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ABSTRACT P-glycoprotein (P-gp) is a key component of the intestinal epithelium playing
a pivotal role in removal of toxins and efflux of endocannabinoids to prevent excessive
inflammation and sustain homeostasis. Recent studies revealed butyrate and secondary bile
acids, produced by the intestinal microbiome, potentiate the induction of functional P-gp
expression. We now aim to determine the molecular mechanism by which this functional
microbiome output regulates P-gp. RNA sequencing of intestinal epithelial cells responding
to butyrate and secondary bile acids in combination discovered a unique transcriptional
program involving multiple pathways that converge on P-gp induction. Using shRNA knock-
down and CRISPR/Cas9 knockout cell lines, as well as mouse models, we confirmed the
RNA sequencing findings and discovered a role for intestinal HNF4« in P-gp regulation.
These findings shed light on a sophisticated signaling network directed by intestinal micro-
bial metabolites that orchestrate P-gp expression and highlight unappreciated connections
between multiple pathways linked to colonic health.

IMPORTANCE Preventing aberrant inflammation is essential to maintaining homeostasis
in the mammalian intestine. Although P-glycoprotein (P-gp) expression in the intestine is
critical for protecting the intestinal epithelium from toxins and damage due to neutro-
phil infiltration, its regulation in the intestine is poorly understood. Findings presented in
our current study have now uncovered a sophisticated and heretofore unappreciated in-
tracellular signaling network or “reactome” directed by intestinal microbial metabolites
that orchestrate regulation of P-gp. Not only do we confirm the role of histone deacety-
lases (HDACQ) inhibition and nuclear receptor activation in P-gp induction by butyrate
and bile acids, but we also discovered new signaling pathways and transcription factors
that are uniquely activated in response to the combination of microbial metabolites.
Such findings shed new light into a multi-tiered network that maintains P-gp expression
in the intestine in the context of the fluctuating commensal microbiome, to sustain a
homeostatic tone in the absence of infection or insult.

KEYWORDS P-glycoprotein, multi-drug resistance transporter, microbiome,
metabolites, butyrate, short-chain fatty acids, secondary bile acids, RNAseq, intestinal
epithelium, inflammation

-glycoprotein (P-gp) is a highly conserved ATP-binding cassette (ABC) transporter
with many roles beneficial to the mammalian host. Classically known as a multi-drug
resistance transporter, P-gp protects cells via efflux of toxins and xenobiotics, as well as by
exporting anti-inflammatory molecules to suppress aberrant neutrophil infiltration (1-3).
Despite over a decade of knowledge that P-gp plays a central role in intestinal homeostasis,
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the precise molecular mechanism of its regulation in the intestine is poorly understood. We
therefore sought to determine the intestinal epithelial cell (IEC) signaling networks that pro-
mote and maintain P-gp expression in the healthy colon.

P-gp is a 170 kDa transmembrane protein encoded by the multidrug resistance 1
(mdr1 or abcb1) gene (2, 4). It is highly expressed at the apical surface of the intestinal
epithelium and plays a critical role in protection of intestinal epithelial cells as well as
maintenance of optimal intestinal barrier function (4-6). Loss or dysfunction of P-gp is
associated with increased susceptibility to intestinal inflammation, as evidenced both
by the link of single nucleotide polymorphisms (SNPs) in mdr1 and risk of inflammatory
bowel disease (IBD) (7-9) and observed development of spontaneous colitis in P-gp
knockout (mdr1a='~) mice (6, 10, 11). Though multidrug resistance protein 2 (MRP2,
abcc2) and breast cancer resistance protein (BCRP, abcg?) are also expressed at the api-
cal surface of the intestinal epithelium, P-gp is the only related transporter important
in maintaining intestinal epithelial barrier integrity (12, 13).

