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Abstract
The COVID-19 pandemic, which outbroke in Wuhan (China) in December 2019, severely 
hit almost all sectors of activity in the world as a consequence of the restrictive measures 
imposed. Two years later, Africa still emerges as the least affected continent by the pan-
demic. This study analyzed COVID-19 prevalence across African countries through coun-
try-level variables prior to clustering. Using Spearman-rank correlation, multicollinearity 
analysis and univariate filtering, 9 country-level variables were identified from an initial 
set of 34 variables. These variables relate to socioeconomic status, population structure, 
healthcare system and environment and the climatic setting. A clustering of the 54 African 
countries is further carried out through the use of agglomerative hierarchical clustering 
(AHC) method, which generated 3 distinctive clusters. Cluster 1 (11 countries) is the most 
affected by COVID-19 (median of 63,508.6 confirmed cases and 946.5 deaths per million) 
and is composed of countries with the highest socioeconomic status. Cluster 2 (27 coun-
tries) is the least affected (median of 4473.7 confirmed cases and 81.2 deaths per million), 
and mainly features countries with the least socioeconomic features and international expo-
sure. Cluster 3 (16 countries) is intermediate in terms of COVID-19 prevalence (median of 
2569.3 confirmed cases and 35.7 deaths per million) and features countries the least urban-
ized and geographically close to the equator, with intermediate international exposure 
and socioeconomic features. These findings shed light on the main features of COVID-19 
prevalence in Africa and might help refine effectively coping management strategies of the 
ongoing pandemic.
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1 Introduction

Disease epidemics and even pandemics are nowadays becoming increasingly common 
occurrences (Madhav et al., 2017). In December 2019, the 2019-nCOV acute respiratory 
disease (hereafter named ‘COVID-19’ disease) emerged. This disease was later found to be 
caused by the Sars-CoV-2 coronavirus, isolated for the first time in the province of Hubei 
(in China). The World Health Organization (WHO) declared the disease a pandemic two 
months later (Cucinotta & Vanelli, 2020). As of December 31, 2020, a year later, the global 
epidemiological situation indicated a cumulative total of 83,559,591 confirmed cases and 
1,824,934 deaths, i.e., hence a global case fatality rate of 2.18% and a mortality rate of 234 
deaths per million people (Dong et al., 2020).

A study published by the London School of Hygiene & Tropical Medicine (LSHTM) 
concluded that all African countries would have passed the 10,000-case mark for COVID-
19 by early June 2020 (Pearson et  al., 2020). Following this study, the vast majority of 
public health experts, including the WHO, had called on Africa to ‘prepare for the worst’ 
(Nuwagira & Muzoora, 2020). Yet, the global observed case count reported for Africa 
remained largely 10 times lower than expected, suggesting that the African continent, as a 
whole, has remained largely unaffected: America, Europe and Asia reported, respectively, 
43.4%, 28.5% and 24.8% of the global count of confirmed cases, while Africa only reported 
3% (Dong et al., 2020). Another interesting point worth raising is that even at the scale of 
the African continent, the pandemic appears to be unevenly spread between its countries. 
South Africa, for example, has reported more than 38% of cases (Dong et al., 2020). Like-
wise, more than 82% of the confirmed cases come from 9 countries alone (Salyer et al., 
2021).

The relatively low number of cases and deaths due to COVID-19 is thought to be largely 
attributed to the fact that forecast regarding the evolution of the pandemic in Africa has 
been made without regard to some specificities such as socio-demographic aspects (Zongo 
et al., 2020). African countries seem to be more resilient to COVID-19 because of the swift 
adoption of mitigation measures, the low rate of urbanization, the limited transport network 
and the youth of the population: in fact, the median age of the population lies between 31 
to 42 years old for Europe, America, Oceania and Asia, as compared to 18 years old for 
Africa (Adams et al., 2021; Desjardins, 2019; Lulbadda et al., 2021). This might explain 
the low number of COVID-19 cases and deaths in Africa, since the case fatality rate of 
non-communicable diseases (such as cancer, cardiovascular accidents and diabetes), 
already known as comorbidities in the context of this pandemic, is unlikely with younger 
people (Lawal, 2021; Randazzo et al., 2020).

The role of climatic and environmental factors has also been highlighted in COVID-
19-related studies. Temperature and humidity are the factors most often associated to 
COVID-19 (Kerr et al., 2021; Şahin, 2020). Wang et al. (2021), for instance, showed that 
a 1 °C rise in average temperature can be associated with a 3.1% decrease in the new cases 
of COVID-19 infections and a 1.2% decrease in related deaths. According to Baker et al. 
(2020), in the absence of effective control measures, stronger outbreaks are likely in wet-
ter climates. Luo et al. (2020) found significant influence of absolute air temperature over 
transmission rates of COVID-19 in China. A significant correlation between geographi-
cal latitude and COVID-19-related deaths and confirmed cases has been reported in ear-
lier studies (Braiman, 2020; Chen et al., 2021; Heneghan et al., 2020; Whittemore, 2020). 
Moreover, the concentration of fine particles in the air has been associated with a higher 
prevalence of COVID-19 (Rizvi et al., 2021; Zhu et al., 2020).
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Based on the current findings, it appears that the spread of the COVID-19 is affected by 
various factors at different levels, but also that countries exhibit different vulnerabilities to 
the pandemic. To assess these various sensitivities, clustering has been carried in earlier 
studies to identify emerging risk profiles. Gilbert et al. (2020) used bottom-up hierarchical 
clustering to model transmission between Africa and China and identified three different 
clusters depending on the severity of the risk of exposure to COVID-19 (high, medium 
and low). Centroid-based method (K-means) clustering was used by Carrillo-Larco and 
Castillo-Cara (2020) at the global level using country-level variables, which helped iden-
tify 5 to 6 clusters of countries. Imtyaz et al. (2020) assessed the effectiveness of meas-
ures taken by countries to limit the spread of COVID-19 based on 5 clusters identified 
and concluded the positive association between the mortality rate and the proportion of 
people over 65 years of age. Sadeghi et al. (2021) used hierarchical clustering to rank and 
score 180 countries according to COVID-19 cases and fatality in 2020 and compare exist-
ing pandemic vulnerability prediction models and standard epidemiological scoring tech-
niques. In Africa, the African Center for Strategic Studies (ACSS) identified 3 clusters of 
African countries by assessing their level of vulnerability through the rating of the 9 fol-
lowing socioeconomic factors: international exposure, healthcare system, urban density, 
urban population, population age, governmental transparency, press freedom, conflict and 
displacement (ACSS, 2020a). These clusters later served in establishing different risk pro-
files of exposure to COVID-19 (ACSS, 2020b). However, the lack of inclusion of climatic 
factors might constitute serious limitations for these results.

Despite the large number of publications related to COVID-19, very few focused on the 
African continent. This study aims at addressing this critical gap in the body of the avail-
able literature, through the evaluation of the relative importance of factors that might be 
associated with the spread of the COVID-19 pandemic within the African context, using 
country-level indicators. To the best of our knowledge, this is the first study addressing 
directly the African continent scale regarding COVID-19, considering confirmed cases 
and deaths reports. Moreover, it uses data acquired over two years (January 1, 2020 to 
March31, 2022), which is likely to support effectively in identifying long-term relevant 
conclusions regarding the spread of COVID-19 in Africa. In addition, this study is moti-
vated by the lack of explicit assessment of the effect of variables related to the physical 
climate setting (temperature, rainfall, insolation, humidity, wind speed) and environment 
(air quality, environmental performance index) on COVID-19 in earlier studies, especially 
in the case of Africa. The objectives of this study are twofold: (i) to assess the potential 
factors explaining at best the COVID-19 prevalence in African countries (cumulative num-
ber of confirmed cases and deaths per million people); (ii) to identify clusters of African 
countries sharing similar prevalence profiles to the COVID-19 disease.

