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ABSTRACT	 Objective: To explore the genetic changes in the progression of castration-resistant prostate cancer (CRPC) and neuroendocrine 

prostate cancer (NEPC) and the reason why these cancers resist existing therapies.

Methods: We employed our CRPC cell line microarray and other CRPC or NEPC datasets to screen the target gene NEIL3. Lentiviral 

transfection and RNA interference were used to construct overexpression and knockdown cell lines. Cell and animal models of 

radiotherapy were established by using a medical electron linear accelerator. Flow cytometry was used to detect apoptosis or cell cycle 

progression. Western blot and qPCR were used to detect changes in the protein and RNA levels.

Results: TCGA and clinical patient datasets indicated that NEIL3 was downregulated in CRPC and NEPC cell lines, and NEIL3 was 

correlated with a high Gleason score but a good prognosis. Further functional studies demonstrated that NEIL3 had no effect on 

the proliferation and migration of PCa cells. However, cell and animal radiotherapy models revealed that NEIL3 could facilitate the 

radiotherapy sensitivity of PCa cells, while loss of NEIL3 activated radiotherapy resistance. Mechanistically, we found that NEIL3 

negatively regulated the expression of ATR, and higher NEIL3 expression repressed the ATR/CHK1 pathway, thus regulating the cell 

cycle.

Conclusions: We demonstrated that NEIL3 may serve as a diagnostic or therapeutic target for therapy-resistant patients.
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Introduction

Acquired resistance to existing therapies in cancer is an increas-

ing clinical problem. Therapeutic agents exert natural selec-

tion and promote the development of therapeutically resist-

ant tumors. Androgen deprivation therapy (ADT) has long 

been used as a first-line treatment for prostate cancer (PCa) 

and has proven effective for its early stage1, but the develop-

ment of castration-resistant PCa (CRPC) is nearly inevitable 

within 2–3 years of initiation of ADT2. CRPC is an incurable 

and rapidly progressing disease state, which mostly is due to 

the reactivation of androgen receptor (AR) signaling3,4. Studies 

have demonstrated that the median survival of CRPC patients 

is less than 3 years5,6. Although the second-generation hormo-

nal therapy drugs enzalutamide and abiraterone were approved 

by the Food and Drug Administration (FDA) for CRPC treat-

ment, only some patients responded to the new therapies7,8. 

Unfortunately, more than 25% of CRPC patients will evolve 

into a more aggressive and treatment-resistant form of neu-

roendocrine PCa (NEPC)9. NEPC is a type of prostate small 

cell carcinoma that does not express AR or secrete prostate-spe-

cific antigen (PSA) but expresses the neuroendocrine markers 
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chromogranin A, synaptophysin (SYP), and neuron-specific 

enolase (NSE)10. Importantly, NEPC always has a very poor 

prognosis and a probability of survival of less than 1 year11. 

Compared to primary PCa, CRPC and NEPC are both more 

resistant to existing chemotherapy and radiotherapy12-14. CRPC 

and NEPC are the main causes of prostate cancer-associated 

mortality, and there are no established therapeutic approaches 

for their treatment. Therefore, there is an urgent need to iden-

tify the regulatory mechanism of CRPC and NEPC occurrence, 

and clarify the reason why they resist existing therapies.

In this study, we first established 2 LNCaP castration-

resistant sublines, named LNcap-AI and LNcap-Bic as in our 

previous study15. Combined with other reported CRPC and 

NEPC datasets, we compared the changes in gene expres-

sion and finally obtained our target gene, Nei endonuclease  

VIII-like 3 (NEIL3). NEIL3 belongs to a class of the DNA 

glycosylase family that initiates the first step in base excision 

repair via the associated lyase reaction16. In contrast to the 

other 2 family members NEIL1 and NEIL2, NEIL3 has a more 

complicated function, including unhooking interstrand cross-

links17,18, and modulation of DNA methylation19. Importantly, 

studies have shown NEIL3 alterations in PCa20,21, but the 

molecular mechanisms are far from being clarified. Moreover, 

there is currently no evidence to indicate whether NEIL3 

plays a role in the occurrence of CRPC and NEPC, as well 

as its function in the therapeutic resistance. Here, we found 

that NEIL3 had a positive correlation with the Gleason score 

of PCa, but the opposite was true for NEIL3, which indicated 

a good prognosis. Considering that all our subjects received 

clinical treatment, we doubt whether NEIL3 was related to 

treatment sensitivity. Further functional studies implied that 

loss of NEIL3 activated radiotherapy resistance via the ATR/

CHK1 pathway by blocking the cell cycle. Here, we demon-

strated a possible diagnostic or therapeutic target for clinical 

therapy-resistant patients.

Materials and methods

Data mining

For screening target genes, we downloaded a CRPC data-

set from the Gene Expression Omnibus (https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi): GSE33316. Additionally, we 

downloaded another NEPC dataset from Beltran’s research22. 

