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INTRODUCTION

Short stature is defined as a height below the third percentile 
or more than two standard deviations below the correspond-
ing mean value for a given age, sex, and race. There are many 
possible causes of short stature, among growth hormone (GH) 
deficiency (GHD) is one of the most important.1,2 GH is a poly-
peptide hormone produced by the pituitary gland and is in-
volved in growth and cell reproduction. GHD can be caused by 
congenital or acquired factors.2,3 The tools for the screening 
and evaluating GHD include auxology, radiographic assess-
ment of bone age, measurement of insulin-like growth factor-I 
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(IGF-I), GH stimulation testing, brain magnetic resonance 
imaging (MRI), and, in certain cases, genetic testing.1 Among 
these, the GH stimulation test is widely used for confirming 
GHD diagnosis, wherein responses to at least two GH stimula-
tion tests with various pharmacological stimuli, such as insu-
lin, clonidine, glucagon, arginine, L-dopa, or growth hormone-
releasing hormone (GHRH), are below normal.4,5 However, the 
GH stimulation test has some limitations: due to an arbitrary 
cutoff value, there are issues concerning validity and reproduc-
ibility, making it insufficient for GHD diagnosis.6-8 Additionally, 
multiple venous samples and hospital admissions required to 
conduct the test can be burdensome to patients.8 Without evi-
dence of systemic, endocrine, nutritional, or chromosomal ab-
normalities, children with short stature are diagnosed with idio-
pathic short stature (ISS).9,10 Proper classification and a precise 
diagnosis of short stature are essential for determining treatment 
policy and prognosis.

Currently, in many pediatric endocrinology clinics, evalua-
tion of the pituitary gland by sella MRI is an essential diagnos-
tic process for patients with GHD.11 Neuroimaging is currently 
focused on the measurement of the pituitary gland size using 
various methods. Many studies have reported volumetric dif-
ferences between GHD and ISS and have demonstrated anteri-
or pituitary hypoplasia with GHD.12-16 Kessler, et al.17 reviewed 
pituitary volume (PV) differences among three groups (control, 
GHD, and ISS) and reported significant differences in PV and 
minimal increases in PV with age in the GHD group. However, 
there are GHD and ISS children who exhibit normal PV for 
their age.

Radiomics is a methodology that seeks to extract a large num-
ber of features from medical images using mathematical algo-
rithms.18 These ‘radiomic features’ can detect molecular profiles 
or disease characteristics that the human eye cannot. As ra-
diomics applies advanced computational methods to automati-
cally extract and analyze hundreds of quantitative radiomic 
features from tissues of interest based on medical imaging data, 
its utility for the acquisition of quantitative information has been 
widely investigated.18,19 Many studies have been performed on 
adult pituitary adenomas; however, the application of a ra-
diomic approach to the pituitary of children is lacking.20-26

We hypothesized that a radiomics approach could be helpful 
in classifying children with GHD and ISS on normal sella MRI. 
To our knowledge, no previous study has investigated sella MRI 
radiomics in children. The purpose of this study was to develop 
a radiomics-based prediction model from normal sella MRI to 
classify GHD and ISS in short stature children.

MATERIALS AND METHODS

Patient population
This retrospective study was approved by our Institutional Re-
view Board (Registration number: 4-2021-0594), and the re-

quirement for informed consent was waived. All experiments 
were performed in accordance with relevant guidelines and 
regulations (including Declaration of Helsinki). We reviewed 
the electronic medical records of patients consecutively diag-
nosed with short stature, either GHD or ISS, at our hospital (ter-
tiary care center) from March 2011 to July 2020. In total, 386 
patients who underwent appropriate endocrinologic and ra-
diologic evaluation using GH provocation test and sella MRI 
were reviewed. GHD was attributed to the patients whose height 
was below the 3rd percentile for age and sex and whose peak 
GH levels were less than 10.0 ng/mL after two GH stimulation 
tests using insulin, arginine, and/or L-dopa.27,28 ISS was defined 
as a height below the 3rd percentile for age and sex without any 
other identifiable causes, including endocrine, nutritional, skel-
etal, or genetic abnormalities.27,29 Among 386 patients, the pa-
tients with other medical diseases affecting growth, with a brain 
or sella anomaly on MRI, or severe motion artifact/process error 
were excluded. The training and test-validation sets were pre-
pared by temporally dividing the patients into two subgroups, 
with a proportion of 7:3. The date of separation was July 4, 2014.