2  Material and methods

Figure 1 is the flowchart presenting the main steps of the methodology used in this study, 
which are: (i) the data preparation phase (including data collection, imputation of missing 
values and removal of potential redundant variables); (ii) the dataset optimization phase 
(consisting in filtering optimal variables explaining the maximum variance in the data); 
(iii) the clustering phase and the comparative analysis of the clusters. These phases are fur-
ther described in detail in the following sections. The complete list of the 54 African coun-
tries considered in this study is presented in the Online Resource 2 (ESM2—Table S1).
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2.1  Data preparation

2.1.1  Selected country‑level variables description

Based on a literature review, a set of factors previously associated with the spread of the 
COVID-19 pandemic has been identified and included in this study. These variables, pre-
sented in Table 1, are grouped into five categories: (i) international exposure and socioeco-
nomic status; (ii) population structure; (iii) healthcare system and environment; (iv) dis-
ease prevalence and risk factors; and (v) climatic setting. The detailed dataset for all these 
variables is given in the Online Resource 2 (ESM2—Table S2).

The data was collected at the country level for the latest year available (2020 in most 
of the cases). Climatic setting variables were collected from MERRA-2 global reanalysis, 
which is a gridded and global model operating at the hourly/daily timestep at a spatial reso-
lution of 0.625° × 0.5° providing data since 1980 (Gelaro et al., 2017). For this study, the 
climate data was collected using NASA POWER Data Access Viewer (https:// power. larc. 
nasa. gov/ data- access- viewer/), using the R package nasapower (Sparks, 2021). The climate 
data was first collected as daily time series for the period January 2020 to March 2022 and 
later on averaged over the period for each country. Absolute humidity (AH) was calculated 
using an approximation of the Clausius–Clapeyron equation, presented in Eq. (1) (Iribarne 
& Godson, 1973):

Fig. 1  Flowchart of the methodology used in this study

https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/


Understanding the COVID‑19 pandemic prevalence in Africa through…

1 3

Ta
bl

e 
1 

 C
ou

nt
ry

-le
ve

l v
ar

ia
bl

es
 se

le
ct

ed
 fo

r t
hi

s s
tu

dy

C
at

eg
or

y
Va

ria
bl

es
D

es
cr

ip
tio

n
So

ur
ce

s

CO
V

ID
-1

9 
pr

ev
al

en
ce

co
nf

_p
m

C
um

ul
at

iv
e 

co
nfi

rm
ed

 c
as

es
 (a

s o
f 0

8/
31

/2
1)

D
on

g 
et

 a
l. 

(2
02

0)
de

at
h_

pm
C

um
ul

at
iv

e 
co

nfi
rm

ed
 d

ea
th

s (
as

 o
f 0

8/
31

/2
1)

D
on

g 
et

 a
l. 

(2
02

0)
In

te
rn

at
io

na
l e

xp
os

ur
e 

an
d 

so
ci

oe
co

no
m

ic
 st

at
us

ar
riv

In
te

rn
at

io
na

l t
ou

ris
m

, n
um

be
r o

f a
rr

iv
al

s (
th

ou
sa

nd
s)

W
or

ld
B

an
k 

(2
02

1)
hd

i
H

um
an

 d
ev

el
op

m
en

t i
nd

ex
 (H

D
I)

U
N

D
P 

(2
02

0)
gi

ni
G

in
i i

nd
ex

 (m
et

ric
 fo

r i
ne

qu
al

iti
es

)
W

or
ld

B
an

k 
(2

02
1)

gd
p_

ca
p

G
ro

ss
 d

om
es

tic
 p

ro
du

ct
 p

er
 c

ap
ita

 (G
D

P)
 ($

U
S)

W
or

ld
B

an
k 

(2
02

1)
al

ph
ab

Li
te

ra
cy

 ra
te

 (%
)

W
or

ld
B

an
k 

(2
02

1)
Po

pu
la

tio
n 

str
uc

tu
re

de
ns

_p
op

Po
pu

la
tio

n 
de

ns
ity

 (p
eo

pl
e/

km
2 )

W
or

ld
B

an
k 

(2
02

1)
ur

b_
po

p
U

rb
an

 p
op

ul
at

io
n 

pe
rc

en
ta

ge
 (%

)
W

or
ld

B
an

k 
(2

02
1)

m
ed

ia
n_

ag
e

M
ed

ia
n 

ag
e 

of
 th

e 
po

pu
la

tio
n 

(y
ea

rs
 o

ld
)

W
or

ld
B

an
k 

(2
02

1)
lif

e_
ex

p
Li

fe
 e

xp
ec

ta
nc

y 
(y

ea
rs

 o
ld

)
W

or
ld

B
an

k 
(2

02
1)

p6
5y

rs
Pe

rc
en

ta
ge

 o
f p

eo
pl

e 
ag

ed
 o

ve
r 6

5 
ye

ar
s (

%
)

W
or

ld
B

an
k 

(2
02

1)
H

ea
lth

ca
re

 sy
ste

m
 a

nd
 e

nv
iro

nm
en

t
la

ck
_h

yg
ie

n
M

or
ta

lit
y 

ra
te

 d
ue

 to
 la

ck
 o

f h
yg

ie
ne

, u
ns

af
e 

w
at

er
 a

nd
 sa

ni
ta

tio
n 

(p
er

 1
00

,0
00

 
pe

op
le

)
W

or
ld

B
an

k 
(2

02
1)

ho
us

_f
os

sf
M

or
ta

lit
y 

ra
te

 d
ue

 to
 a

ir 
po

llu
tio

n 
fro

m
 th

e 
us

e 
of

 h
ou

se
ho

ld
 so

lid
 fu

el
s (

pe
r 1

00
,0

00
 

pe
op

le
)

Ya
le

 (2
02

0)

m
ed

_1
00

0
N

um
be

r o
f p

hy
si

ci
an

s (
pe

r 1
00

0 
pe

op
le

)
W

or
ld

B
an

k 
(2

02
1)

pm
25

A
nn

ua
l m

ea
n 

co
nc

en
tra

tio
n 

of
 p

ar
tic

ul
at

e 
m

at
te

r o
f l

es
s t

ha
n 

2.
5 

m
ic

ro
ns

 o
f d

ia
m

et
er

 
(P

M
2.

5)
 [µ

g/
m

3]
 in

 u
rb

an
 a

re
as

W
or

ld
B

an
k 

(2
02

1)

he
al

th
_e

xp
C

ur
re

nt
 h

ea
lth

 e
xp

en
di

tu
re

 p
er

 c
ap

ita
 ($

U
S)

W
or

ld
B

an
k 

(2
02

1)
ep

i
En

vi
ro

nm
en

ta
l p

er
fo

rm
an

ce
 in

de
x

Ya
le

 (2
02

0)
im

m
un

iz
_d

tp
1

Im
m

un
iz

at
io

n 
co

ve
ra

ge
 / 

D
TP

1 
(%

)
W

H
O

 (2
02

0)
im

m
un

iz
_b

cg
Im

m
un

iz
at

io
n 

co
ve

ra
ge

 / 
B

C
G

 (%
)

W
H

O
 (2

02
0)



 M. L. Sidibé et al.

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

C
at

eg
or

y
Va

ria
bl

es
D

es
cr

ip
tio

n
So

ur
ce

s

D
is

ea
se

s p
re

va
le

nc
e 

an
d 

ris
k 

fa
ct

or
s

pr
ev

_d
ia

b
D

ia
be

te
s p

re
va

le
nc

e 
(n

um
be

r o
f p

eo
pl

e)
IH

M
E 

(2
02

0)

pr
ev

_c
vl

ds
C

ar
di

ov
as

cu
la

r d
is

ea
se

s p
re

va
le

nc
e 

(n
um

be
r o

f p
eo

pl
e 

co
nc

er
ne

d)
IH

M
E 

(2
02

0)

pr
ev

_c
h.

re
sp

C
hr

on
ic

 re
sp

ira
to

ry
 d

is
ea

se
s p

re
va

le
nc

e 
(n

um
be

r o
f p

eo
pl

e 
co

nc
er

ne
d)

IH
M

E 
(2

02
0)

pr
ev

_m
al

ar
ia

M
al

ar
ia

 p
re

va
le

nc
e 

(n
um

be
r o

f p
eo

pl
e 

co
nc

er
ne

d)
IH

M
E 

(2
02

0)

pr
ev

_n
ut

de
f

M
al

nu
tri

tio
n 

an
d 

nu
tri

tio
na

l d
efi

ci
en

ci
es

 p
re

va
le

nc
e 

(n
um

be
r o

f p
eo

pl
e 

co
nc

er
ne

d)
IH

M
E 

(2
02

0)

pr
ev

_r
es

pd
tu

b
Re

sp
ira

to
ry

 in
fe

ct
io

ns
 a

nd
 tu

be
rc

ul
os

is
 p

re
va

le
nc

e 
(n

um
be

r o
f p

eo
pl

e 
co

nc
er

ne
d)

IH
M

E 
(2

02
0)

al
co

ho
l_

co
ns

To
ta

l a
lc

oh
ol

 c
on

su
m

pt
io

n 
pe

r c
ap

ita
 (l

ite
rs

)
W

or
ld

B
an

k 
(2

02
1)

C
lim

at
ic

 se
tti

ng
la

t_
ab

s
A

bs
ol

ut
e 

la
tit

ud
e 

(°
)

G
el

ar
o 

et
 a

l. 
(2

01
7)

w
s2

m
_a

vg
A

ve
ra

ge
 d

ai
ly

 w
in

d 
sp

ee
d 

(m
/s

)
G

el
ar

o 
et

 a
l. 