To further select target genes by biochemical recurrence 

(BCR)-free survival rate, we downloaded the patient clinical 

profiles from The Cancer Genome Atlas (TCGA) prostate ade-

nocarcinoma datasets. Then, we used SPSS 20.0 software to 

depict the BCR-free survival rate and to obtain our target gene. 

The screening process is shown in Figure 1A.

TCGA databases were used to explore the differential NEIL3 

expression at the mRNA level in different patients. All 497 

patients were used for the analysis as were the 78 patients who 

had received radiotherapy. The relationship between NEIL3 

level and clinicopathological features of the patients are listed 

in Supplementary Table S1 (all 497 patients) and Table 1 

(radiotherapy, 78 patients).

Patients and tissue samples

A tissue microarray (TMA; n = 192), including 160 PCa tissue 

samples and 16 adjacent or normal prostate tissue samples, 

was purchased from Xi’an Alena Biotechnology Ltd., Beijing, 

China (catalog no. PR1921c), and the detailed clinical infor-

mation was included.

A total of 99 paraffin-embedded PCa tissues were obtained 

from Sun Yat-sen University Cancer Center (Guangzhou, 

China) from January 2000 to August 2018. The uses of tis-

sues were approved by Sun Yat-sen University’s Committees 

for Ethical Review of Research Involving Human Subjects 

(Approval No. SYSEC-KY-KS-2020-201). All samples were 

diagnosed with PCa by 2 independent clinicians in the 

Department of Pathology. The clinical information, including 

TNM stage, Gleason score, PSA levels, T stage, lymph node 

metastasis and distant metastasis, was obtained according to 

the guidelines with written consent from the patients.

Immunohistochemistry staining and scoring 
analyses

Ki67 (1:500; Servicebio; Wuhan, China) and NEIL3 antibodies 

(1:300; ab230908; Abcam, Cambridge, UK) were used to assess 

the protein level in PCa tissues and TMA were used for mouse 

tumors via immunohistochemistry (IHC) according to stand-

ard procedures. The images were acquired for statistical anal-

ysis using a Nikon Eclipse 80i system (Nikon, Tokyo, Japan). 

NEIL3 protein expression in the PCa samples was blindly quan-

tified by 2 researchers. First, we evaluated the immunostaining 

intensity of each sample as follows: negative = 0, weak = 1, 

moderate = 2, and strong = 3. Second, we assessed the pro-

portion of positively stained cells: < 25% = 1, 25%–50% = 2, 

51%–75% = 3 and > 75% = 4. The immunoreactivity score 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
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Figure 1  RNA microarray and database-integrated screening identified that NEIL3 correlated with the progression of PCa. (A) Three target genes 
were selected from the microarray, CRPC database, NEPC database and TCGA BCR survival analysis. (B, C) BCR survival analysis of NEIL3 in TCGA 
datasets and Sun Yat-sen University Cancer Center patients. (D, E) The expression of NEIL3 in our CRPC microarray and GSE33316. (F) RT-PCR detec-
tion of NEIL3 mRNA levels in PC3-derived NEPC cells; *P < 0.05 and **P < 0.01, versus the PC3-ctrl group. (G, H) Representative active immunohis-
tochemical staining and quantification showing the expression level of NEIL3 in TMA (G) and Sun Yat-sen University Cancer Center (H) PCa tissues.
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(IRS) was calculated as the intensity score multiplied by the 

proportion score. The results were divided into 2 groups: low 

(IRS ≤ 6) and high (IRS > 6).

The construction of CRPC and NEPC stable 
cells

Human PCa-related cell lines (PC3 and DU145) and the kid-

ney cell line, 293T, were obtained from American Type Culture 

Collection (ATCC, Manassas, VA, USA). All cell culture condi-

tions were performed according to the guidelines from ATCC. 

The culture medium (such as DMEM and RPMI 1640), fetal 

bovine serum (FBS) and penicillin/streptomycin were all pur-

chased from Gibco, Shanghai, China. All cells were cultured 

at 37 °C with 5% humidified CO2 (BB150, Thermo Scientific, 

Beijing, China).

We constructed 2 CRPC cell sublines (LNCaP-Bic and 

LNCaP-AI) as described in our previous study15. In detail, 

for LNCaP-Bic cells, bicalutamide was added to the culture 

medium at a starting concentration of 5 mM, with a weekly 

increment of 50% concentration, ultimately being main-

tained at 20 mM. For LNCaP-AI, LNCaP cells were cultured 

in medium containing 10% charcoal-stripped FBS (cs-FBS). 

Both sublines were cultured for 12 months to obtain stable 

cells.

We constructed NEPC cell sublines as described in a pre-

vious study23. In detail, PC3 cells were treated with medium 

containing dovitinib (SelleckChem, Houston, USA) at con-

centrations of 2 μM and 3 μM until they reached 70%–80% 

confluency. Medium with dovitinib was refreshed every 3 days. 

