enriched in patients and families with pulmonary
fibrosis, with penetrance that increases with age. The
rare variants tend to cosegregate with disease in
families across multiple generations and affect distant
relatives who may have had no knowledge of each
other. In addition, rare variants generally occur at
variable loci within coding regions of disease-
associated genes, resulting in impaired gene products,
and alone can cause disease.10 Therefore, clinical
genetic testing in FPF kindred focuses primarily on
identifying rare heritable variants.

FPF

Collectively, prior studies indicate that only 20% to
30% of kindred with FPF harbor an identifiable causative
genetic variant.11 The reason for the relatively low
positivity rate may be the result of multiple factors,
including yet to be identified genetic variants that
contribute to disease risk, additive effects of lower effect-
size variants, or the effect of genetic plus certain
environmental exposures. Multiple disease-associated
genes and multiple variants within those genes have been
identified to date, so no one gene or variant causes
pulmonary fibrosis in all patients or families. In addition,
individuals within families may manifest variable forms
of pulmonary fibrosis, suggesting that additional genetic
or environmental factors may influence phenotype.12 To
date, rare variants in two biologic pathways contribute to
the known genetic heritability of FPF: surfactant
metabolism and telomere maintenance, with the latter
being significantly more common.

Rare Surfactant Gene Variants

Surfactant is a mixture of lipid and proteins produced by
type II alveolar epithelial cells that reduces alveolar
surface tension and modulates the innate immune
response.13 Rare pathogenic variants in surfactant-
related genes cause improper protein trafficking, leading
to endoplasmic reticulum stress, defects in autophagy,
and type II alveolar cell toxicity.14-16 To date, six
surfactant-related genes have been implicated in FPF.
Heterozygous variants in surfactant protein C (SFTPC)
have been reported in patients ranging from neonates to
elderly adults with variable pulmonary fibrosis
phenotypes.17,18 Surfactant protein A (SFTPA1,
SFTPA2) variants have been associated with
concomitant familial pulmonary fibrosis and lung
adenocarcinoma in a small number of families.19,20 Rare
395
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variants in surfactant protein B (SFTPB) and ATP-
binding cassette-type 3 (ABCA3) are associated more
commonly with neonatal respiratory distress syndrome
and pediatric-onset interstitial lung disease.21-24 In the
case of ABCA3, a genotype-phenotype correlation exists
whereby homozygous loss-of-function variants are
associated with respiratory failure at birth, whereas
compound heterozygous variants result in variable
presentation often with less severe disease.25,26

Monoallelic ABCA3 variants have been reported in FPF,
but a causal role has not been established clearly.21,27

Variants in the transcription factor NKX2-1 also have
been reported in FPF.28

Collectively, surfactant gene rare variants are estimated
to occur in 1% to 3% of kindred with FPF,29 of whom
the affected relatives often demonstrate disease across
the age spectrum ranging from the neonatal period
through late adulthood. Apart from brain and thyroid
disease in patients with NKX2-1 mutations, rare variants
in surfactant genes are not associated with
extrapulmonary manifestations.

Rare Telomere Gene Variants

Telomeres are specialized structures comprising six
nucleotide repeat sequences (TTAGGG) located at the
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ends of chromosomes that serve as a buffer to prevent
DNA loss during cell division. Telomere structure is
maintained and protected by specialized proteins;
dysfunction of these proteins leads to abnormal
telomere shortening. To date, pathogenic variants in a
number of telomere genes have been implicated in the
development of adult-onset FPF. These genes are
responsible for maintaining telomere length (TERT
and TERC),30,31 formation of the telomerase complex
(PARN, DKC1, NAF1, ZCCHC8, and NOP10),32-36

unwinding telomere structure during DNA replication
(RTEL1),32,37,38 and maintaining integrity of the
telomere end (TINF2).39 Of note, heterozygous
mutations in NOP10 have been reported in only one
family to date.35,36 Pathogenic variants generally are
inherited through an autosomal dominant pattern with
variable penetrance,12,30,31,40,41 except for DKC1, which
causes X-linked inheritance.42 A single report of
biallelic (ie, recessive) PARN rare variants has been
published.43