The regulation of P-gp expression and stability is complex and involves numerous tran-
scription factors and post-translational modifications. Transcriptions factors downstream of
Wnt signaling, transforming growth factor beta (TGFB) signaling, and mitogen-activated
protein kinase (MAPK) signaling have been shown to increase or decrease P-gp transcription
in response to stressors such as heat shock and oxidative stress (14-17), or in development
of multi-drug resistance (18, 19). In addition to transcription, functional P-gp expression at
the cell membrane requires post-translational modifications including phosphorylation (20).
Kinases including PIM-1, protein kinase A (PKA) and protein kinase C (PKC) phosphorylate P-
gp and increase its stability (21, 22). One or more of these pathways may be triggered upon
exposure to a stressor, toxin or, more recently discovered, bacterial products to converge on
P-gp induction (23).

We have previously shown that Clostridia and Bacilli members of the commensal
bacteria of the intestine promote P-gp expression. These bacteria produce short-chain
fatty acids (SCFAs) and secondary bile acids, both of which are microbiome-dependent
and shown to be required for maximal induction of P-gp expression and function (23).
One of the most abundant SCFAs, butyrate, increases P-gp expression in colonic epi-
thelial cell lines (23, 24). Butyrate is a pleiotropic molecule with many roles in the intes-
tine including differentiation of colonocytes, promotion of epithelial barrier integrity,
as well as acting as an energy source via beta oxidation in the mitochondria (25-28).
Butyrate is involved in many cellular pathways including G protein coupled receptor
(GPCR) activation, induction of reactive oxygen species through its utilization in the mi-
tochondria, and activation of nuclear receptors such as nuclear factor erythroid
2-related factor 2 (NRF2) (29-33). Butyrate also inhibits histone deacetylases (HDAC)
leading to epigenetic changes and altered gene expression (34-36). Though butyrate
has previously been tested alongside other HDAC inhibitors in regulating P-gp, and
predicted to increase P-gp transcription via HDAC inhibition (37), this mechanism has
not yet been confirmed. Moreover, the roles of GPCR and nuclear receptor activation
in P-gp induction have not been determined.

In addition, secondary bile acids are produced by intestinal bacteria including
Clostridia and Bacilli members via deconjugation and conversion of primary bile acids
that are secreted by the liver upon ingestion of a meal (38, 39). Three of the more
abundant secondary bile acids include lithocholic acid (LCA), deoxycholic acid (DCA),
and ursodeoxycholic acid (UDCA). LCA and UDCA have been shown to have anti-
inflammatory properties in protection from colitis in mouse models (40, 41). Moreover,
these metabolites play a role in protection of the host from infection by pathogens
such as Clostridioides difficile (42). LCA, DCA, and UDCA are suggested to interact with
nuclear receptors including pregnane X receptor (PXR) and vitamin D receptor (VDR),
both of which have been linked to protection from colitis (43-46). VDR has been
shown to be involved in LCA induction of P-gp (47). Though LCA and DCA specifically
have been shown to activate PXR activity by studying transcriptional reporters in liver
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cells, as well as linked to P-gp transcription in vitro and in vivo, the requirement for PXR
in secondary bile acid induction of P-gp has not been fully elucidated (41, 48).

We have previously observed that butyrate, LCA, DCA, and UDCA potentiate induc-
tion of P-gp protein expression beyond the additive effect of each metabolite alone,
reflecting the importance of a cooperative microbial community in producing a com-
bined functional output that communicates to the host. Yet, the mechanism of this
combinatorial effect on P-gp induction is unknown. Herein, we describe a new signal-
ing reactome (i.e., regulatory networks and transcription factors) that is uniquely acti-
vated in response to the combination of metabolites compared to each metabolite
class alone. These findings provide unprecedented insight into a multi-tiered network
driven by microbiome-dependent metabolites working in concert to maintain P-gp
expression in the intestine in the context of the fluctuating commensal microbiome, to
sustain a homeostatic tone in the absence of infection or insult.