Image acquisition
The patients were scanned on various 3.0 T MRI units [Discov-
ery MR750/750, GE Healthcare (Chicago, IL, USA); or Ingenia/
Ingenia CX, Philips Medical Systems (Amsterdam, Nederland)] 
under general anesthesia. The imaging protocols included pre-
contrast sagittal T1-weighted, sagittal T2-weighted, high-resolu-
tion coronal T2-weighted, and contrast-enhanced T1-weighted 
imaging (T1C). The sequence parameters of the high-resolution 
coronal T2-weighted images (T2WI) are as follows: TR/TE= 
2447/80 ms; slice thickness=1.5 mm; intersection gap=0 mm; 
field of view (FOV)=20×20 cm; pixel spacing=0.391×0.391 mm.

Image processing and radiomic feature extraction
The Digital Imaging and Communication in Medicine images of 
high-resolution T2WI were converted to NIfTI files. The images 
were resampled with 1×1×1 mm resolution, and low-frequency 
intensity nonuniformity was corrected using N4 bias correc-
tion.30 The pituitary glands were semi-automatically segmented 
on each slice of the coronal T2WI by a neuroradiologist with 5 
years of experience (B.S) who was blinded to each children’s 
clinical diagnosis using open-source software (Medical Image 
Processing, Analysis, and Visualization; Center for Information 
Technology, National Institutes of Health, Bethesda, MD, USA). 
The segmentation methods included signal intensity thresh-
olding, region growing, and edge detection. The outermost 
boundaries of the pituitary gland sliced by slice on coronal T2WI 
were delineated. Entire pituitary glands were included in re-
gions of interest. To evaluate the robustness of segmentation, 
31 patients (10% of the final cohort) were randomly selected, 
and segmentation was performed again by the neuroradiolo-
gist and a third-year radiology resident. The dice coefficient 
between segmentation masks was evaluated. Subsequently, 
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the radiomic features were extracted using Pyradiomics 2.1.0 
(http://www.radiomics.io/pyradiomics.html), with 128 fixed 
bin counts.31

Machine Learning and Statistical Analysis
The mutual information (MI) method was used for feature se-
lection, and the light gradient boosting machine (LightGBM) 
method was used to train a classification model.32,33 Ten-fold 
cross validation was performed internally during the train pro-
cess. Model validation was performed in the test set. The re-
ceiver operating characteristics (ROC) curve (AUC) were drawn 
for the model with the model performance in the test set. 
Model performance in the test set was assessed with an area 
under AUC, sensitivity, specificity, accuracy and F1 score. All 
processes of the investigation are summarized in Fig. 1. To dem-
onstrate the clinical usefulness of the radiomics model, we ad-
ditionally built a clinical model with only sex, age, and shape 
variables. We compared AUC values between the radiomics and 
clinical models.

To examine which parameters played important roles in the 
radiomics model with the best performance, we calculated 
mean absolute Shapley values for each of the selected input fea-
tures using the Shapley additive explanations (SHAP) algo-
rithm.34 

Volumetric compare between the GHD and ISS groups
For additional analysis, we compared volumes and diameters 

between GHD and ISS group. All processes up to this point 
were performed using Python 3 with ScikitLearn library v0.21.2 
and the R software (version 3.5.1; R Foundation for Statistical 
Computing, Vienna, Austria).

RESULTS

The electronic medical records of 386 patients were reviewed. 
Patients with other medical diseases affecting growth, such as 
small for gestational age, Turner syndrome, or chronic kidney 
disease, were excluded (n=55). The patients with a brain or sella 
anomaly on sella MRI, such as empty sella syndrome or Rathke’s 
cleft cyst (n=16), severe motion artifact (n=2) on MRI, or process 
error (n=1), were also excluded. Finally, 312 patients were en-
rolled. In this final cohort, 210 patients were confirmed to have 
GHD and 102 to have ISS by provocative GH tests. The training 
and test sets were prepared by temporally dividing the patients 
into training and test sets, at a proportion of 7:3. In total, 218 
patients were included in the training set, in which 147 (67.4%) 
had GHD and 71 (32.6%) had ISS. The test set included 94 pa-
tients, among which 63 (67.0%) and 31 (33.0%) were confirmed 
to have GHD and ISS, respectively. The patient characteristics 
are summarized in Table 1.