(2
01

7)
rh

2m
_a

vg
A

ve
ra

ge
 d

ai
ly

 re
la

tiv
e 

hu
m

id
ity

 (%
)

G
el

ar
o 

et
 a

l. 
(2

01
7)

tm
ax

_a
vg

A
ve

ra
ge

 d
ai

ly
 m

ax
im

um
 te

m
pe

ra
tu

re
 (°

C
)

G
el

ar
o 

et
 a

l. 
(2

01
7)

tm
in

_a
vg

A
ve

ra
ge

 d
ai

ly
 m

in
im

um
 te

m
pe

ra
tu

re
 (°

C
)

G
el

ar
o 

et
 a

l. 
(2

01
7)

tm
oy

_a
vg

A
ve

ra
ge

 d
ai

ly
 te

m
pe

ra
tu

re
 (°

C
)

G
el

ar
o 

et
 a

l. 
(2

01
7)

in
so

l_
av

g
A

ve
ra

ge
 d

ai
ly

 in
so

la
tio

n 
(M

J/m
2 /j)

G
el

ar
o 

et
 a

l. 
(2

01
7)

td
ew

_a
vg

A
ve

ra
ge

 d
ew

 p
oi

nt
 te

m
pe

ra
tu

re
 (°

C
)

G
el

ar
o 

et
 a

l. 
(2

01
7)

ah
_a

vg
A

bs
ol

ut
e 

ai
r h

um
id

ity
 (%

) –
 c

al
cu

la
te

d 
(I

rib
ar

ne
 &

 G
od

so
n,

 1
97

3)
G

el
ar

o 
et

 a
l. 

(2
01

7)



Understanding the COVID‑19 pandemic prevalence in Africa through…

1 3

where AH is the absolute humidity, T  is the average temperature (°C), RH is the air relative 
humidity (%), and e is the base of the natural logarithm.

These variables were selected because they have been previously associated with 
the COVID-19 pandemic. International exposure reflects the number of people enter-
ing a country through airports, which denotes an increased probability of welcoming 
confirmed cases of COVID-19 in the country (Moosa & Khatatbeh, 2020). Socio-
econometric variables describe the level of development of countries and are closely 
related to healthcare system equipment and the effectiveness of policy management 
during health crises (Freed et al., 2020). Population structure has been associated with 
COVID-19 prevalence, especially to deaths (Medford & Trias-Llimós, 2020). Health-
care systems, environment and disease prevalence have also been identified as deter-
minants of COVID-19 prevalence (Aydın et al., 2021; Carrillo-Larco & Castillo-Cara, 
2020). Finally, the relationship between climate variables and COVID-19 has been a 
trending and active topic of research since the outbreak of the pandemic (Chen et al., 
2021; Islam et al., 2021; Rahman et al., 2021; Singh et al., 2021; Zaitchik et al., 2020).

COVID-19 prevalence data used in this study (cumulative number of confirmed 
cases and deaths) includes cumulative cases and deaths since the outbreak of the pan-
demic until March 31, 2022 for all 54 African countries. The data was normalized by 
current countries population estimates (WorldBank, 2021) to enable the comparison of 
the pandemic prevalence across countries, as suggested by Goldstein and Lee (2020). 
The counts were later on translated into confirmed cases per million people (conf_pm) 
and deaths per million people (death_pm).

2.1.2  Dataset imputation

The data collected for all country-level variables listed in Table 1 initially presented 
gaps for specific countries such as Eritrea (ERY), Equatorial Guinea (GNQ), Libya 
(LBY), Somalia (SOM), South Sudan (SSD) and Lesotho (LSO). Missing values were 
identified especially for international arrivals (arriv: 4 missing values out of 54), Gini 
index (gini: 2 missing values out of 54), number of physicians (med_1000: 1 missing 
value out of 54), current health expenditure per capita (health_exp: 1 missing value 
out of 54), environmental performance index (epi: 3 missing values out of 54), alco-
hol consumption (alcohol_cons: 1 missing value out of 54), exposure to air pollution 
from household fossil fuels (hous_fossf: 3 missing values out of 54). To form a fully 
complete initial dataset, the missing values were imputed using the R package missfor-
est (Stekhoven, 2013), which implements a random iterative and nonparametric gap-
filling approach based on random forests (Stekhoven & Buhlmann, 2012). The miss-
Forest algorithm has been used in previous COVID-19 research (Gangloff et al., 2021) 
and has proven to be more effective at gap-filling than other nonparametric approaches 
(Ramosaj & Pauly, 2019). In this study, the random forest model was trained on the 
matrix formed by the initially selected variables using 100 trees and 3 iterations, yield-
ing a normalized root mean square error (NRMSE) = 0.1480. The detailed dataset for 
all variables is given in the Online Resource 2 (ESM2—Table S3).

(1)AH =
6.112 ×

17.67×T

eT+243.5
× RH × 2.1674

T + 273.15
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2.1.3  Identification and removal of redundant factors

The initial dataset contained 34 variables which were assessed for potential redundancy 
and multicollinearity. In this perspective, the correlation matrix (Spearman’s � nonpara-
metric coefficient) was evaluated and a threshold of 0.90 was considered to eliminate coun-
try-level variables highly correlated ( � > 0.90) with an already existing variable within the 
dataset, to lessen redundancy.

To further avoid potential issues related to multicollinearity and form a dataset of 
independent variables, the variance inflation factor (VIF) was evaluated for the remain-
ing country-level variables. The VIF is a measure of multicollinearity in a set of multiple 
regression variables, and is defined as the ratio of the overall model variance to the vari-
ance of a model including a single independent variable (Akinwande et al., 2015). The VIF 
formula is defined as in Eq. (2):

where VIFi is the VIF for the ith independent variable, R2

i
 is the unadjusted coefficient of 

determination for regressing the ith independent variable on the remaining ones. In this 
study, only variables presenting a VIF value below 10 were retained, this threshold being 
commonly advised as a cutoff for high multicollinearity (Kutner et al., 2004)..

2.2  Optimal feature selection

The optimal feature selection is a dimensionality reduction method which helps in retain-
ing a subset of relevant variables maximizing the variance of the original dataset, while 
minimizing the loss of information resulting from the removal of some of the original vari-
ables (Friedman, 1997). However, the procedure for optimal feature selection is likely to 
be affected by the presence of atypical observations, i.e., outliers. It is therefore critical to 
identify and remove these outliers from the dataset before looking for optimal variables 
(Acuña & Rodríguez, 2005).

In this study, outliers were identified using the multivariate Cook’s D distance statistic 
(Cook & Weisberg, 1982). Cook’s D-statistic is calculated by removing the ith data obser-
vations from the model and recalculating a regression, hence summarizing how much all 
the values in the regression model change when the ith observation is removed. The calcu-
lation of Cook’s distance is defined by Eq. (3):

where Di is the Cook distance for the ith observation (for i = 1,… , n ), Ŷj is the regression 
model response fitted on all observations, Ŷj(i) is the regression model response fitted on all 
but the ith observation, p is the number of coefficients in the regression model, and MSE is 
the mean square error. The calculation of D-statistic was conducted through a linear regres-
sion model, using a cutoff of 4 times the standard deviation to flag outlier observations 
(Cook & Weisberg, 1982).