RESULTS

Butyrate and secondary bile acids together induce a unique transcriptional
profile. Our prior studies identified a “functional core” microbiome of the intestinal
gut community, specifically genera within the Clostridia and Bacilli classes, that is nec-
essary and sufficient for P-gp induction in the intestinal epithelium in mouse models
(23). Metagenomic analysis of this core microbial community revealed that abundance
of genes involved in short-chain fatty acid and secondary bile acid synthesis, including
pyruvate oxidase, choloylglycine hydrolase, and butyryl-CoA dehydrogenase, positively
correlated with colonic P-gp expression (23). Intestinal production of butyrate, LCA,
DCA, and UDCA is dependent on activity and metabolism by multiple bacterial mem-
bers of the intestinal microbiota, representing a community functional output. We
have previously shown a combination of butyrate, LCA, DCA, and UDCA at physiologi-
cal concentrations (27, 28, 48-51) potentiates induction of functional P-gp protein in
IECs with the metabolite combination inducing higher P-gp expression than either
metabolite alone (23). However, given the cellular mechanism of this induction within
IECs remains unclear, we sought to determine the intracellular signaling pathways acti-
vated by the metabolite combination that contribute to this concerted effect.

Since P-gp expression can be regulated both transcriptionally and post-translationally,
we first looked at the mRNA level of P-gp after incubation with these metabolites and found
that at an early time point of 4 h, ABCBT mRNA is not significantly increased in the metabo-
lite combination compared to butyrate or bile acids alone (Fig. 1A and B). However, at 24 h,
there is a synergistic induction of ABCBT mRNA in the presence of both classes of metabo-
lites (butyrate and secondary bile acids) (Fig. 1A and C). This suggests a transcriptional pro-
gram converging to sustain P-gp induction that is uniquely activated by the combination of
metabolites compared to either metabolite alone. P-gp regulation by these metabolites
could include a unique transcriptional program that increases expression of factors such as
transcription factors and kinases including Pim1, PKA, and PKC which, once translated, con-
tribute at a later time point to further increase P-gp transcription as well as increase stability
of newly translated P-gp through phosphorylation. To determine the cellular networks
being activated by these metabolites, we performed RNA sequencing (RNAseq) on T84 cells
subjected to butyrate alone, a combination of the three secondary bile acids (LCA, DCA, and
UDCA), a combination of all four metabolites (“combo”) or vehicle control, for 4 h, as shown
in Fig. 1A RNAseq analysis revealed considerable changes to the transcriptome with butyr-
ate treatment in support of previous studies (52, 53) (Fig. 1D, E and G). While the effect of
bile acids is more limited (Fig. 1D, E and G), bile acid-treated cells clustered distinctly from
DMSO control (Fig. 1F) and exhibited a unique transcription profile of 349 differentially
expressed genes compared to DMSO control (Fig. 1E). Strikingly, even with global changes
due to butyrate, we observed a set of 1108 genes uniquely differentially expressed by the
combination of metabolites that are distinct from each metabolite class alone (Fig. 1E). We
therefore pursued unique pathways activated by the metabolite combination that converge
to potentiate induction of P-gp, as well as resolve the pathways by which P-gp is induced
downstream of butyrate alone and bile acids alone.
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FIG 1 Butyrate and secondary bile acids together induce a unique transcriptional profile. (A) Diagram of treatment of T84 cells
with butyrate, LCA, DCA, and/or UDCA, made with BioRender. (B) and (C) T84 cells were incubated with butyrate, LCA, DCA, and/
or UDCA, as described in (A) for 4 h (B) or 24 h (C) prior to RNA collection and qPCR analysis for abcb1 expression. Pooled data
from two independent experiments; ns P > 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001 one-way ANOVA with
Tukey’s multiple-comparison test. (D-G) RNAseq analysis of T84 cells incubated with butyrate, LCA, DCA, and/or UDCA as
described in (A) for 4 h. (D) Heat map showing relative expression of top 500 genes with genes in rows and six biological
replicates per group shown in columns. (E) Venn diagram showing number of genes differentially expressed in cells after each
treatment (cut-off P < 0.01, fold change >1.5). (F) Principal-component analysis of top 500 differentially expressed genes. Points
represent individual samples, colors represent treatment as indicated in the legend. (G) Volcano plot of log,(fold change) of each
treatment versus control determined by DESEQ2 analysis, cut-off set to P < 0.01, fold change >1.5.