Both sublines (PC3-2DOV and PC3-3DOV) were cultured for 

at least 1 month to obtain stable cells.

Transient transfection and plasmid 
construction

RNA interference (siRNA) oligonucleotides targeting 

NEIL3 and negative control siRNAs were purchased from 

GenePharma (Shanghai, China). The siRNA sequences are 

listed in Supplementary Figure S1A. Transient siRNA trans-

fection was carried out as described in a previous study24. 

The NEIL3 sequence was cloned into the pLV-CMV-MCS-

EF1-ZsGreen1-T2A-puro vector (Fenghui Biotechnology, 

Hunan, China) to construct the overexpression plasmid 

(Supplementary Figure S1B). Acquisition of lentivirus, pack-

aging of lentivirus, and screening of stable cells were carried 

out as described in our previous study24.

Cell proliferation and migration assay

The MTS assay and colony formation assay were used to test 

cell proliferation. Cells (1,000 for DU145 and 1,500 for PC3 

cells per well) were seeded in 96-well plates and cultured for 

3 days. We detected the absorbance of each well at 492 nm 

every day using MTS (Promega, Beijing, China). In detail,  

20 μL MTS was added to each well, and then the 96-well plate 

was incubated at 37 °C for 2 h incubation. The same cells 

were seeded in 6-well plates and cultured for 14 (control) or 

21 (radiation) days for colony formation. Then, colonies were 

fixed with 4% paraformaldehyde, stained with 0.2% Crystal 

Violet, and counted.

Table 1  Correlation of NEIL3 expression with clinico-pathologic 
characteristics of PCa patients in TCGA database (78 radiotherapy 
patients)

Clinical 
features

  Total 
patients, n

  Low, n (%)   High, n (%)   P

Age, years         0.194

  ≤ 65   58   24 (41.4%)   34 (58.6%)  

  > 65   20   5 (25%)   15 (75%)

Gleason score        0.017*

  ≤ 7   18   11 (61.1%)   7 (38.9%)  

  > 7   60   18 (30%)   42 (70%)

Serum PSA levels, ng/mL       0.826

  ≤ 4   66   25 (37.9%)   41 (62.1%)  

  > 4   6   2 (33.3%)   4 (66.7%)

T stage         0.051

  T1-T2   8   6 (75%)   2 (25%)  

  T3-T4   70   23 (32.9%)   47 (67.1%)

Lymph node metastasis       0.492

  N0   44   15 (34.1%)   29 (65.9%)  

  N1   26   11 (42.3%)   15 (57.7%)

Distant metastasis       1.000

  M0   70   26 (37.1%)   44 (62.9%)  

  M1   1   0 (0%)   1 (100%)

Cut off value of NEIL3 score: medium; PSA, prostate‑specific 
antigen; T, tumor; N, node; M, metastasis. *P < 0.05.
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A 24-well Transwell chamber (8 μM, 353097; Corning, 

Glendale, USA) was used for the migration assay. In detail, 

40,000 cells in 200 μL of 1% FBS medium were seeded in the 

top chamber, and 600 μL of medium containing 10% FBS was 

added into the lower chamber. The time of Transwell assay 

was 10 h (DU145) and 48 h (PC3) for migration. Then, the 

chamber was fixed with 4% paraformaldehyde and stained 

with 0.2% Crystal Violet. A microscope (Nikon, Tokyo, Japan) 

was used to detect the number of migrated cells on the lower 

membrane surface of the top chamber.

All the experiments above were performed 3 times.

Cell radiation exposure

Transfected cells were exposed to 2–8 Gy irradiation using 

a medical electron linear accelerator (PRIMUS, Baden-

Württemberg, Germany) with a fixed emission dose rate of 

200 MU/min. The source cell distance was 10 cm, and the field 

size was 25 cm × 25 cm.

RNA isolation and qRT-PCR

Total RNA was isolated using RNAiso Plus (TaKaRa Bio, Shiga, 

Japan) according to standard procedures. The PrimeScript 

RT Reagent Kit (RR047A; TaKaRa) was used to synthesize 

cDNA. Quantitative real-time PCR was carried out with TB 

Green Premix Ex TaqII (TaKaRa) in an ABI QuantStudio 

Sequence Detection System (Applied Biosystems, Foster City, 

CA, USA). Supplementary Table S3 lists the sequences of the 

primers.

Protein isolation and Western blot

The proteins in the cell samples were harvested using RIPA 

lysis buffer (Beyotime, Nanjing, China) and separated by 10% 

sodium dodecyl sulfate polyacrylamide gel electrophoresis. 