The dice scores of segmentation masks from randomly se-
lected subgroups were 0.88 [IQR 0.80-0.91] for inter-rater reli-
ability assessment and 0.86 [IQR 0.77-0.89] for intra-rater assess-

High resolution coronal T2WI

Shape feature

Radiomic feature

Mutual information

Model development

Performance validation

LightGBM

First order feature

Texture feature

Segmentation

Resampling
N4 bias correction

Intensity normalization

Preprocessing and 
full-automated segmentation

Model development 
and validation

Feature extraction

Fig. 1. Radiomics pipeline. After resampling, N4 bias correction, image intensity normalization, semi-automated segmentation of the pituitary gland on 
high-resolution coronal T2WI was applied. After radiomic feature extraction, feature selection and prediction model development/validation were 
performed. T2WI, T2-weighted image; LightGBM, light gradient boosting machine.
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ment. A total of 110 radiomic features was extracted per patient, 
including shape (16 features), first-order (19 features), gray level 
co-occurrence matrix (GLCM; 24 features), gray level depen-
dence matrix (GLDM; 14 features), gray level size zone matrix 
(GLSZM; 16 features), gray level run length matrix (GLRLM; 16 
features), and neighboring gray tone difference matrix (NGT-
DM; five features).

After MI feature selection, 10 features were selected. Training 
and ten-fold cross-validation was performed with LightGBM to 
the training set, and ROC curves were drawn with the test set 
(Fig. 2). Model performance in test set was as follows: AUC, 
0.705 [95% confidence interval (CI) 0.588–0.816]; accuracy, 
70.6%; sensitivity, 81.4%; specificity, 46.9%; and F1 score, 
0.792.

In the development of the clinical model, sex and five shape 
parameters were selected, including axial diameter, height, 
volume, 3D longest diameter, and 3D shortest diameter. The 
AUC of the clinical model in test set was 0.473 (95% CI 0.348–
0.598). The accuracy of the clinical model was 63.7%. The en-
semble of radiomics model and clinical model did not show 
performance improvement.

The mean absolute Shapley values for each of the selected 

radiomic features were calculated to visualize feature impor-
tance in the developed radiomics model. In our model, 10 ra-
diomic features were selected by MI feature selection: root mean 
squared (RMS) (first order), high gray level zone emphasis 
(GLSZM), small area low gray level emphasis (GLSZM), skew-
ness (first order), long run high gray level emphasis (GLRLM), 
coarseness (NGTDM), joint energy (GLCM), short run high gray 
level emphasis (GLRLM), high gray level emphasis (GLDM), 
and high gray level run emphasis (GLRLM). With the SHAP 
algorithm, the importance of these 10 features were visualized 
(Fig. 3). When analyzing the dot SHAP summary and decision 

Fig. 3. Receiver operating characteristic (ROC) curves (AUC) from the 
radiomics model and clinical model in the test set. LightGBM, light gra-
dient boosting machine.

Fig. 2. Feature importance according to mean absolute Shapley additive explanations (SHAP) values for the prediction of growth hormone deficiency 
in the light gradient boosting machine model from the test set.

Table 1. Patient Demographics for Each Dataset

Demographics
Total

(n=312)
Training set 

(n=218)
Test set 
(n=94)

p value

Age (month) 87.0±35.3 89.9±34.3 0.49†

Sex 0.31*
Male 186 134 (61.5) 52 (55.3)
Female 126   84 (38.5) 42 (44.7)

Diagnosis 0.94*
GHD 210 147 (67.4) 63 (67.0)
ISS 102   71 (32.6) 31 (33.0)

Data are presented as mean±standard deviation or n (%).
*Calculated using chi-square test; †Calculated using t-test.
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Fig. 5. Representative force plot of one case. The low value for joint energy pushes the prediction of this case to the left side (high possibility of ISS). 
However, low values for high gray level zone emphasis and coarseness and the high value for skewness push the prediction to the right side more 
strongly, which indicates to high possibility of GHD. This case was confirmed as GHD. ISS, idiopathic short stature; GHD, growth hormone deficiency.