The identified outliers were temporarily set aside in order to avoid bias in the selection con-
ducted later on during feature selection. The optimal feature selection was performed through 
a univariate filter using the R caret package function sbf for selection by filter (Kuhn, 2021). 

(2)VIFi =
1

1 − R2

i

(3)Di =

∑n

j=1
(Ŷj − Ŷj(i))

2

p ×MSE
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Seventy-five percent of the data was used for training and 25% of the data was used for valida-
tion, using repeated tenfold cross-validation. This procedure for optimal feature selection was 
conducted separately on confirmed cases (conf_pm) and on deaths (deaths_pm) as response 
variables. The resulting dataset was finally normalized to bring all the variables to the same 
scale between 0 and 1, prior to clustering (Visalakshi & Suguna, 2009), and using min–max 
normalization.

2.3  Clustering of countries

Clustering aims at partitioning the whole of African countries into homogeneous groups 
called clusters. These clusters are obtained by maximizing the inertia between clusters and 
therefore minimizing the inertia within all clusters to obtain well-differentiated groups of 
observations. The different clustering methods includes hierarchical clustering, partitioning 
methods and machine learning-based methods. In this study, the bottom-up or agglomerative 
hierarchical clustering (AHC) was used as it does not require as an input a number of clusters, 
unlike partitioning methods such as K-means. Machine learning-based methods are also avail-
able and effective; however, they poorly compare to AHC in terms of ease of interpretation of 
their results. The AHC procedure used in this study provides the analyst a dendrogram, whose 
goodness can be assessed through the correlation between the cophenetic distances between 
observations (vertical y-axis on the dendrogram) and the original distances. The closer the 
value of this correlation coefficient to 1, the more reliable the classification presented through 
the dendrogram in terms of reflection of the data. Cophenetic distances above 0.5 are deemed 
to be acceptable (Kassambara, 2017).

In this study, the cophenetic correlation coefficient for various clustering schemes produced 
by combinations of various distance metrics (Manhattan, Canberra, Minkowski and Euclid-
ean) and aggregation methods (Average, Complete, Ward.D and Ward.D2), hence a total of 
16 combinations, was examined. These combinations were ranked out by decreasing values 
of cophenetic correlation coefficients. For each of these combinations, the optimal number 
of clusters to be produced was evaluated with the R package NbClust (Charrad et al., 2014), 
which uses an array of indices to select the appropriate number of clusters (Charrad et al., 
2014; Milligan & Cooper, 1985). Using this number of clusters, the AHC is applied and the 
statistical differences in COVD-19 prevalence between clusters are assessed. The final combi-
nation of distance metric and aggregation method selected is the one producing significantly 
different clusters (in terms of COVID-19 prevalence), with the highest cophenetic correlation 
coefficient.

The significance of differences between COVID-19 clusters prevalence (confirmed cases 
and deaths per million) was further evaluated with the nonparametric Kruskal–Wallis test 
for multiple groups comparison (at level �=5%), associated with the post hoc nonparametric 
Mann–Whitney U test for pairwise comparison of group medians (at level α = 5%). Also, the 
significant differences between the distribution of variables used to form clusters were simi-
larly assessed.
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3  Results

3.1  COVID‑19 situation in Africa

In this section, several aspects of the epidemiological situation of the pandemic are pre-
sented: the chronological onset of COVID-19 in Africa, the evolution of the cumulative 
number of cases and deaths and the spatial and temporal evolution of COVID-19 within 
the African continent.

3.1.1  Chronological onset of COVID‑19

Africa reported its first COVID-19 case in Egypt (EGY), on February 14, 2020. Neighbor-
ing countries such as Algeria (DZA), Tunisia (TUN) and Morocco (MAR) reported their 
first cases a few days later. It appears that the first countries to be affected are countries 
with higher international exposure (Online Resource 1, ESM1–Fig. S1). These countries 
are also those farthest from the equator, such as Tunisia (TUN), Egypt (EGY) and South 
Africa (ZAF). Less than 2 months after the  1st case was reported in Egypt, 52/54 countries 
(96.3%) had reported at least one confirmed case. For most countries, the date of the first 
reported death case follows quite closely the date of the first reported confirmed case, by 
an order of 2 to 125 days. Only Seychelles (SYC) has not reported a single death in 2020 
despite a first confirmed case being reported on March 14, 2020.

3.1.2  Cumulative number of cases and deaths

Figure 2 shows the cumulated numbers of cases and deaths, along with the daily estimates 
in Africa during the early beginning of the pandemic up to March 31, 2022.

From February 14, 2020 to March 31, 2022, a total of 11,558,931 COVID-19-related 
confirmed cases and 251,953 deaths is reported in Africa (roughly 2.37% of the total num-
ber of worldwide cases and 4.10% of worldwide deaths counts). This yields an average 
of 8848 confirmed cases per million and 193 deaths per million in Africa for this period, 
compared to 67,977 cases per million and 809.1 deaths per million globally (Dong et al., 
2020). These figures translate to a case fatality rate of 2.17% in Africa, twice higher than 
the global case fatality rate which is 1.19% (Dong et  al., 2020). This shows that even 
though Africa is much less affected than the rest of the world, the COVID-19 lethality in 
Africa is more severe (Lawal, 2021).

Fig. 2  COVID-19 prevalence evolution in Africa. a Cumulative confirmed cases and deaths. b Daily con-
firmed cases and deaths
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As of March 31, 2022, the 10 COVID-19 hard-hit countries are: Seychelles (SYC: 
414,044 cases per million, 1680 deaths per million), Cameroon (CMR: 217,378 cases per 
million, 3504 deaths per million), Mauritius (MUS: 166,186 cases per million, 765 deaths 
per million), Botswana (BWA: 132,624 cases per million, 1166 deaths per million), Tuni-
sia (TUN: 88,577 cases per million, 2422 deaths per million), Libya (LBY: 74,026 cases 
per million, 947 deaths per million), South Africa (ZAF: 63,509 cases per million, 1708 
deaths per million), Namibia (NAM: 63,197 cases per million, 1611 deaths per million), 
Swaziland (SWZ: 60,769 cases per million, 1214 deaths per million) and Morocco (MAR: 
31,895 cases per millions, 440 deaths per million). In terms of raw confirmed cases and 
deaths count, the top 10 countries include South Africa (ZAF), Morocco (MAR), Tuni-
sia (TUN), Egypt (EGY), Libya (LBY), Ethiopia (ETH), Kenya (KEN), Zambia (ZMB), 
Botswana (BWA), Algeria (DZA) and 74.5% of the confirmed cases counts and 80.1% of 
deaths come from these topping countries; yet, their cumulative population account for 
33.8%of the continent population (Dong et al., 2020). Also, it is worth noting that most of 
these countries are those mostly located at the northernmost (or southernmost) parts of the 
continent, and features high standard of living and international exposure.

Over the study period, the African continent experienced four waves of increasing 
magnitude, both for new daily cases and deaths, as shown in daily estimates presented in 
Fig. 2b. The first wave peaked around July–September 2020, the second in January–Febru-
ary 2021, the third one in early August 2021 and the fourth one (of similar magnitude with 
the third one) occurred February 2022. Also, a strong periodicity of around 6 months is 
observed.

3.1.3  Spatial and temporal evolution of COVID‑19

The spatial and temporal spread of the COVID-19 in Africa is presented on choropleth 
maps in Fig.  3 at different dates (September 30, 2020; March 31, 2020; September 30, 
2021; March 31, 2022).