Then, the proteins were transferred to polyvinylidene fluo-

ride membranes and incubated with the following primary 

antibodies at 4 °C for 16 h: NEIL3 (diluted 1:1,000; ab230908; 

Abcam), GAPDH [diluted 1:1,000; 97166S; Cell Signaling 

Technology (CST), Danvers, MA, USA], TOPBP1 (diluted 

1:1,000; 14342S; CST), pATR (diluted 1:1,000; 2853S; CST), 

ATR (diluted 1:1,000; 2790S; CST), pCHK1 (diluted 1:1,000; 

2344S; CST), and γ-H2AX (diluted 1:1,000; 7631S; CST). 

The membranes were then incubated with secondary anti-

body at room temperature for 1 h. The protein band signals 

were detected by Immobilon Western Chemiluminescent 

HRP Substrate (WBKLS0500, Merck Millipore, Darmstadt, 

Germany).

Flow cytometry

Flow cytometry (Beckman CytoFLEX, San Jose, CA, USA) was 

used to detect apoptosis or the cell cycle. For apoptosis, 5 × 105 

cells were washed twice with PBS and resuspended in 100 μL  

1 × binding buffer. The cells with green fluorescence were 

mixed with a 10 μL Annexin V-APC/7-AAD apoptosis kit 

reagent (abs50008; Absin, Shanghai, China), while the cells 

without green fluorescence were mixed with a 10 μL Annexin 

V-FITC/PI apoptosis kit reagent (E-CK-A211, Elabscience, 

Wuhan, China). Then, the cell suspension was incubated at 

room temperature for 15 min and resuspended in 300 μL 

binding buffer for flow cytometry detection. Regarding the cell 

cycle, 5 × 105 harvested cells were washed twice with PBS and 

then fixed in 70% prechilled ethanol at 4 °C overnight. Cells 

were then resuspended in 50 μL RNase and 300 μL propidium 

iodide (PI) buffer and incubated at room temperature for 30 

min for flow cytometry detection. ModFit software (BD) was 

used to analyze the results.

Xenografts and radiotherapy in mice

Male BALB/c nude mice (4 weeks old) were purchased from 

the Experimental Animal Center of Sun Yat-sen University 

and housed in the Laboratory Animal Center of Sun Yat-

sen University. All animal procedures were approved and 

supervised by the Animal Ethics Committee of Sun Yat-sen 

University (Approval No. SYSU-IACUC-2019-B459). To eval-

uate the role of NEIL3 in radiotherapy resistance in PCa, a sub-

cutaneous tumorigenic animal model was used in our study. 

Five million DU145 cells (negative control and stably overex-

pressed NEIL3) were injected subcutaneously into the left side 

of the dorsum, and 10 mice were used in each group. Five mice 

in each group received 5 Gray single-dose irradiation using 

an X-ray irradiator (Rs 2,000, Rad Source, Buford, GA, USA) 

when the volume reached approximately 550 mm3 (length × 

width2 × 0.5). Another 5 mice in each group were sacrificed 

for immunohistochemical analyses. The irradiation dose of 

5 Gray was determined based on our previous experiments 

and published studies25,26. The volumes of the tumors were 

calculated every 2 days, and the mice were sacrificed 16 days 

after radiotherapy with the tumors being surgically dissected. 
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The removed tumors were fixed in 10% buffered formalin for 

immunohistochemical analyses.

Statistical analysis

All primary data from TCGA, TAM and clinical samples were 

analyzed using SPSS 22.0 software (SPSS Inc., Chicago, IL, 

USA). Pearson’s chi-squared and Fisher’s exact tests were used 

to analyze the association of NEIL3 expression with clinico-

pathological characteristics. The Kaplan-Meier method was 

used to describe BCR-free survival, and P < 0.05 was consid-

ered significant after the log-rank test.

All quantitative data are presented as the mean ± SD and 

were evaluated using GraphPad Prism 5.0 (GraphPad, La Jolla, 

CA, USA). Statistical differences between the groups were 

assessed by one-way analysis of variance followed by Student’s 

t-test, and P < 0.05 was considered significant.

Results

RNA microarray and database-integrated 
screening showed that NEIL3 correlated with 
the progression of PCa

To study the aberrantly expressed mRNAs in CRPC and NEPC 

cells, we first established 2 LNCaP castration-resistant sublines 

that are considered to best simulate the clinical progression 

of CRPC27. Our previous study proved that these 2 LNCaP 

castration-resistant sublines were resistant to bicalutamide 

and could proliferate well under androgen deprivation con-

ditions15. More importantly, the level of PSA was significantly 

downregulated, while AR, AR-V7, c-Myc, and bcl-2 were 

upregulated in LNCaP-Bic and LNCaP-AI cells.