Fig. 4. Feature importance presented by mean absolute Shapley additive explanations (SHAP) value dot plot (upper) and decision plot (lower) for the 
prediction of growth hormone deficiency or idiopathic short stature in the developed model. Color shows whether the parameter was high or low for 
that row of the patient dataset. Horizontal location shows whether the effect of that value elicited a higher or lower prediction.

plots, high values for small area low gray level emphasis, skew-
ness, and joint energy had influence in predicting GHD. Con-
versely, low values for high gray level zone emphasis, long run 
high gray level emphasis, and coarseness had an effect on pre-
dicting ISS (Fig. 4). We could obtain force plots for each patient 

through SHAP analysis: for example, one force plot is shown in 
Fig. 5. The low value for joint energy pushed this case to the left 
side; however, the low values for high gray level zone emphasis 
and coarseness and the high value for skewness push the pre-
diction to right side, which lead to high possibility of GHD. 
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Finally, volumetric and diameter analysis between the GHD 
and ISS groups was performed. The mean (standard deviation) 
volume values were 176.47 mm3 (72.87 mm3) and 161.45 mm3 

(58.26 mm3) in the GHD and ISS group, respectively (p=0.050). 
The mean (standard deviation) sagittal height values were 6.45 
mm (1.26 mm) and 6.12 mm (1.02 mm), respectively (p=0.014). 
Other results are listed in Table 2.

DISCUSSION

Patients with GHD sometimes have a structural abnormality on 
sella MRI, resulting in decreased GH secretion. However, many 
cases do not have abnormal MRI findings. In an investigation 
in our hospital, approximately 72% of children with GHD had 
normal MRI findings.27 In these normal MRIs, there may be 
microscopic organic lesions that cannot be detected by the hu-
man eye. A previous investigation revealed that GHD patients 
with morphologically normal pituitary glands had impaired 
perfusion of adenohypophysis on perfusion MRI.35 The pres-
ent study was conducted under the hypothesis that GH secre-
tion impairment may be due to microscopic abnormalities that 
are not visible under conventional MRI resolution and could 
potentially be detected with a radiomics approach.

To differentiate between GHD and ISS, children must be hos-
pitalized. Additionally, provocation tests require approximately 
10 venous blood samples and include various pharmacologic 
stimuli, such as insulin, clonidine, glucagon, arginine, levodo-
pa, clonidine, or GHRH.8,36 The insulin test poses a risk of hypo-
glycemia.37 Levodopa and arginine can induce vomiting as an 
adverse effect.38,39 As such, diagnosis based on other exams that 
obviate the need for stimulation tests could save time and costs 
and ease the patient’s burden. One investigation has aimed to 
diagnose and classify GHD with one blood sample using tran-
scriptomics and random forest analysis.40 However, sella MRI-

based approaches to classify children into GHD and ISS are very 
rare. Most radiomics-based pituitary gland studies of sella MRI 
have been attempted in adults with pituitary tumors, and none 
have been tested in children. The present study is the first ra-
diomics analysis performed on a sample of patients with short 
stature diagnosed with GHD and ISS.

In this study, we used LightGBM, a tree-based machine learn-
ing method. Tree-based machine learning methods are relative-
ly easy to understand, and they do not need feature scaling, 
such as standardization or normalization. Therefore, when there 
are feature variations, these models have the advantage of im-
peding the domination of high-range features. In addition, the 
LightGBM model has a relatively fast learning speed.33 There-
fore, we believe that the LightGBM method can be effectively 
used in radiomics-based machine learning studies. 

In this study, we investigated the SHAP values of our model. 
The mean absolute Shapley values were introduced here to cre-
ate an explainable radiomics model and to solve its notorious 
‘black box’ nature.34 In our study, RMS values were the most 
important feature and low values thereof predicted ISS. RMS is 
the square-root of the mean of all the squared intensity values. 
It is another measure of the magnitude of image values. This 
feature is volume-confounded such that a small volume of pi-
tuitary gland would lead to small RMS values.31 We noted a ten-
dency for ISS patients to have smaller RMS volume than GHD 
patients, and therefore, this may be related to the volume of 
the pituitary gland. The second important feature was high gray 
level zone emphasis (HGLZE), which reflected a greater pro-
portion of higher gray-level values and size zones.31 A gray level 
zone is defined as the number of connected voxels that share 
the same gray level intensity.31 High values of HGLZE suggest 
relatively homogenous texture and were predictive of ISS in our 
model. We suspect that this may be related to the invisible, mi-
croscopic structure of the pituitary gland. In addition, our mod-
el showed that low skewness values were the fourth important 
feature to predict GHD. Possibly, this is related to tiny, invisible 
Rathke’s cleft cyst, which has low voxel intensity and leads to 
low skewness.