Fig. 3  Choropleth map showing the spatial and temporal spread of COVID-19 cumulative cases and deaths 
in Africa over the period January 2020 to March 2022. a–d Cumulative cases per million people. e–h 
Cumulative deaths per million people
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From the beginning of the pandemic in Africa to March 31, 2022, it appears that the 
countries located at the extremities of the continent (north and south) are the most affected 
in terms of cumulative confirmed cases and deaths per million, while countries closer to the 
equator seem less affected, in terms of magnitude. The Southern Africa region especially 
is the most affected region on the continent in terms of prevalence. This region, which is 
home to only 13.52% of the people living in Africa (WorldBank, 2021), accounts for over 
47.1% of cumulative confirmed cases and 49.8% of deaths. This is in sharp contrast to the 
findings of Heneghan et al. (2020) who stated that the pandemic had a higher prevalence 
in the Northern hemisphere of the continent. In contrast, the West Africa region, which is 
home to 29.67% of the African population, reported only 7.8% of cumulative confirmed 
cases and 5.2% of deaths. The North Africa region, with 18.69% of the continent’s pop-
ulation, reported 31.1% of confirmed cases and 34.9% of deaths, while the East Africa 
region reported 11.0% of confirmed cases and 8.3% of deaths. The Central Africa region is 
the least affected by the pandemic, with only 3.0% of confirmed cases and 1.7% of deaths 
(Online Resource 1, ESM1–Fig. S2-S5).

3.2  Selection of optimal factors for COVID‑19 prevalence analysis

3.2.1  Spearman’s correlation rank analysis

Figure 4 shows Spearman’s � correlation matrix for the complete dataset of 34 country-
level variables initially selected and their association to the two response variables, which 
are the cumulative confirmed cases per million (conf_pm) and deaths per million (death_
pm). The complete correlation matrix values and associated significance (p values) is given 
in the Online Resource 2 (ESM2—Tables S4 and S5).

The variables highly and positively correlated to COVID-19 prevalence data (respec-
tively, cumulative confirmed cases and deaths) are Human Development Index (hdi: �
=0.77, 0.73), health expenditure (hdi: �=0.76, 0.77), median age (median_age: �=0.74, 
0.71), literacy rate (alphab: �=0.72, 0.64), number of physicians for 1000 people 
(med_1000:�=0.71, 0.70), Gross Development Product per capita (gdp_cap:�=00.71, 0.64) 
and mortality rate due to air pollution from the use of household solid fuels (hous_fossf: �
=0.70, 0.72). These results are in line with those of Gilbert et al. (2020) and ACSS (2020a) 
for variables reflecting the standard of living, and of Lulbadda et al. (2021) for the age of 
the population. Some variables are also found to be highly and negatively correlated to 
COVID-19 prevalence, including the mortality related to the lack of hygiene (lack_hygien: 
� = − 0.78,  − 0.79), prevalence of malaria (prev_malaria:�= − 0.71,  − 0.79), the lack of 
hygiene related mortality (lack_hygien:�= − 0.77,  − 0.70) and prevalence of malnutrition 
and nutritional deficiencies (prev_nutdef: � = − 0.62,  − 0.53). Such findings are in line with 
the recent work of Weiss et al. (2021).

Moderate association is found between COVID-19 prevalence (confirmed cases and 
deaths per million, respectively) and prevalence of nutritional deficiencies (prev_nutdef:�
= − 0.62, − 0.53), immunization coverage with BCG (immuniz_bcg: �=0.57, 0.50), life 
expectancy (life_exp: � = 0.55, 0.56), percentage of people aged over 65 years (p65yrs: �
=0.54, 0.58), environmental performance index (epi: �=0.54, 0.56), prevalence of respira-
tory diseases and tuberculosis (prev_respdtub: �=-0.51, − 0.45), prevalence of chronic res-
piratory diseases (prev_ch.resp: �= − 0.46, − 0.37), PM2.5 air pollution (pm25: �= − 0.45, 
-0.40), daily annual maximum temperature (tmax_avg: � = − 0.44, − 0.36) and urban popu-
lation (urb_pop: �=0.43, 0.42).
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Variables such as prevalence of nutritional deficiencies (prev_nutdef), prevalence of 
respiratory infections and tuberculosis (prev_respdtub), prevalence of cardiovascular 
diseases (prev_cvlds) and prevalence of diabetes (prev_diab) and prevalence of chronic 
and respiratory diseases (prev_ch.resp) were found to be highly correlated with each 
other ( � > 0.9). As such the first four variables were removed from the dataset, only 
leaving out the prev_ch.resp variable, found to be lesser correlated with the remaining 
country-level variables in the entire dataset. To further avoid potential issues of collin-
earity, redundant variables in the dataset were screened through the calculation of the 
VIF index, presented in Table 2.

A total of 16 variables have VIF values below 10 and were considered significant 
for further analysis. These variables refer to international exposure (arriv), socioeco-
nomic status (gini, alphab), population structure (dens_pop, urb_pop), healthcare sys-
tems and environment (pm25, med_1000, epi, lack_hygien, immuniz_dtp1, immuniz_
bcg), disease prevalence and risk factors (alcohol_cons, prev_malaria, prev_ch.resp), 
climate setting (ws2m_avg, lat_abs). The remaining variables show VIF values over 
10, indicating high collinearity. Therefore, these latter variables were excluded.

Fig. 4  Spearman’s rho correlation coefficient between country-level variables and their association to 
COVID-19 prevalence in African countries. Blank values show nonsignificant correlation coefficients (at � 
= 5% level)
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3.2.2  Optimal factors subset selection

The Cook’s distance D-statistic helped in flagging some countries as outliers for cumula-
tive confirmed cases and deaths per million, especially 3 countries: Cabo Verde (CPV), 
Mauritius (MUS) and Seychelles (SYC). These countries present highest GDP per cap-
ita values (gdp_cap: 11,099.2 $US/capita and 17,448.3 $US/capita for MUS and SYC, 
respectively), highest population densities (urban_pop: MUS: 620.4 inhabitants/km2 for 
MUS), highest health expenditure (health_exp: 653.3 $US/capita and 833.1 $US/capita for 
MUS and SYC, respectively). Also, these countries share the highest prevalence estimates 
(166,185–414,043 confirmed cases per million and 764–3,504 deaths per million). Since 
such atypical values are likely to affect the feature selection procedure (Online Resource 1, 
ESM1–Fig. S6), these countries were temporarily removed from the dataset, and later re-
included in the set of countries.

Table 3 shows the optimal variables selected through the feature selection, ranked by 
order of decreasing importance, evaluated at different time points during the study period.

It appears that 8 to 9 optimal features stand out as the most important ones, both for 
confirmed cases and deaths. These optimal variables include mortality attributed to the 
lack of hygiene (lack_hygien), literacy rate (alphab), number of physicians per 1000 inhab-
itants (med_1000), coming as the most important ones. These variables are further fol-
lowed by EPI (epi), air pollution with PM2.5 (pm25) and urban population (urb_pop). The 
lesser important one, with varying ranks of importance depending on the analysis period, 
are latitude (lat_abs), international tourism (arriv) and Gini index (gini).

From the above results, it appears that variables relating to the healthcare system and 
environment-related variables (lack_hygien, med_1000, epi, pm25), international exposure 
(arriv) and socioeconomic status (alphab, gini) are closely related to COVID-19 preva-
lence. The latter are followed by variables related to population structure (urb_pop) and to 
a lesser extent, climatic setting (lat_abs). These 9 variables were finally used for the clus-
tering of countries.

Table 2  VIF values for all variables

N° Variable conf_pm death_pm N° Variable conf_pm death_pm

1 alcohol_cons 3.11 3.11 16 prev_ch.resp 9.52 9.52
2 dens_pop 3.36 3.36 17 insol_avg 10.57 10.57
3 urb_pop 3.59 3.59 18 life_exp 11.48 11.48
4 pm25 3.66 3.66 19 p65yrs 14.63 14.63
5 gini 4.99 4.99 20 hous_fossf 17.20 17.20
6 arriv 6.10 6.10 21 hdi 18.74 18.74
7 med_1000 7.48 7.48 22 gdp_cap 32.48 32.48
8 prev_malaria 7.51 7.51 23 health_exp 32.54 32.54
9 ws2m_avg 7.75 7.75 24 median_age 35.61 35.61
10 epi 7.83 7.83 25 rh2m_avg 140.79 140.79
11 alphab 7.96 7.96 26 ah_avg 180.74 180.74
12 immuniz_bcg 8.46 8.46 27 tmax_avg 258.91 258.91
13 lack_hygien 8.82 8.82 28 tmin_avg 575.63 575.63
14 immuniz_dtp1 8.92 8.92 29 tmoy_avg 1349.89 1349.89
15 lat_abs 9.08 9.08
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3.3  Clustering of African countries

3.3.1  Creation of clusters

The examination of various clustering schemes (as presented in Sect. 0) resulted in an opti-
mal set of 3 clusters, produced through the combination of Canberra distance and Ward.
D2 aggregation method. The cophenetic correlation associated is 0.585, therefore consid-
ered acceptable (Kassambara, 2017). Figure 5 shows the resulting dendrogram from the 
AHC clustering.