The RNA microarray was used to screen for differen-

tially expressed genes between androgen-dependent and 

androgen-independent PCa cells. We identified 5,063 dif-

ferentially expressed genes between LNCaP-Bic and LNCaP 

cells (3,293 genes with low expression and 1,770 genes 

with high expression in LNCaP-Bic) and 3,197 differen-

tially expressed genes between LNCaP-AI and LNCaP cells 

(1,760 genes with low expression and 1,437 genes with high 

expression in LNCaP-AI) of which there were 1,305 inter-

sections. To narrow further the screening scope, we merged 

the sequencing results from a CPRC sample (GSE33316, 

5,032 genes; 2,271 were low expression, while, 2,761 were 

highly expressed in the CRPC sample) and a Beltran’s NEPC 

dataset (1,002 genes; 481 were low expression, while 521 

were highly expressed in the NEPC sample)22. Finally, 13 

candidate genes related to CRPC and NEPC were selected 

(Figure 1A and Supplementary Materials). TCGA data-

bases were used to describe the BCR survival curve of these 

13 genes to explore the relationship between the 13 genes 

and the prognosis of PCa (Figure 1B–1D, Supplementary 

Figure S2). However, only NEIL3, CEP55, and DEPDC1B 

had a significant relationship with the prognosis of pros-

tate cancer. Furthermore, our data showed that DEPDC1B, 

CEP55, and NEIL3 were significantly reduced in the CRPC 

cell line (Supplementary Figure S2B–S2C, Figure 1D–1E). 

In addition, we further confirmed a low level of NEIL3 in 

the NEPC cell line (Figure 1F). Although some studies have 

found that NEIL3 is mutated in PCa patients, the reason is 

unknown20. In summary, loss of NEIL3 may play an impor-

tant role in the progression of PCa.

NEIL3 was correlated with a high Gleason 
score but a good prognosis

To further investigate whether NEIL3 was involved in clin-

ical PCa progression at the mRNA and protein levels, we 

analyzed TCGA datasets, consisting of 497 patients, which 

included clinicopathological characteristics. We found that a 

high mRNA level of NEIL3 was related to a higher Gleason 

score (P = 0.000) and T stage (P = 0.000) and indicated a 

higher possibility of lymph node metastasis (P = 0.006) 

(Supplementary Table S1). Considering that mRNA levels 

sometimes fail to reflect the true level of a protein, we further 

analyzed the protein level in a tissue microarray (Figure 1G 

and Supplementary Figure S3) and a large-scale sample 

cohort containing 99 PCa specimens (Figure 1H). Statistical 

analyses showed that a high protein level of NEIL3 was 

related to a high Gleason score (P = 0.015 and 0.036, respec-

tively) but not to PSA level, T stage, lymph node metastasis, 

or distant metastasis (Table 2 and Supplementary Table S2). 

Combined with TCGA results, we were confident that NEIL3 

was associated with a high Gleason score, which suggested 

it may be an oncogene. Interestingly, Kaplan-Meier survival 

analysis showed that high mRNA or protein levels of NEIL3 

were correlated with a good prognosis in TCGA and clini-

cal cohorts (P = 0.000 and 0.036, respectively) (Figure 1B 

and 1C). Taken together, NEIL3 was correlated with a high 

Gleason score but a good prognosis, and the reason needs to 

be further explored.
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NEIL3 had no effect on the proliferation and 
migration of PCa cells in vitro

To explore the effect of NEIL3 on prostate cancer, DU145 and 

PC3 cell lines were transfected with 2 small interfering RNAs 

to construct a NEIL3 knockdown cell line (Supplementary 

Figure S1A) or infected with the corresponding packaged 

lentivirus to establish a stable NEIL3-overexpressing cell line 

(Supplementary Figure S1B). RT-PCR and Western blot 

showed that the mRNA and protein levels of NEIL3 were 

downregulated or increased in DU145 and PC3 cell lines 

(Supplementary Figure S1C–S1F). MTS assays and colony 

formation assays were used to detect NEIL3 function in PCa 

viability. It was found that whether NEIL3 was overexpressed 

or knocked down, it had no effect on the proliferation of 

DU145 and PC3 cells (Figure 2A–2F). Similarly, Transwell 

assays showed that NEIL3 did not influence the migration 

of DU145 and PC3 cells (Figure 2G–2J). Taken together, we 

believe that NEIL3 improved the prognosis of prostate cancer, 

but did not directly affect its proliferation or metastasis.

NEIL3 facilitated radiotherapy sensitivity of 
PCa cells in vitro and in vivo

All our human research subjects had received medical treatment, 

including endocrine therapy, chemotherapy or radiotherapy.  

Our depictions of BCR survival rates cannot exclude these 

treatment factors. In addition, CRPC and NEPC are both more 

resistant to existing therapies than primary PCa. Therefore, we 

hypothesized that NEIL3 was related to the treatment sensitivity 

of PCa patients. To validate this hypothesis, we selected 78 patients 

in TCGA database who had received radiation therapy, evaluated 

the correlation of NEIL3 with clinicopathological characteris-

tics, and depicted the BCR survival rates. Similarly, high NEIL3 

was related to a higher Gleason score (P = 0.017) (Table 1), but 

indicated a good prognosis (P = 0.008) (Figure 3A). More inter-

estingly, MTS assays and colony formation assays demonstrated 

that after the cells received 4 Gray or 2 Gray radiation, the over-

expression group showed significant promotion of radiation 

sensitivity, while the corresponding knockdown group showed 

significant reduction of radiation sensitivity (Figure 3B–3G). We 

chose 4 Gray as the target dose because a higher dose will cause 

the death of most cells (Supplementary Figure S4A and S4B). 

