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Amino acid substitutions in Escherichia coli c”° were generated and characterized in an analysis of the role
of region 1.1 in transcription initiation. Several acidic and conserved residues are tolerant of substitution.
However, replacement of aspartic acid 61 with alanine results in inactivity caused by structural and functional

thermolability.

Core RNA polymerase («,BB’") requires the variable speci-
ficity subunit, sigma (o), to direct promoter-dependent tran-
scription (1, 3, 4, 12, 18, 22, 23, 26). Following promoter bind-
ing, holoenzyme (a,BB'c) progresses through several
intermediate complexes, en route to a stable initiated open
complex (2, 14). o factor has been implicated in stages of
initiation beyond promoter recognition (8, 9, 13, 15, 17). Re-
cently, we showed that the conserved amino terminal domain
(region 1) of Escherichia coli ¢’° is important for the process of
strand melting and initiated complex formation at the \ py
promoter (24).

Region 1 is unique to the primary o factors, yet little is
known of its function. Deletion of region 1.1 (amino acids 1 to
100) from o’® has two major consequences for holoenzyme.
The first is inefficient progression from the closed to the
strand-separated open complex. This can be overcome by in-
creasing the time allowed for formation of holoenzyme-pro-
moter complexes and is lessened by addition of region 1.1 in
trans. The second and more deleterious effect is impaired
transition from the strand-separated open complex to a stable
initiated complex (RP;,;). According to this analysis, amino
acids between positions 50 and 75 of ¢’ are critical for proper
initiation in vitro (24).

A comparison of region 1.1 among several primary o factors
revealed conserved residues at positions 52 (glycine [G]), 53
(isoleucine [I]), 55 (valine [V]), and 61 (aspartic acid [D]), as
well as a high degree of acidity (40%) within the segment from
amino acids 50 to 75 (24). Here, we test whether alterations at
these conserved positions or in the overall acidity of the region
influence initiation by holoenzyme (Eo).

Site-directed mutagenesis (10) and the Expand high fidelity
PCR system (Boehringer Mannheim) were used to create sub-
stitutions at positions 52, 53, 55, 61, 57, 58, 63, 64, and 69
(Table 1). rpoD was mutagenized in M13 phage (10) and am-
plified with oligonucleotides that incorporated restriction sites
at the 5" and 3’ ends of the fragment. The restricted fragments
were ligated into pQE30-T (24). PCR mutagenesis was used to
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amplify a fragment corresponding to the 3’ end of the rpoD
gene with a 5" mutagenic oligonucleotide and a 3" oligonucle-
otide that incorporated a restriction site. A concurrent round
of amplification included a 5’ oligonucleotide complementary
to the 5" end of rpoD and a 3’ oligonucleotide with comple-
mentarity to an internal segment of rpoD, downstream from
the genetic alteration(s). The 5’ and 3" PCR fragments were
mixed, and the full-length mutagenized rpoD gene was ampli-
fied, gel isolated, digested, ligated into pQE30-T, transformed
into E. coli XL1 Blue (Stratagene), and sequenced to confirm
the changes. The plasmids were transformed into E. coli 19284
(rpoD800, W3110 srl::Tnl0 recA lacI?) to test for function in
vivo (24). Transformation mixtures were split and spread onto
Luria-Bertani plates containing ampicillin (100 mg/ml), kana-
mycin (30 mg/ml), and 2% glucose and then incubated at 32
and 44°C, to evaluate complementation of the rpoD800 tem-
perature-sensitive growth defect at 44°C. Plasmids were like-
wise transformed into strain CAG20176 to test growth in the
absence of chromosomal rpoD expression at 32°C (11, 24).
Mutants were generated that replaced either acidic, con-
served, or, at position 61, both conserved and acidic amino
acids with alanine (A). Replacement of glutamic acid (E) at
position 69 (E69) with A had no effect on ¢’ function in vivo
(Table 1). Double mutations replacing E at positions 57 and 58

TABLE 1. Region 1.1 amino acid substitution mutants®

Mutation Complementation
Conserved
G52A s +

“ Results of in vivo analysis indicate complementation (+) and lack of comple-
mentation (—). The same results were obtained for two different strain back-
grounds, 19284 and CAG20176.

b Position 61 is both highly conserved and acidic.
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or D at positions 63 and 64 reduced the overall acidity of
region 1.1, but neither affected o’ function in vivo (Table 1).
Replacement of conserved D61 with A, however, rendered o”°
nonfunctional.