The associated map in Fig. 6 shows the spatial configuration of the clusters obtained. 
The detailed dataset presenting the clusters and their associated features and prevalence is 
presented in the Online Resource 2 (ESM2—Table S6).

Cluster 1 is composed of 11 countries, mostly located in the Northern Southern regions 
of Africa: Algeria (DZA), Botswana (BWA), Egypt (EGY), Libya (LBY), Mauritius 
(MUS), Morocco (MAR), Namibia (NAM), Seychelles (SYC), South Africa (ZAF), Tuni-
sia (TUN) and Zambia (ZMB). Most of these countries feature a high socioeconomic status 
and large international exposure.

Cluster 2 is the largest and is composed of 27 countries: Angola (AGO), Burundi (BDI), 
Cabo Verde (CPV), Central African Republic (CAF), Comoros (COM), Congo Brazza-
ville (COG), Cote d’Ivoire (CIV), Djibouti (DJI), Equatorial Guinea (GNQ), Eritrea (ERI), 
Eswatini (SWZ), Ethiopia (ETH), Gabon (GAB), Ghana (GHA), Kenya (KEN), Lesotho 
(LSO), Madagascar (MDG), Malawi (MWO), Mozambique (MOZ), Rwanda (RWA), Sao 
Tome and Principe (STP), Somalia (SOM), South Sudan (SSD), Sudan (SDN), Tanzania 
(TZA), Uganda (UGA) and Zimbabwe (ZWE). Most of these countries feature a middle to 
low socioeconomic status.

Cluster 3 is composed of the 16 remaining countries: Benin (BEN), Burkina Faso 
(BFA), Cameroon (CMR), Chad (TCD), Congo Kinshasa (COD), Gambia (GMB), Guinea 

Fig. 5  Dendrogram of observations based on AHC using the optimal subset of 9 variables
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(GIN), Guinea-Bissau (GNB), Liberia (LBR), Mali (MLI), Mauritania (MRT), Niger 
(NER), Nigeria (NGA), Senegal (SEN), Sierra Leone (SLE) and Togo (TOG). These coun-
tries feature an intermediate socioeconomic status, between countries of Cluster 1 and 
Cluster 2.

The map of clusters shows a substantial spatial differentiation. With a few exceptions, 
the countries in Cluster 1 (11 countries) are located at the Northern and Southern poles of 
the continent. The majority of countries in Cluster 2 (27 countries) are located in Central 
and Eastern regions of the continent. Finally, Cluster 3 (16 countries) is essentially com-
posed of countries located in the western part of the continent.

3.3.2  Statistical analysis of clusters

The Cluster 1 is by far the largest affected cluster (median of 63,508.6 confirmed cases per 
million and 946.5 deaths per million), followed by Cluster 2 (median of 4473.7 confirmed 
cases per million and 81.2 deaths per million) and Cluster 3 (median of 2569.3 confirmed 
cases per million and 35.7 deaths per million). Clusters 2 and 3 share similar orders of 
magnitude in terms of COVID-19 prevalence.

Fig. 6  Map of the 3 clusters identified in this study
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Table 4 presents the statistical description of the 3 clusters. Cluster 1 is by far the largest 
affected cluster (median of 63,508.6 confirmed cases per million and 946.5 deaths per mil-
lion), followed by Cluster 2 (median of 4473.7 confirmed cases per million and 81.2 deaths 
per million) and Cluster 3 (median of 2569.3 confirmed cases per million and 35.7 deaths 
per million). Clusters 2 and 3 share similar orders of magnitude in terms of COVID-19 
prevalence.

Figure 7 compares the COVID-19 prevalence between the 3 clusters. The cumulative 
number of confirmed cases per million (conf_pm) and deaths per million (death_pm), 
respectively, in Fig. 7a and Fig. 7b shows significant differences for groups between Clus-
ters 1–2 and Clusters 1–3 (p values < 0.01). Likewise, the mortality rate (shown in Fig. 7d) 
is found to be significantly different in Clusters 1–2 and 1–3 pairs (p values < 0.05). The 
case fatality rate, however, shown in Fig. 7c, remains similar across the 3 clusters (p val-
ues: 0.648–1.000).

Figure 8 compares the distribution of the 10 features used to form the 3 clusters. Sig-
nificant differences (at � = 5% level) are observed between the 3 pairs of clusters for 
the literacy rate (alphab) and environmental performance index (epi). Variables such as 

Table 4  Statistical description of the 3 clusters of countries

‘Min’ is the minimum value, ‘Q1’ the first quartile, ‘Q2’ the second quartile, i.e., the median, ‘Avg’ is the 
average, ‘Q3’ is the third quartile, ‘Max’ is the maximum value

Clusters 1 2 3 1 2 3 1 2 3 1 2 3
lack_hygien alphab med_1000 epi

Min 0.2 11.4 4.1 71.2 34.5 22.3 0.2 0.0 0.0 34.7 26.5 22.6
Q1 0.8 26.1 37.8 80.2 61.4 39.8 0.5 0.1 0.1 41.4 30.2 26.6
Q2 1.9 38.4 45.9 86.7 76.5 46.4 1.2 0.1 0.1 43.3 33.8 29.3
Avg 7.9 39.8 50.5 84.6 70.6 47.6 1.2 0.2 0.2 43.9 33.2 29.0
Q3 12.8 49.8 69.1 89.2 79.7 52.3 1.9 0.2 0.1 45.0 36.0 30.7
Max 34.9 86.6 101.0 95.9 94.4 86.8 2.5 0.7 0.8 58.2 45.8 38.3

Clusters 1 2 3 1 2 3 1 2 3 1 2 3
pm25 urb_pop arriv (in thousands) lat_abs

Min 10.5 15.3 42.2 40.8 13.4 16.5 428.0 33.4 30.0 4.7 0.0 6.4
Q1 24.6 26.1 54.0 47.6 25.9 40.8 1342.0 258.5 96.0 21.3 2.7 9.0
Q2 28.4 37.0 57.7 63.0 36.5 45.7 1830.0 812.0 277.0 26.3 6.9 12.0
Avg 31.6 35.1 59.5 59.9 42.0 44.4 5462.3 817.4 792.2 23.7 9.2 12.5
Q3 34.2 42.6 62.6 69.7 56.8 51.3 11,227.5 1184.0 787.5 29.3 13.1 15.7
Max 72.3 65.4 93.2 80.4 89.7 66.2 14,797.0 2294.0 5265.0 33.9 29.6 21.0

Clusters 1 2 3 1 2 3 1 2 3
gini Confirmed cases (conf_pm) Deaths (death_pm)

Min 27.6 34.2 32.6 5033.1 583.0 377.6 159.7 3.3 12.0
Q1 31.9 40.8 34.9 24,817.5 2577.6 1209.8 341.8 38.5 15.9
Q2 36.8 43.7 35.8 63,508.6 4473.7 2569.3 946.5 81.2 35.7
Avg 42.2 44.6 38.8 96,636.4 9227.1 16,575.5 1033.1 149.4 274.5
Q3 55.2 47.9 42.6 110,600.6 11,036.5 4704.3 1645.5 140.2 96.5
Max 63.0 56.3 50.7 414,043.5 60,769.3 217,378.4 2421.9 1214.1 3504.1
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international arrivals (arriv), urban population (urb_pop), number of physicians for 1000 
inhabitants (med_1000), mortality attributed to the lack of hygiene (lack_hygien) and abso-
lute latitude (lat_abs) present significant differences only for Clusters 1–2 and Clusters 1–3 
pairs. Differences in Gini index distribution (gini) are found to be significant only between 
Clusters 2 and 3 (p value = 0.011), while air pollution due to PM2.5 particles (pm2.5) 
shows significant differences between Clusters 1–3 and Clusters 2–3 pairs.