For the DU145 overexpression group, we chose 2 Gray as the tar-

get dose because DU145 was more sensitive to radiotherapy than 

PC3 cells. Even 4 Gray caused significant damage to DU145 cells 

(Supplementary Figure S4C).

To further explore the effects of NEIL3 on the radiother-

apy sensitivity of PCa cells in vivo, a xenograft and radio-

therapy mouse model was used. DU145 cell lines with stable 

overexpression of NEIL3 were subcutaneously injected into 

BALB/c nude mice. During the 20 days of tumor formation, 

we did not observe a difference in tumor volume between the 

control and NEIL3-overexpressing groups (Figure 3H and 3I). 

On the 20th day, when the tumor volume reached approxi-

mately 550 mm3, the tumor site received radiation therapy, 

and the size of the tumors was measured every 2 days in the 

next half month. Strikingly, the tumor volume of the NEIL3 

upregulation group shrank faster than that of the control 

group (Figure 3H and 3I). Moreover, before radiotherapy, we 

did not detect a difference in the proliferation marker Ki67 

between the control and NEIL3-overexpressing groups, while 

Table 2  Correlation of NEIL3 expression with clinico-pathologic 
characteristics of PCA patients in Sun Yat-sen University Cancer 
Center (99 patients)

Clinical 
features

  Total 
patients, n

  Low, n (%)   High, n 
(%)

  P

Age, years         1.000

  ≤ 65   44   28 (63.6%)  16 (36.4%) 

  > 65   55   35 (63.6%)  20 (36.4%)

Gleason score        0.036*

  ≤ 7 (3 + 4)   44   33 (75%)   11 (25%)  

  ≥ 7 (4 + 3)   55   30 (54.5%)  25 (45.5%)

Serum PSA levels, ng/mL       0.751

  ≤ 4   35   23 (65.7%)  12 (34.3%) 

  > 4   64   40 (62.5%)  24 (37.5%)

T stage         1.000

  T1–T2   20   15 (75%)   5 (25%)  

  T3–T4   36   28 (77.8%)  8 (22.2%)

Lymph node metastasis       0.654

  N0   38   29 (76.3%)  9 (23.7%)  

  N1   28   20 (71.4%)  8 (28.6%)

Distant metastasis       0.586

  M0   21   15 (71.4%)  6 (28.6%)  

  M1   22   14 (63.6%)  8(36.4%)

Cut off value of immuno-reactivity score: 6 (> 6, High; ≤ 6, Low.); T, 
tumor; N, node; M, metastasis. *P < 0.05.
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Figure 2  NEIL3 has no effect on the proliferation and migration of PCa cells in vitro. (A) Colony formation assay test cell viability in DU145 
and PC3 cell lines when NEIL3 was overexpressed or downregulated. (B) Statistical analysis of the number of colonies between different 
groups. (C–F) The MTS assay test of cell viability in DU145 (C, D) and PC3 (E, F) cells when NEIL3 was overexpressed or downregulated. (G and I)  
Representative images of migration assays using DU145 and PC3 cells after downregulation or upregulation of NEIL3. (H and J) Histogram 
analysis of migrated cell counts showing cell migration after downregulation or upregulation of NEIL3.
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Figure 3  Continued

after radiotherapy, the NEIL3-overexpressing group exhibited 

much lower expression of Ki67. In addition, we also found that 

most of the NEIL3-positive cells disappeared after radiother-

apy (Figure 3J). Taken together, NEIL3 facilitated the radio-

therapy sensitivity of PCa in vitro and in vivo.