Pathogenic variants in telomere genes as well as short TL
are associated with a variety of clinical manifestations
including pulmonary fibrosis, pulmonary emphysema,
liver dysfunction, bone marrow dysfunction, and
premature graying of hair (Fig 1).44,45 Patients with
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TABLE 1 ] Clinical Features Within Patients or Families That Suggest a Possible Genetically Driven Process
Stratified by Gene Pathways

Clinical Feature
Telomere
Pathway

Surfactant
Pathway

Hermansky-Pudlak
Syndrome

Pulmonary fibrosis < 50 y of age Yes Yes Yes

2þ Members with pulmonary Fibrosis within family (proband plus $ 1
relative(s))

Yes Yes Yes

Bone marrow abnormalities: acute myeloid leukemia, aplastic anemia,
myelodysplastic syndrome, macrocytosis, chronic anemia

Yes No No

Bone marrow abnormalities: atypical cells (eg, macrophages), bleeding
diathesis resulting from platelet dysfunction, neutropenia

No No Yes

Integumentary features: premature greying (teens or 20s), alopecia,
dysplastic nails, oral leukoplakia, reticular skin pigmentation on chest or
neck

Yes No No

Integumentary features: oculocutaneous albinism, iris transillumination No No Yes

Liver disease or cirrhosis Yes No No

Head or neck malignancy (< 50 y of age) Yes No No

Bone disorders: premature osteoporosis, avascular necrosis of hips or
shoulders

Yes No No

Pediatric-onset ILD with or without brain or thyroid disorders No Yes No

Pulmonary fibrosis with lung adenocarcinoma No Yes No
telomere gene variants may manifest a wide variety of
pulmonary fibrosis subtypes and are at risk of rapid
progression and poor survival.12,46 Pathogenic variants
in telomere genes are found in 20% to 30% of unselected
familial pulmonary fibrosis kindreds and up to 80% in
selected cohorts with strong clinical histories that
include bone marrow failure in first-degree relatives.47,48

TERT is by far the most commonly affected gene in FPF
and is found in approximately 10% to 20% of kindreds,
followed by RTEL1, PARN, and TERC at 2% to
5%.12,30-32,40,41

TL in FPF

Leukocyte telomere length (TL) is a surrogate marker
for telomere-mediated lung disease risk. Short age-
adjusted TL is common in individuals with pathogenic
variants in telomere genes; however, the magnitude of
telomere shortening is variable among the telomere
genes and depends on the age at diagnosis, with
shorter TL being associated with more severe
disease.32,47 Telomere shortening can occur in the
absence of an identifiable rare telomere-related
variant40,49 and may be associated with bone marrow
failure even in the absence of a family history. As
such, TL alone does not discriminate perfectly between
the presence or absence of a rare telomere gene
variant, especially in patients older than 40 years.
However, age-adjusted TL at or longer than the 50th
percentile by clinically validated flow cytometry with
chestjournal.org
fluorescent in situ hybridization (flow-FISH) may have
a negative predictive value.47

Pedigree Construction
Family history ascertainment is a critical step in
identifying potential kindred with FPF and may
influence disease outcomes50; therefore, a detailed family
history should be obtained for all patients with
pulmonary fibrosis. The family pedigree should include
medical history from relatives within at least three
generations, with particular focus on phenotypes
associated with known genetic pathways (Table 1).
Patients with pulmonary fibrosis with a family history of
disease or relevant extrapulmonary manifestation should
be suspected of having FPF, and genetic testing should
be considered strongly, given the high yield.48

Clinical Genetic Testing Methods
For patients with FPF, two clinically available genetic

testing options offer different, yet complementary,

information: (1) gene sequencing and (2) TL

measurement.