Additional substitutions at position 61 addressed the contri-
bution of the amino acid side chain. Both E and serine (S)
could functionally substitute for D, indicating that polarity
rather than side chain charge at this position is more important
for function (Table 1). D61 is found in a cluster of acidic
residues; however, simultaneous substitution of D63 and D64
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FIG. 1. Run-off transcription analysis. (A) A representative run-off transcrip-
tion time course experiment is shown for Ec’ and ¢7° mutants at 37°C. Each
experiment was repeated at least five times, and the error was less than 15%. (B)
Abortive transcription by Ec’’D61A at 37°C. Synthesis of the three nucleotide
abortive RNA transcripts (ApUpG) from X py, is shown relative to the wild type.
The holoenzyme concentration was 0.008 wM and the template concentration
was 1.5 nM. (C) Run-off transcription as a function of temperature. A compar-
ison of run-off transcription activities at 60 min at 25 and 42°C is shown. Activ-
ities are normalized to the wild type, and the error indicated was less than 15%.
WT, wild type.

did not impair function in vivo, indicating that D61 does not
require the flanking acidic residues. A quintuple mutation
combining E57,58A with D61A and D63,64A was inactive in
vivo. Since both of the double mutants were functional, the
lethal phenotype is probably caused predominantly by D61A.
Substitutions G52A, V55A, or V551 functioned at least as well
as the wild type (Table 1). Because ¢’°V55A and o’°V551
function in vivo, the size and shape of the hydrophobic side
chain at this position are not critical. c’°I53A was inactive in
vivo and seriously defective in vitro, and its characterization
has been reported elsewhere (25).

These results argue that the overall acidity of region 1.1 is
not a major factor in its participation in transcription initiation.
Conserved D61, however, appears to be important for ¢’
structure and/or function in vivo. To address the basis for the
inactivity of ¢’’D61A, the protein was overexpressed and pu-
rified (24) for characterization in vitro.

Run-off transcription analysis was performed to assess the
overall effect of the D61A substitution on RNA synthesis (24).
A time course at 37°C indicated that Ec’°D61A was impaired
in transcription, while E6’°G52A and Ec’°E57,58A exhibited
transcription rates similar to Eoc”® (Fig. 1A). Ec’°D61A was
also defective for abortive transcription (24) at 37°C (Fig. 1B).
One explanation for the inactivity of c”°D61A is thermolability
of the protein. Thus, we examined the effect of temperature on
run-off transcription. At 25°C, Ea’’D61A activity was indistin-
guishable from Ea’’. At higher temperatures, a transcriptional
defect became apparent (Fig. 1C), with loss of activity as the
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FIG. 2. Stability of 6’’D61A in vitro and in vivo. (A) Limited trypsinolysis.
o’"D61A (2 pg) was subjected to trypsin digestion at three temperatures, as
indicated, to assess possible structural defects. Wedges indicate increasing tryp-
sin concentration (0.0125, 0.0625, and 0.025 p.g). Digestion of wild-type (WT) o”°
is shown for reference in the top panel. Fragments were resolved on a sodium
dodecyl sulfate-8% polyacrylamide gel and visualized with Coomassie brilliant
blue staining. (B) Immunoblot analysis of culture lysates of strain 19284 (wild-
type [WT] ¢’® and 67°D61A). Exponentially growing cells at 37°C were upshifted
to 44°C. Lysates were prepared from cells harvested at the indicated time points
following temperature upshift, and proteins were resolved on a sodium dodecyl
sulfate-8% polyacrylamide gel. Following Western transfer, histidine-tagged o’
proteins were detected by using a six-His-tagged monoclonal antibody (Clon-
tech).
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temperature increased. The functional mutants Eo’°G52A and
Eo’"E57,58A were not affected by increasing temperature, as
compared to Ea”’.