NEIL3 facilitated radiotherapy sensitivity by 
regulating the cell cycle

We found that NEIL3 increased the inhibitory effect of radio-

therapy on the proliferation of PCa. The level of apoptosis and 

the blockage of the cell cycle are the 2 important factors affect-

ing cell proliferation. Therefore, through the GEPIA website 

(http://gepia.cancer-pku.cn/), we found that NEIL3 was posi-

tively correlated with the levels of the apoptosis-related genes, 

BAX and PCNA (Supplementary Figure S5A–S5C). Similarly, 

the level of NEIL3 was also positively correlated with the 

cell cycle-related genes, TOPBP1, ATR, ATM, CHK1, CHK2, 

and CDK1 (Supplementary Figure S5D–S5I). Therefore, we 

further performed flow cytometry on PCa cells at 48 h after 

radiotherapy and found that although radiotherapy caused 

a certain degree of apoptosis, overexpression or knockdown 

http://gepia.cancer-pku.cn/
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Figure 3  NEIL3 facilitates radiotherapy sensitivity of PCa cells in vitro and in vivo. (A) BCR survival analysis of NEIL3 in TCGA radiotherapy 
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Figure 4  NEIL3 promotes radiotherapy sensitivity by not affecting apoptosis. (A–D) Representative flow cytometry cell apoptosis images  
(A, B) and histogram analysis of apoptotic cell counts (C, D) of DU145 before and 48 h after radiotherapy in the NEIL3 overexpression or NEIL3 
knockdown groups. (E–H) Representative flow cytometry cell apoptosis images (E, F) and histogram analysis of apoptotic cell counts (G, H) of 
DU145 before and 48 h after radiotherapy in the NEIL3 overexpression or NEIL3 knockdown groups.
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Figure 5  Continued

of NEIL3 had little effect on apoptosis (Figure 4). Thus, we 

suspected that NEIL3 may facilitate radiotherapy sensitivity 

by regulating the cell cycle. Flow cytometry results indicated 

that PCa cells underwent G2 arrest after receiving radiation 

therapy. Moreover, the peak of cell cycle arrest appeared at 12 h 

in DU145 cells and 24 h in PC3 cells, and cell cycle arrest recov-

ered within 24 h in DU145 cells and 48 h in PC3 cells (Figure 5A 

and 5B). Interestingly, we found that although radiation also 
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Figure 5  NEIL3 promotes radiotherapy sensitivity by regulating the cell cycle. (A and B) Representative flow cytometry cell cycle images of DU145 
(A) and PC3 (B) cells before and 6 h, 12 h, and 24 h after radiotherapy. (C–F) Relative G2-phase change curves of NEIL3 overexpression (C, E) or 
knockdown (D, F) in DU145 and PC3 cell lines; *P < 0.05, **P < 0.01, and ****P < 0.0001, versus the corresponding time point vector or NC group.
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blocked the cell cycle in the NEIL3-overexpressing group, its 

reaction time was slower than that in the control group. More 

importantly, cell cycle arrest persisted after radiotherapy and 

was more difficult to recover than that in the control group 

(Figure 5C–5E). In contrast, the occurrence and recovery of 

cell cycle arrest were both faster in the NEIL3-downregulation 

group than in the control group (Figure 5D–5F). Cell cycle 

arrest has long been considered a self-protection mechanism 

that will occur when facing replication stress. Blocking the cell 

cycle allows cells to obtain enough time to repair DNA to avoid 

spreading this damage to the next generation, thus protecting 

against genomic instability. Here, we found that NEIL3 could 

reduce the responsiveness of PCa cells to replication stress, 

slow down cell cycle arrest, and thus prevent DNA damage 

from being repaired. We believe that this accumulation of 

genomic damage leads to the instability of the genome, which 

ultimately causes cell death.

NEIL3 regulated the cell cycle through the 
ATR/CHK1 pathway

DNA damage checkpoints employ damage sensor proteins, 

such as ATM and ATR, to detect DNA damage and to inhibit 

cell cycle progression. There are different DNA damage check-

points in different phases within the cell cycle. Studies have 

demonstrated that the activation of the TOPBP1/ATR/CHK1 

pathway induces cell cycle arrest at G2 phase28,29. To explore 

the mechanism by which NEIL3 regulates G2-phase arrest, 

Western blot was used to detect the effect of NEIL3 on the 

TOPBP1-ATR-CHK1 pathway and DNA damage.

Before radiotherapy, we found that overexpressed NEIL3 

could increase the level of pCHK1 (phosphorylated CHK1), 

which may be the reason why the overexpressed group had a 

slightly higher percentage of cells in G2 phase (Figure 5A–5B), 

while knocking down NEIL3 could increase the level of ATR. 

Considering that ATR is phosphorylated and activated when 

faced with replication stress, we hypothesized that ATR is 

expressed at low levels under normal conditions and that 

NEIL3 may act as a switch for ATR expression. To verify this 

hypothesis, we extracted the proteins from PCa cells after 

radiotherapy and performed Western blot. From the change 

in γ-H2AX, we found that PCa cells showed obvious DNA 

damage after radiotherapy, and the damage was completely 

repaired 24 h after radiotherapy in DU145 cells (or 48 h in PC3 

cells). Moreover, pATR (phosphorylated ATR) and pCHK1 

showed the same trend as γ-H2AX, which meant that the ATR/

CHK1 pathway was activated to arrest the cell cycle when DNA 

damage occurred and the pathway was silenced, and cell cycle 

re-entry occurred when repair was completed. In addition, the 

activation of the ATR/CHK1 pathway was much slower in the 

NEIL3-overexpressing group than in the control group. We 

were still able to detect activation of the ATR/CHK1 pathway 

and high levels of γ-H2AX even 24 h (DU145)/48 h (PC3) after 

radiotherapy when NEIL3 was overexpressed. In contrast, 

activation of the ATR/CHK1 pathway was much faster in the 

NEIL3 downregulation group than in the control group. The 

levels of γ-H2AX were much lower at 6 h (DU145)/12 h (PC3) 