Gene Sequencing

Gene sequencing includes the detailed assessment of
genomic DNA code extracted from cells within
blood, saliva, buccal swabs, or skin biopsies. Multiple
gene sequencing technologies are available to
397
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Figure 2 – A, B, Graphs showing examples of clinical reports of telomere length in lymphocytes (A) and granulocytes (B) for a patient with familial
pulmonary fibrosis. The points on the telograms represent the telomere length values relative to the expected age-adjusted distribution. Telomere length
was measured by flow cytometry and fluorescent in situ hybridization.
clinicians, including whole genome, whole exome,
and gene panel testing. Although whole genome and
exome sequencing assess the entire genome or exome
of the patient, gene panel testing sequences only the
subset of genes that have been implicated previously
in FPF, and therefore is preferred both for cost and
expedience. Gene sequencing results can be complex
and should be interpreted by clinicians with genetic
expertise who can explain the meaning of test results
to patients and their family members.

Genetic variants identified through gene sequencing
are reported according to standards outlined by the
American College of Medical Genetics, which include
pathogenic, likely pathogenic, uncertain significance,
likely benign, and benign descriptions.51,52 These
designations are derived by assimilating known
information about the specific variant in question,
including the functional consequence, variant
prevalence within the population, previous
associations, or cosegregation with disease.53 Within
this context, positive results are found in up to 30% of
patients with FPF, indicating that the patient harbors
a pathogenic or likely pathogenic variant in a gene
that was implicated previously in FPF. In contrast,
negative results are the more common finding in
unselected patients, indicating that the patient does
not have a causative genetic variant in the genes
tested, but still may harbor a causative variant that is
398 Guidelines and Consensus Statements
yet to be identified. Rarely, negative results may be the
result of technological limitations such as variants
located deep within introns. In many patients with
FPF, gene sequencing identifies a variant of uncertain
significance (VUS) that either has not been reported
previously, but is linked to pulmonary fibrosis, or has
insufficient data to determine if the variant is
pathogenic or benign. Private or unreported rare
missense variants present a unique challenge. As such,
variants are reported as VUSs because functional
studies to ascertain pathogenicity better may not be
available. However, a VUS later may be reclassified as
either pathogenic or benign based on emerging
information from additional clinical genetic databases
and functional studies. Among individuals with
variants in telomere maintenance genes, TL testing
may help to determine the significance of a VUS.
TL Measurement

Clinical TL measurement is performed using peripheral
blood leukocytes or DNA extracted from these cells.
Multiple methods quantify leukocyte TL, such as flow-
FISH, terminal restriction fragment length, quantitative
polymerase chain reaction, and estimations from whole
genome sequencing, each of which has limitations.
Among these, flow-FISH has high interlaboratory
reproducibility. Several clinical indications exist for TL
[ 1 6 2 # 2 CHES T A UGU S T 2 0 2 2 ]



TABLE 2 ] Clinical Scenarios in Which Clinicians May Consider Genetic Testing and the Potential Yield for Identifying
a Variant

Clinical Scenario
Consider Testing and Potential Yield

for Variant

Patient with pulmonary fibrosis with family history of pulmonary fibrosis Yes, high yield

Patient with pulmonary fibrosis (sporadic or familial) with personal or family history of
telomeropathy manifestations

Yes, high yield

Syndromic presentations (short telomere syndrome, Hermansky-Pudlak syndrome) Yes, high yield

Targeted testing in unaffected family members (> 18 y of age) of proband with known
pathogenic variant in disease-causing gene

Yes, high yield

Young age at PF onset (< 50 y) Yes, low yield

Personal or family history of coexistent pulmonary fibrosis with lung adenocarcinoma Consider, low yield

Sporadic pulmonary fibrosis with no suggestive extrapulmonary manifestations Not currently recommended