Cluster 1 is by far the hard-hit cluster by COVID-19 with a median of 63,508.6 con-
firmed cases per million and 946.5 deaths per million. The countries in this cluster have the 
lowest mortality related to the lack of hygiene (median of 1.9%) and air pollution due to 
PM2.5 (median of 28.4), the highest literacy rate (median of 86.7%) and EPI score (median 
of 43.3). These countries are the most urbanized (median of 63.0%) and are located the 
farthest from the equator (median absolute latitude of 26.3°). International exposure, with 
the annual number of tourist arrivals is the highest for this cluster (median of 1,830,000 
tourists).

Cluster 3 is the least affected by COVID-19 with a median of 2569.3 confirmed cases 
per million and 35.7 deaths per million. Interestingly, the countries in this cluster have 

Fig. 7  Box-plot comparison of COVID-19 prevalence across clusters. a Cumulative cases per million 
(conf_pm). b Cumulative deaths per million (death_pm). c Case fatality rate (%), calculated as the cumula-
tive number of deaths out of the cumulative number of confirmed cases. d Mortality (per million people), 
calculated as the cumulative number of deaths out of population estimates (WorldBank, 2021). The vertical 
axis was transformed to log10 scale for easier visual cross-comparison of clusters
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the highest mortality related to the lack of hygiene (median of 45.9%), the lowest lit-
eracy rate (median of 46.4%), EPI score (median of 29.3) and international exposure 
(median of 277,000 arrivals). Also, air pollution due to PM2.5 particles in countries of 
Cluster 3 is the highest (median of 57.7).

Cluster 2 is intermediate between Cluster 1 and 3 in terms of COVID-19 preva-
lence, as shown by the median values for confirmed cases (4473.7 cases per million) 
and deaths (81.2 deaths per million). Urban population densities are the lowest in this 
cluster (median of 36.5%). Also, these countries are geographically close to the equator 
(median absolute latitude of 6.9°). International exposure is intermediate for this cluster 
(median of 812,000 tourists).

Figure  9 shows the linear association between the natural logarithm of cumulative 
confirmed cases and deaths per million opposed to the absolute latitude.

The coefficients of determination  (R2) for this linear association are, respectively, 
of 0.098 (p value = 0.063, not significant) and 0.198 (p value = 0.005, significant) for 
cumulative confirmed cases and deaths per million. It shows that to some extent, the 
farther from the equator a country is located, the more deaths are to be expected to 
COVID-19, with a semi-elasticity of around 7.9% increase in deaths cases per million 
by one degree of absolute latitude increase. Similar observation have been reported in 
previous studies, which suggested that the higher sunlight and heat (near equator) is 
likely to hinder the spread of the COVID-19 (Braiman, 2020; Chen et al., 2021; Whit-
temore, 2020).

Fig. 8  Cluster comparison by variables. The vertical axis was transformed to log10 scale to enable visual 
cross-comparison across clusters



Understanding the COVID‑19 pandemic prevalence in Africa through…

1 3

4  Discussion

4.1  On transmission factors and COVID‑19 clustering

At a global level, the spread of the pandemic indicates that developed countries (such as 
USA, Italy, England, France, China and Russia) are also the most affected by the pan-
demic. A positive correlation between the high socioeconomic status, standard of living 
and COVID-19 prevalence has been reported in earlier studies (Dong et al., 2020), which 
is similar, to some extent, to the findings in this study: Cluster 1 in this study, for exam-
ple, is the most affected by the pandemic and is also the one concentrating the leading 
countries in Africa, in terms of socioeconomic features (Cash & Patel, 2020). On the other 
hand, it appears that the prevalence of chronic respiratory infections and diseases is not 
relevant to COVID-19 prevalence in the context of Africa, which calls into question some 
of the previous studies (Carrillo-Larco & Castillo-Cara, 2020; Renzaho, 2020). According 
to Bigna and Noubiap (2019), there is a rising concern regarding the recent increase of 
non-communicable diseases (cardiovascular and respiratory diseases, cancers, diabetes) in 
Sub-Saharan Africa, mostly attributed to rapid urbanization and increased risk factors such 
as unhealthy diets, reduced physical activity, hypertension, obesity and air pollution (Kraef 
et al., 2020).

The countries which reported the first COVID-19 cases and deaths in this study are 
those found to have a higher international exposure mostly through tourism. This is in line 
with a recent large-scale genomic analysis, which specifically revealed that COVID-19 in 
most African countries was triggered by importations, predominantly from Europe. Yet, 
this spread slowed down following the early introduction of international travel restric-
tions. Furthermore, ongoing transmission and increasing mobility led to the emergence and 
spread of many variants within the continent (Wilkinson et al., 2021; Zongo et al., 2020).

Some variables related to the structure of the population (life expectancy, urban popu-
lation) in this study also best explain the spread of the pandemic in Africa. The highest 

Fig. 9  Scatterplots of natural logarithm (log) of COVID-19 cases and deaths per million people opposed to 
absolute latitude (in degrees) for African countries. a COVID-19 cumulated confirmed cases (R2 = 0.063, p 
value = 0.063 > 0.05). b COVID-19 cumulated deaths (R2 = 0.198, p value = 0.005 < 0.05)



 M. L. Sidibé et al.

1 3

values of life expectancy obtained for Cluster 1 appear mostly as a typical trait of topping 
countries, for which it is expected to be high because of the better standard of life, life 
amenities, healthcare facilities and management systems found in such countries. Similarly, 
for such countries, the rate of urbanization is expected to be high, which increases the risk 
of COVID-19 transmission (Carrillo-Larco & Castillo-Cara, 2020; Rizvi et al., 2021).

Zhu et al. (2020) and Rizvi et al. (2021) established that air quality is a positive predic-
tor of the COVID-19 confirmed cases. This is supported by the findings in this study, as 
shown by the prominent variables highlighted in this study such as mortality related to 
air pollution due to PM2.5 and also the EPI score. COVID-19 and air pollution is already 
known to be a hazardous association. Recently emerging evidence suggests that exposure 
to air pollution worsens the severity of COVID-19 on human health (Bourdrel et al., 2021).

Regarding the climatic setting, only latitude was found to be effective at explaining 
COVID-19 prevalence, with a higher and significant association to COVID-19 deaths. Meo 
et  al. (2020) showed that an increase in relative humidity and temperature is associated 
with a decrease in the number of daily cases and deaths due to COVID-19 in Africa. Other 
studies highlighted association between COVID-19 and various climate parameters, such 
as rainfall, wind speed and surface pressure (Bashir et al., 2020; Bilal et al., 2021; Hossain 
et al., 2021; Raza et al., 2021; Rendana, 2020; Ward et al., 2020). Interestingly, insolation 
has been reported as a negative predictor of COVID-19 prevalence, which in turn might 
explain why countries located farther from the equator tend to report more confirmed cases 
and especially deaths (Braiman, 2020; Chen et  al., 2021; Whittemore, 2020). This latter 
finding is in line with our results. However, an in-depth assessment of the clear connection 
between climate and the current pandemic is yet to be carried. (Wang and Crameri 2014; 
Lone & Ahmad, 2020).

On the overall, little previous work has examined factors associated with the COVID-19 
pandemic within the context of Africa. In this research, 3 clusters of countries are identi-
fied. In comparison, ACSS (2020b) conducted a clustering in Africa and identified 7 coun-
try profiles. Yet, our approach presents a significant difference as it tries to relate the vari-
ability in COVID-19 prevalence (cases and deaths) across countries through country-level 
variables, later used to form clusters. Moreover, environment-related variables are consid-
ered here, unlike ACSS (2020b). Other clustering-related research work conducted outside 
of Africa or at the global level concluded that countries with similar socioeconomic pro-
files fall within the same cluster (Carrillo-Larco & Castillo-Cara, 2020; Freed et al., 2020; 
Zarikas et al., 2020). It is, at a first glance, surprising to note that countries considered to be 
‘developed’ from the viewpoint of socioeconomic status or standard of living are the most 
severely affected by the COVID-19 pandemic. However, Freed et al. (2020) discusses the 
clear distinction to be made between the level of socioeconomic achievement for a country 
on the one side, and on the other side, the preparedness of healthcare systems as well as 
the willingness of populations to cope with restrictive measures promoted by authorities. 
These features are decisive to achieve a swift and effective response to the ongoing health 
crisis (Sadeghi et al., 2021; Zhang et al., 2020).