In the comparison between the GHD and ISS groups for vol-
ume and diameter, the ISS group had significantly shorter sag-
ittal heights than the GHD group. Also, the ISS group showed a 
tendency to have smaller pituitary gland volume than the GHD 
group. This result is different from previous literature.17 We 
measured volume with three dimensional ROI, which is prob-
ably more accurate than estimates obtained using the ellip-
soid formula, which was used in previous literature.17 Mean-
while, the clinical model developed with only volumetric and 
demographic data showed disappointing performance. We be-
lieve radiomics features may have potential and additional val-
ue over conventional parameters in discriminating between 
GHD and ISS.

The present research has several limitations. First, our study 
was conducted at a single institution, and validation in an ex-

Table 2. Comparison of Size Parameters for the Pituitary Gland Between 
the GHD and ISS Groups

Group Mean±SD p value
Axial diameter 0.262

GHD   11.89±1.967
ISS   12.27±4.045

Coronal diameter 0.235
GHD   12.17±1.901
ISS   12.56±4.019

Sagittal height 0.014
GHD     6.12±1.022
ISS     6.45±1.262

Volume 0.050
GHD 161.45±58.26
ISS 176.47±72.87

GHD, growth hormone deficiency; ISS, idiopathic short stature.
Data were calculated using t-tests. 
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ternal test set was not attempted. However, in this study, by set-
ting the temporally split test set (so called ‘temporal external 
validation set’), we attempted to correct for overfitting and ob-
tain more objective results.41 The random division of the pa-
tients induces falsely improved diagnostic performance as the 
distribution of disease exists in the same proportion in both 
training and validation sets. Temporal validation in the same 
institution is a better method for independent validation. Sec-
ond, an AUC of approximately 0.705 and 70.6% accuracy were 
obtained in the test set. A sufficiently high value to replace the 
provocation test has not yet been obtained, and its reliability has 
not yet been verified. For now, radiomics models using sella 
MRI are rather unlikely to replace GH stimulation test. How-
ever, we showed the feasibility of a radiomics approach in sel-
la MRI in children. Now we have to perform further validation 
study and increase the performance of the model to expand the 
role of sella MRI in this group of patients not only to exclude 
other structural cause, but also to predict GHD or ISS. Also, bi-
ologic correlates and evidence-based interpretation of the phys-
iologic meaning of radiomics features were not sufficiently done 
in this investigation. Finally, only coronal T2WI were used, and 
we did not investigate the added value of the other sequences. 
Due to the slice thickness and size of FOV, we chose coronal 
T2WI. In order to incorporate T1WI in image processing, the 
protocols should be modified to improve spatial resolution by 
having smaller FOV and thinner thickness. Although coronal 
T2WI used in this study are thinner than other sequences, still, 
a 1.5-mm thickness is not thin enough to capture all informa-
tion in pituitary glands. Therefore, the prediction model would 
be more powerful if more features from other sequences, includ-
ing 3D sequences, were included. We are now planning future 
study with larger, multicenter populations including contrast 
enhanced T1WI to confirm, expand, and validate our results. 

The present study has several strengths. First, we reviewed a 
relatively large sample size of patients (n=312) enrolled over 
nearly 10 years. Follow-up data, such as treatment response, 
could be possible as further study. Second, the application of a 
radiomics prediction model to pediatric sella MRI is a relatively 
novel approach. Previous investigations that have applied ra-
diomics to the sella MRI of children are rare. Finally, by SHAP 
analysis, we attempted to develop an explainable radiomics 
model, and this allowed us to speculate on the possibility of mi-
crolesions in the pituitary gland.

In conclusion, in normal sella MRI of pediatric patients of 
short stature, we found it feasible to use a radiomics-based pre-
diction model to differentiate between GHD and ISS.
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