Unaffected relative if proband has not undergone genetic testing, or recent comprehensive
testing showed negative results for disease-causing variant

Not currently recommended

Common variants in sporadic pulmonary fibrosis (eg, MUC5B) Not currently recommended

Evaluation before lung transplantation Not currently recommended
testing, and flow-FISH is considered the gold standard
for diagnosis of telomere-related disease in children and
young adults.47 Given that telomeres normally shorten
with age, the measured absolute TL is compared with
that of a reference population to calculate age-adjusted
values. Clinical reporting of TL provides both the
absolute length in kilobases and age-adjusted percentiles,
which often are represented graphically on telograms
(Fig 2).

Considerations for Genetic Testing in FPF
Genetic testing is considered for patients with FPF when
the results (1) would influence patient-specific disease
management, (2) would inform individual risk
stratification, (3) would provide context for
extrapulmonary disease manifestations, (4) would provide
relevant information for the patient or their relatives, or a
combination thereof. Scenarios in which genetic testing
should be considered and their likelihood of a genetic
diagnosis are outlined below and summarized in Table 2.

Patients With FPF

Panel-based gene sequencing should be considered for
all patients with a diagnosis of and with a family history
of pulmonary fibrosis because identification of a rare
genetic variant within risk genes offers actionable
information for individual patients and their relatives.
For example, pathogenic variants in the telomere genes
TERT, TERC, PARN, and RTEL1 convey high risk for
rapid progression and poor survival, regardless of the
specific pulmonary fibrosis diagnosis.12 In such cases,
clinicians may consider deferring invasive surgical lung
chestjournal.org
biopsy because histopathologic analysis may be less
prognostically informative, and instead may opt for
frequent monitoring, early initiation of appropriate
therapies, and referral to lung transplant centers.12

Further, patients who harbor rare pathogenic variants
may be at risk for nonpulmonary fibrosis manifestations
that warrant surveillance, such as lung cancer in those
with SFTPA1/2 variants and liver disease and bone
marrow dysfunction in those with telomere-related
variants.

For patients with FPF, TL testing alone is an imprecise
screening tool for the presence of a telomere-related gene
variant because the length varies among telomere
genes.32,54 However, broadly speaking, age-adjusted TL of
more than the 50th percentile is less likely to coexist with a
pathogenic telomere gene variant, whereas TL of less than
the first percentile increases the likelihood of a telomere
gene variant; therefore, sequencing could focus on
telomere genes. Isolated TL testing can aid in the
evaluation of patients with a personal or family history of
multisystemmanifestations suggestive of a short telomere
syndrome: coexistent pulmonary fibrosis, liver disease,
bone marrow failure, myelodysplastic syndrome or acute
myeloid leukemia, premature hair graying, or a
combination thereof. In this scenario, a short telomere
syndrome is considered unlikely when age-adjusted TL is
more than the 50th percentile, but is more likely when TL
is less than the first percentile even when no mutation is
identified.

When performed in conjunction with gene sequencing,
TL testing may offer additional insight into the potential
399
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pathogenicity of an identified telomere-related variant.
In this setting, short age-adjusted TL may argue for
pathogenicity depending on the variant and clinical
history, whereas longer TL is less helpful in this regard.
Available data suggest that a TL threshold-based
approach is age dependent and cannot predict mutation
pathogenicity accurately alone in all patients, but
requires additional clinical data, including family
history, for adequate interpretation.47
Family Member Testing