4.2  On the lack of hygiene and COVID‑19 transmission

Handwashing is considered to be one of the most effective ways to prevent the trans-
mission of diseases, including COVID-19. In this study, the mortality attributed to the 
lack of hygiene (lack_hygien) is found to be significant for both confirmed cases and 
deaths. Similarly, it was found to be determinant at separating optimally the 3 clusters 



Understanding the COVID‑19 pandemic prevalence in Africa through…

1 3

found. The lack_hygien variable is a negative predictor of the pandemic (conf_pm: � 
= -0.74; death_pm: � = -0.76). The lack of sanitation associated with poor hygiene 
practices is already deemed to be responsible for the higher communicable disease 
burdens, especially for developing countries (James et al., 2018). It is, therefore, rea-
sonable to expect that better hygiene standards, safe sanitation and safe drinking water 
are likely to be negatively correlated with COVID-19 cases and deaths. Interestingly, 
the findings in our study suggest quite the opposite. In our understanding, this should 
not be perceived as a causation, but rather as a typical trait of the clusters formed 
instead. An explanatory hypothesis can be found in the possibility of ‘immune train-
ing,’ as suggested by Chatterjee et al. (2020). In fact, the African context is a unique 
case where previous infectious diseases such as HIV, tuberculosis and malaria as well 
as infections are highly prevalent and are known to influence immune function, which 
might also, in turn, affect the immune response to COVID-19 (Adams et al., 2021; Tes-
sema & Nkengasong, 2021). Also, along these lines, a lower prevalence of COVID-19 
in malaria-endemic areas has been reported, although the reasons are yet to be further 
investigated (Anjorin et al., 2021; Iesa et al., 2020).

4.3  Implications for policies and decision making

Since the onset of the pandemic, Africa has experienced four waves in daily new 
cases, which seems to display a strong periodicity of approximately 6  months each. 
Such finding has direct implications for management policies, as it suggests that bar-
rier measures, social distancing and eventually specific measures should be undertaken 
prior to the occurrence of such predictable peak periods (especially in the months of 
June-July and December-January).

Besides this, coupling some strategies and preventive measures might help in a 
strong mitigation of the spread of the pandemic on the African continent. For exam-
ple, authorities should focus on good governance regarding health directives and open 
communication, to foster willingness of population to adopt mitigation measures, and 
also encourage them to get vaccinated. Providing financial support to vulnerable sec-
tors of activities and populations might help in this regard, considering the limited 
resources of many African countries (James et al., 2018; Sadeghi et al., 2021).

Regarding the governance of the health sector, lack of knowledge is still hindering 
our understanding of the pandemic. Also, the emergence of new variants more virulent 
in younger populations is likely, which might lead in turn to reconsideration of Afri-
ca’s susceptibility to the COVID-19 pandemic. As such, studies to assess risk factors 
including detailed cohort studies with appropriate controls are needed (Adams et al., 
2021).

Regarding environment and sustainability aspects, the current figures of the COVID-
19 pandemic can be perceived late lesson from an early warning. Human-induced envi-
ronmental degradation increases the risk of pandemics through the complex interplay 
between ecosystem disturbance, urbanization, international travel and climate change. 
Therefore, a transition to a sustainable society and economy appears necessary to pro-
tect human health. As such, decision makers (at the institutional level) and societies (at 
the individual and community level) should start thinking about what to differently to 
move forward more sustainable practices (EEA, 2020; Harremoës et al., 2001).
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4.4  Limitations of this study

It should be fully acknowledged that our study is fraught with a few limitations: first, 
since it is mostly based on statistical analysis, it might help highlighting evidence on 
a macroscopic scale. However, our framework could be less performant at explaining 
individual and specific variations among observations, which are typically masked. 
Moreover, since any model is as good as the data used, the limitations related to the 
supporting data used in this study should be considered. The reporting of COVID-19 
data is subjected to different strategies depending on countries and might not be entirely 
accurate, nor up to date, depending on either technical limitations or communica-
tion strategies. Similarly, it is well known that only positive tests results are consid-
ered as confirmed cases: therefore, the less testing is done, the less confirmed cases are 
detected, which might not reflect accurately the actual state of the pandemic. On several 
occasions, the reliability of the tests has been questioned (Danilova, 2020). These issues 
and the subsequent uncertainty around the COVID-19 prevalence estimates should be 
considered as they might distort our understanding of the spread of the pandemic across 
different countries.

Finally, this study also focused on the African continent to explain the variability 
in COVID-19 prevalence across countries through country-level related variables. Such 
focus might bring a loss of generalization of our findings to other contexts outside 
Africa, or to urban areas. However, the framework of methodology could still be applied 
in such cases, with consideration of new potential variables more related to such con-
texts. Also, the clusters identified might help in COVID-19 modeling studies, since bet-
ter performance might be achieved through the tuning models according to each cluster.

The findings in this study open new avenues for research regarding COVID-19 prev-
alence in Africa. Future studies should consider forecasting COVID-19 confirmed cases 
through time series modeling (Takele, 2020). Such modeling efforts might critically help 
in handling effectively the pandemic, but could also be useful in understanding spatial 
patterns of evolution of the pandemic and in assessing the effectiveness of mitigation of 
restrictive measures (Likassa et al., 2021). Also, future studies should consider assessing 
the potential effects of the pandemic on critical sectors to which most African countries are 
dependent, such as agricultural trade (Dugué et al., 2021; Lèye et al., 2021).

5  Conclusion

The current COVID-19 pandemic took the world by surprise early in 2020. The African 
continent, which turned out to be the least affected, has outwitted even the most sophisti-
cated prognosticators. In this study, a set of 9 country-level descriptors have been identi-
fied as the optimal ones at explaining the variability of cumulative confirmed cases (per 
million) and cumulative deaths (per million) figures across the 54 African countries. The 
variables relating to the healthcare system and environment, international exposure and 
socioeconomic status are found to be closely related to COVID-19 prevalence, followed 
by variables relating to population structure. To a lesser extent, climate (through the geo-
graphical distance to the equator) might explain the current pandemic figures, more spe-
cifically in terms of cumulative deaths per million. A negative predictor, which is also the 
most significant variable, is the mortality related to lack of water, hygiene and sanitation.
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Based on these optimal features, the African continent is partitioned into 3 epidemio-
logical clusters using the AHC method. Cluster 1 is composed of 11 countries mainly 
located mainly at the northernmost and southernmost parts of the continent, and charac-
terized by the highest median values for confirmed cases, deaths of COVID-19. It also 
has the highest socioeconomic and standard of living features. Conversely, the median 
value for mortality related to lack of water, hygiene and sanitation is the lowest for this 
cluster. Cluster 2 (27 countries) is the one the most spared by the current pandemic. 
It also has the lowest standard of living and is the part of the continent where mortal-
ity due to lack of water, hygiene and sanitation seems to be the highest. Cluster 3 (1 
countries) is intermediate between Cluster 1 and 2 in terms of COVID-19 prevalence 
and mostly features countries with likewise similar socioeconomic features. Overall, in 
Africa, as in the rest of the world, richer or topping countries seem the most affected by 
this pandemic, as regard to reported statistics.

Some limitations of this study include the reliability of cases and deaths data reports, 
which might not be accurately reported on time. Also, it is of utmost importance to keep 
in mind that these reports are also limited by the testing policies applied by the different 
countries: the less testing is carried, the less active cases or deaths are reported. However, 
despite these limitations, the clustering produced in this study shed light on the nature and 
the exposure level to COVID-19 in African countries and might help fostering informed 
and strategic interventions by public authorities and decision makers for the current 
COVID-19 crisis and further epidemics or pandemics.
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