after radiotherapy when NEIL3 was knocked down. Moreover, 

we did not observe a significant change in TOPBP1 regardless 

of how NEIL3 changed (Figure 6). Taken together, we hypoth-

esized that NEIL3 may act as a switch for ATR expression: 

under normal conditions, high NEIL3 inhibits the expression 

of ATR, and the ATR/CHK1 pathway is silenced, ensuring the 

proliferation of cells. When faced with replication stress, the 

decrease in NEIL3 allows the expression of ATR, and the ATR/

CHK1 pathway is activated to arrest the cell cycle for DNA 

repair. If NEIL3 persists at a high level, ATR is suppressed, 

the ATR/CHK1 pathway cannot be fully activated, and DNA 

cannot be repaired in time. In contrast, if NEIL3 persists at 

a low level, ATR is relatively high even under normal condi-

tions, and the ATR/CHK1 pathway could be activated faster 

when facing replication stress and DNA damage can be rapidly 

repaired.

Discussion

CRPC and NEPC are the main causes of death in PCa patients. 

However, the regulatory mechanism of CRPC and NEPC 

occurrence and the reason why they resist existing therapies 

are far from elucidated. Here, based on the established CRPC 

cell line microarray data and CRPC and NEPC datasets, we 

screened the target gene, NEIL3, and found its low expres-

sion in CRPC and NEPC cell lines. TCGA and our clinical 

patient cohort indicated that NEIL3 was correlated with a 

high Gleason score but a good prognosis. Considering that 

the patients had received medical treatment, we hypothesized 

that NEIL3 was related to treatment sensitivity. In the present 

research, we found that NEIL3 affected cell cycle activity by 

regulating the ATR/CHK1 pathway and ultimately promoting 

the sensitivity of PCa cells to radiotherapy.

Radiotherapy is one of the main methods of PCa treatment, 

and is supposed to cause DNA base breaks, DNA single strand 
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Figure 6  NEIL3 regulates the cell cycle through the ATR/CHK1 pathway. (A and B) Representative image of the Western blot analysis of NEIL3, 
TOPBP1, ATR, phosphorylated ATR, phosphorylated CHK1 and γ-H2AX protein levels after NEIL3 knockdown or overexpression in DU145 (A) 
and PC3 (B) cells. (C) Pathway illustration of NEIL3 influencing the ATR/CHK1 pathway.

breaks (SSBs), and DNA double-strand breaks (DSBs)30. Tumor 

cells often demonstrated G2 arrest after radiotherapy31,32. The 

TOPBP1/ATR/CHK1 pathway is regarded as an important 

checkpoint in G2 phase arrest and is considered to be regu-

lated by many factors28,29. NEIL3 shares high homology with 

the apurinic/apyrimidinic endonuclease 2 (APE2) Zf-GRF 

domain, which can activate the ATR-CHK1 DNA damage 

response (DDR) pathway33. In addition, another study demon-

strated that loss of NEIL3 enhances sensitivity to ATR inhibi-

tors in glioblastoma cells34. In summary, NEIL3 may affect the 

activation of the ATR/CHK1 pathway in many different ways, 

which requires further exploration.

Additionally, the function of NEIL3 has been reported to 

be more complicated and not fully elucidated17-19. It has been 

reported that somatic mutation burden exhibits significant 

inverse correlations with NEIL1 and NEIL2 expression levels 

but a significant positive correlation with NEIL3 expression 

levels35. A high tumor mutation burden will produce many 

new antigens, which in turn activate more tumor-specific T 

cells and eventually enhance the sensitivity of immunotherapy. 
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In addition, some studies have shown that deficiency in NEIL3 

is associated with increased lymphocyte apoptosis36. Therefore, 

the loss of NEIL3 may also be an important reason why PCa 

patients are not sensitive to existing anti-PD-1 treatment.

A limitation of this study is that we only explored the role 

of NEIL3 in the radiosensitivity of PCa. It is well known 

that CRPC and NEPC are resistant not only to radiotherapy 

but also to ADT, chemotherapy, and even immunotherapy. 

Although some studies have shown that NEIL3 may play a role 

in treatment resistance, future studies should focus on evalu-

ating the role of NEIL3 in other treatments.

Conclusions

It is our novel discovery that some genes may have no effect 

on tumor progression or metastasis, but their existence is a 

prerequisite to ensure sensitivity to current treatment. Here, 

we found that loss of NEIL3 activated radiotherapy resistance 

in the progression of prostate cancer potentially via the ATR/

CHK1 pathway. NEIL3 may serve as a diagnostic or therapeu-

tic target for CRPC or NEPC patients.
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