The presence of a disease-causing variant in an
affected family member offers potential actionable
information for their relatives. In such cases, genetic
counseling with targeted gene sequencing for the
specific variant should be offered to other interested
relatives to aid in susceptibility risk stratification.
Those relatives who also harbor the variant should be
considered at higher risk for disease development;
however, disease penetrance and severity are highly
variable, and currently no known interventions exist
that prevent disease onset. In general, the risk of
inheriting an identified variant and of disease
developing is gene dependent and may range from
0% to 50%, depending on how the gene is inherited
(autosomal dominant, autosomal recessive, or X-linked
recessive). Autosomal dominant inheritance is the
most common scenario in FPF, resulting in a
50% chance that the parents, children, and siblings of
individuals with positive test results will inherit the
same mutation. Because pulmonary fibrosis usually
manifests in middle to late adulthood, asymptomatic
individuals may not suspect that they carry a disease-
causing variant until they undergo genetic testing.
Genetic anticipation can be observed in kindreds
harboring rare telomere gene variants resulting from
progressive shortening of TL across generations. This
can result in earlier age of pulmonary fibrosis onset
and higher risk of bone marrow failure developing as
the initial manifestation in subsequent
generations.12,48,55,56

Syndromic Presentations

Genetic testing should be considered in patients (with
sporadic or familial disease) when personal or family
history is suspicious for defined genetic syndromes
such as short telomere syndromes, including
dyskeratosis congenita, Hermansky-Pudlak syndrome,
or young age at disease onset (adults younger than 50
years or pediatric patients). Dyskeratosis congenita
400 Guidelines and Consensus Statements
(DC) is the first historically recognized short
telomere syndrome that classically manifests
dysplastic nails, lacy reticular skin pigmentation on
the upper chest or neck, and oral leukoplakia. Most
patients with DC experience bone marrow failure,
which is the leading cause of death. Pulmonary
fibrosis may manifest in late adolescence or early
adulthood, often after bone marrow transplantation.
To date, rare variants in at least 11 genes have been
implicated in DC (ACD, CTC1, DKC1, NHP2,
NOP10, PARN, RTEL1, TERC, TERT, TINF2, and
WRAP53) and are transmitted through various
modes of inheritance (X-linked, autosomal recessive,
and autosomal dominant).57,58 Heterozygous variants
in TERT, TERC, RTEL1, and PARN are associated
with disease, but biallelic variants rarely cause more
severe forms of DC (eg, Hoyeraal-Hreidarsson and
Revesz syndromes) or adult-onset FPF.43 Patients
with suspected DC should undergo TL testing with
or without gene sequencing, because all patients with
DC have short age-adjusted TL, but only 70% harbor
a currently identifiable pathogenic variant in
previously identified telomere genes.59 This classic
form of DC comprises only less than 10% of all short
telomere syndrome manifestations, with the most
common form being FPF.47

Hermansky-Pudlak syndrome (HPS) is characterized
by oculocutaneous albinism and bleeding diathesis,
and some patients with HPS also exhibit pulmonary
fibrosis, granulomatous colitis, or immunodeficiency.
If pulmonary fibrosis is present, it often manifests in
the third decade of life. At least 10 genes (AP3B1,
HPS1, HPS3, HPS4, HPS5, HPS6, and less
commonly, AP3D1, BLOC1S3, BLOC1S6, and
DTNBP1) have been implicated in HPS and are
inherited in an autosomal recessive manner.60 The
HPS1, HPS4, and AP3B1 genes seem to be associated
most strongly with pulmonary fibrosis, with many
specific variants being more prevalent in certain
populations (eg, those of Puerto Rican or Ashkenazi
Jewish ancestry). In patients with clinical history or
features suggestive of HPS, platelet electron
microscopy and gene sequencing should be
considered.60

Several surfactant metabolism genes also have been
observed in patients with a pulmonary alveolar
proteinosis phenotype in the neonatal period; variants in
genes encoding for the GM-CSF receptor CSF2RA,
CSF2RB, MARS, SLC7A7 and GATA2 also have been
implicated in patients with pulmonary alveolar
[ 1 6 2 # 2 CHES T A UGU S T 2 0 2 2 ]



proteinosis.61–64 Variants in COPA, TMEM173, and
FOXF1 have been associated with syndromic
presentations that may include interstitial lung
disease.65–67 The complete spectrum of disease
associated with these genes has not yet been defined, but
currently, it is not clear that adult presentations of
isolated pulmonary fibrosis are seen in patients with
these mutations.