Because 0’°D61A was functionally thermolabile in vitro, the
possibility that it was structurally thermolabile was assessed by
comparing susceptibility to trypsin digestion at 25, 37, and
42°C. Consistent with its transcriptional activity, c’°D61A ex-
hibited increased sensitivity to trypsin digestion at 42°C (Fig.
2A). The failure of ¢’°D61A to complement rpoD mutant
strains in vivo may therefore be caused by instability of the
protein. To test this idea, we used immunoblotting to compare
the levels of the wild type and 0’’D61A after a shift from 37 to
44°C (Fig. 2B). At the time of the upshift, there was signifi-
cantly more wild-type o’® present, and it remained stable for
longer than 80 min (Fig. 2B). Conversely, o’’D61A was much
less stable, becoming nearly undetectable by 80 min. The
D61A substitution appears to cause a structural disruption in
o’ that results in proteolytic instability both in vivo and in
vitro and functional instability during transcription initiation.
Other mutations in region 1.1 have also been reported to result
in structural instability (5).

A more thorough evaluation of the initiation properties of
the mutants was conducted to determine if a particular step in
the process was affected by the substitutions. The first step in
initiation is promoter recognition and binding by RNA poly-
merase. Nitrocellulose filter retention has been used to evalu-
ate DNA binding at \ pg, and the complexes retained are open
complexes (6, 7, 16, 19, 20). Holoenzyme (1 nM) was incubated
with a *?P-5’-end-labeled DNA fragment containing \ py (0.1
nM). The binding of Ec’’D61A to \ pg was indistinguishable
from Eo’® as well as the functional mutants Ea’°G52A and
Eo’’E57,58A (data not shown).

Addition of nucleoside triphosphates (NTPs) to open com-
plexes allows progression to RP;;, which are stable to an 0.8
M NaCl wash (16, 21). The ability of NTPs to stabilize
Eo’’D61A-\ py open complexes was assessed. Ea’°A100, pre-
viously shown to be defective in RP,,; formation (24), was
compared for reference. Under low-stringency wash conditions
(0.1 M NadCl), at 2 and 30 min after adding holoenzyme to
DNA, each Ec”° derivative bound to \ py as well as the wild
type (Fig. 3). Under high-stringency wash conditions (0.8 M
NaCl), the Ec’’E57,58A complexes were retained as well as
the wild type. Interestingly, the Ec’°G52A complexes were less
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FIG. 3. Stability of initiated complexes. Nitrocellulose filter retention under low (0.1 M NaCl)- and high (0.8 M NaCl)-stringency wash conditions is shown. The
fraction of mutant complexes retained is normalized to the fraction of wild-type (WT) complexes retained after allowing formation for 2 and 30 min following mixing

of RNA polymerase with DNA. Amino acid substitutions are indicated.
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stable than Ec’°, but this mutant was still able to complement
in vivo. Eo’°D61A-\ py complexes were unstable at 2 min, but
by 30 min they were indistinguishable from Ec”°, indicating a
slower rate of RP,;, formation.

Impaired run-off transcription, combined with the slow rate
of RP, ;. formation by Ec’°D61A, could be caused by difficulty
in open complex formation. KMnO, footprinting analysis was
performed to assess the ability of Ec’’D61A to form open
complexes (24). Strand melting for Ea’°D61A occurred as
efficiently as for Ec’° in the absence and presence of NTPs,
even at the times when RP;; formation was impaired (data
not shown). Open complex formation by Ea’°G52A was also
examined, since the RP,,;, were slightly less stable than they
were for Eo’°, but no differences relative to Ec’® were de-
tected.

In summary, the D61A mutation renders ¢’° nonfunctional
in vivo and functionally and structurally thermolabile in vitro,
manifested in a slow rate of RP,,; formation. Alanine substi-
tution at acidic residues 57, 58, 63, 64, and 69 has no effect on
¢’° function in vivo or in vitro. Therefore, acidity of region 1.1
is not a major contributing factor to the initiation properties of
¢’%, but amino acids, including D61, are very important for
structural stability.

This research was supported by National Institutes of Health grant
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