Scenarios When Genetic Testing Generally Is
Not Indicated
Although genetic testing may provide high-yield results
in the appropriate clinical setting, widespread genetic
testing is not yet justified for all patients with pulmonary
fibrosis because the relevance of such results remains
unclear in many settings. Genetic testing generally is not
recommended for the following indications.

Sporadic Pulmonary Fibrosis

Genetic sequencing generally is not recommended for
patients with sporadic pulmonary fibrosis unless they or
their family members display features suggestive of a
genetic syndrome. Although presence of the MUC5B
promoter polymorphism greatly increases the risk of
sporadic idiopathic pulmonary fibrosis, an estimated
20% of people of European ancestry carry this
polymorphism,9,68,69 and it is found at substantially
lower frequencies in non-European populations,70

limiting its usefulness as a screening tool. This is true of
other common SNPs identified to date. Additionally,
although several common SNPs have been linked to
differential survival and treatment response in patients
with idiopathic pulmonary fibrosis and other forms of
pulmonary fibrosis, the role of these in clinical decision-
making has yet to be defined.

The role of TL testing is understood incompletely and
remains an active area of research. Short age-adjusted
TL has been shown in retrospective studies to offer
prognostic information across a variety of pulmonary
fibrosis subtypes.71–74 In addition, idiopathic patients
with pulmonary fibrosis with short TL experience higher
mortality and hospitalization rates when exposed to
immunosuppressant medications.75 Patients with the
very short TL, even in sporadic PF, may have increased
risk for myelosuppression after lung transplantation,
and some TL patterns by flow-FISH also are associated
with the development of myelodysplastic syndrome and
acute myeloid leukemia.49,56 Additional studies are
needed to determine if and how TL measurement should
be integrated into clinical practice.
chestjournal.org
Prior small case series and retrospective studies have
identified unique management challenges after
transplantation encountered in patients with pathogenic
variants in telomere genes or short age-adjusted TL.76–82

In some cases, short TL in idiopathic patients with
pulmonary fibrosis has been associated with infectious
complications occurring after transplantation and are
indicative of an underlying immunodeficiency that may
be unmasked by immunosuppressive medications.78,83

Given the limited data currently available, genetic testing
(gene sequencing or TL testing) is not recommended to
inform lung transplant candidacy for patients with
sporadic pulmonary fibrosis. However, future studies are
needed to determine how and if this information can
improve patient care after transplantation.

Unaffected Relatives

Genetic testing is not currently recommended for
unaffected relatives if the affected proband either has not
undergone genetic testing or has shown negative results
for genetic sequencing. In the genetics professions, it is
considered best practice to initiate genetic testing in the
individual most likely to be informative, ideally a family
member with a diagnosis of the disease of interest.84,85

Because current testing identifies a genetic cause in only
20% to 30% of probands, cascade testing of relatives is
expected to have clinical usefulness only in these
families. Without knowing the genetic cause in a family,
negative results or VUS findings in an unaffected relative
are considered indeterminate results with significant
limitations for interpretation of risk. In these patients,
ancillary testing such as TL may be warranted, educating
the unaffected relatives that they may be at higher risk
for development of disease given their family history,
and we recommend age-appropriate medical screening
examinations and avoidance of known risk factors and
fibrogenic exposures. Of note, Carmichael et al86 found
that unaffected first-degree relatives undergoing clinical
and genetic screening for FPF felt little regret over their
decision to be tested or negative feelings on learning of a
genetic risk factor.

Genetic Testing Considerations

Genetic Counseling

Genetic counseling is the process of helping people
understand and adapt to the medical, psychological, and
familial implications of genetic contributions to disease
and should be offered to all individuals before
undergoing genetic testing.87 Genetic counselors are
health-care professionals with specialized training in
401
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both medical genetics and psychosocial counseling. In
addition to helping patients understand the risks and
benefits of genetic testing, genetic counselors can help
clinicians to identify the appropriate testing method, can
help to facilitate testing, and can assist in the
interpretation of the results. Therefore, we advocate for
the inclusion of genetic counselors in the care pathway
for all patients considering genetic testing.

Cost

The cost of genetic testing varies significantly based on
the number of genes tested, the technology used, and the
specific laboratory selected. The out-of-pocket cost to
the patient will depend on the list price for the test,
insurance coverage, and whether preauthorization is
required. Several laboratories offer to perform a benefit
analysis before proceeding with testing and will contact
the patient if the cost will be more than a specified
amount. Because the out-of-pocket cost may range from
zero to several thousand dollars, proactively reviewing
the laboratory’s policies may have significant financial
repercussions for the patient.

Genetic Discrimination

Patients often inquire if positive genetic test results
could impact their ability to obtain health insurance.
Although each state may have their own laws, the
Genetic Information Nondiscrimination Act of 2008 is a
federal law that prohibits health insurers from
discriminating based on genetic information, including
family history, and prohibits employers from using
genetic information in employment decisions. However,
the Genetic Information Nondiscrimination Act does
not extend these protections to companies with fewer
than 15 employees to life, long-term care, or disability
insurance. The Genetic Information Nondiscrimination
Act excludes military members in Tricare or the
Veterans Affairs system, federal employees, and Indian
Health Service because these entities already have their
own protections in place. Therefore, it is prudent for
asymptomatic individuals to obtain life and disability
insurance before undergoing genetic testing. For this
reason, it is not recommended that minors undergo
genetic testing until they can understand the
implications of genetic testing and provide informed
consent.

Alternatives to Genetic Testing
Although genetic testing should be offered in the
appropriate clinical setting, some patients may decline to
undergo testing after being counseled on the risks and
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benefits of testing. Because of the paucity of immediate
clinical usefulness, low yield on mutation identification
rate, possible high out-of-pocket costs, and hesitation
from unaffected family members, genetic testing
ultimately is up to the patient. In these situations,
clinicians should continue standard management
practices that include regular monitoring and institution
of appropriate therapies. In addition, clinicians also
should consider that the patient may have an
unidentified genetic determinant of disease and remain
diligent regarding possible extrapulmonary
manifestations and risk for rapid pulmonary fibrosis
progression.

Participation in DNA banking programs allows patients
to preserve DNA samples until a later time when more is
known about pulmonary fibrosis and its genetic
underpinnings. Several commercial laboratories offer
reasonable prices to store DNA for a patient or family
members. This approach can allow for more informed
genetic counseling even after a patient is no longer
available. Alternatively, patients may elect to participate
in research activities in which DNA banking is part of
the research protocol.

Conclusions
Significant advances have been made in identifying
heritable genetic variants that underpin FPF. Genetic
testing provides an opportunity to identify variants
within patients and their relatives that serves as a
powerful adjunct to inform clinical decision-making.
The bench-to-bedside concept is in place; however,
integrating the system into clinical practice remains
challenging. Identifying patients with the highest yield
for a genetic cause historically has been entrusted to
specialist centers or genetics professionals who may not
be familiar with the diagnosis and its complexity. This
article attempts to provide the basic tools for the
nongenetic pulmonary specialists to recognize, evaluate,
and determine genetic testing candidacy for patients
with FPF. However, as the field evolves, incorporating
genetics into the multidisciplinary discussion may
provide additional insights into patient- and family-
specific clinical decision-making.88,89 Although this
statement was organized by a US-based panel, we
acknowledge that health-care delivery can differ widely
in other countries. As such, a European-based task force
is developing a statement on the impact of genetics in
pulmonary fibrosis.90 It is our hope that these statements
become a starting point for integrating genetic medicine
in the care of patients with pulmonary fibrosis.
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