Metabolite combination activates several unique pathways linked to P-gp up-
regulation. We initially determined the mechanism by which the combination of bu-

tyrate and bile acids potentiate induction of P-gp, reflecting communication to the
host by a complex microbiome community to effect a maximal response. Given the
multiple layers of P-gp regulation at transcription and post-translation stages, we
hypothesize this mechanism includes regulation of multiple factors that contribute
temporally at these different stages, including transcription factors, transcription co-
factors, and kinases. Therefore, we first focused on pathways uniquely activated in cells
treated with the combination of butyrate and bile acids but not by either metabolite
class alone (Fig. 2A). Among these, three sets of pathways related to transforming
growth factor B (TGF ) signaling and SMAD2/SMAD3:SMAD4 transcription factors are
significantly enriched in butyrate and bile acid combination-treated cells (Fig. 2A to C).
TGF B signaling leads to transcription factor oligomerization in the nucleus and subse-
quent transcription (54). Complexes of SMAD proteins interact with other transcription
factors including AP-1 family members (54). TGF B signaling and the AP-1 transcription
factor complex are linked to both basal constitutive expression of P-gp as well as
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FIG 2 Metabolite combination activates multiple pathways related to P-gp induction. (A) Pathways (Reactome) significantly and uniquely enriched in
metabolite combination-treated T84 cells compared to butyrate- or bile acid-treated T84 cells, determined by g:Profiler analysis of RNAseq data (Fig. 1). (B)
Heat map of RNAseq data showing relative expression of genes related to TGF B signaling. (C) gPCR analysis of FOS and JUN expression in T84 cells treated
with butyrate, bile acids or a combination for 4 h compared to DMSO control as in Fig. 1B (D) Heat map of RNAseq data showing relative expression of
genes related to circadian clock signaling. (E) qPCR analysis of ARNTL expression in T84 cells as in (C). (F) Heat map of RNAseq data showing relative
expression of genes related to P-gp regulation. (G) qPCR analysis of CEBPB, PIM1, HIF1a, and NFKBT expression in T84 cells as in (C). (H) qPCR analysis of
HNF4A expression in T84 cells as in (C). (C, E, G, H) Data are pooled from 3-6 biological replicates. ns P > 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001;
% P < 0.0001 by one-way ANOVA with Tukey’s multiple-comparison test. (I) qPCR analysis of Abcbla expression in colon tissue of wild-type (WT) and
intestinal epithelial knockout of HNF4a (HNF4a't K©). N = 8 per genotype, N = 4 female and N = 4 male mice. ***, P < 0.001 by unpaired t test.
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induced expression in response to stress stimuli (16, 18). The AP-1 complex is com-
posed of transcription factors including Jun-Fos family members, two of which, c-Jun
(JUN) and c-Fos (FOS), are linked to increased P-gp promoter activity (16, 18), particu-
larly in induction driven by incubation of IECs with supernatants from Lactobacilli cul-
tures (55). Expression of c-Jun and c-Fos are both significantly increased in cells treated
with both metabolite classes (Fig. 2C), suggesting they may contribute to furthered
increase in P-gp transcription.

An additional pathway enriched in the metabolite combination is related to the circa-
dian clock (Fig. 2A, D, and E), including regulation of the main clock regulators, ARNTL and
CLOCK, as well as many other circadian clock-related genes (Fig. 2D and E). Circadian clock
and diurnal oscillations have been observed in the microbiota composition itself as well as
in microbiota-driven phenotypes in the intestine and liver (56-58). Furthermore, circadian
clock and diurnal oscillations have also been observed in expression of P-gp (57, 59). Since
we observed a dependence of mouse intestinal P-gp expression on the resident microbiota
(23), we next determined whether the microbiota contributes to the oscillatory pattern of
intestinal P-gp expression. While diurnal oscillation of P-gp mRNA expression was observed
that aligns with previous findings (57, 60), treatment of mice with the broad-spectrum anti-
biotic cefoperazone (CFP), previously shown to significantly reduce the intestinal bacterial
load and P-gp expression (23), reduced the intensity of P-gp expression but did not affect
the pattern or amplitude of P-gp oscillation (Fig. STA and B). Additionally, we saw no
change to the expression of the clock regulator gene, ARNTL, in antibiotic-treated mice
(Fig. STA). We conclude the circadian clock genes and microbiota are not linked in promot-
ing P-gp expression, rather the microbiota provides an additional exogenous input for
increased P-gp expression above constitutive basal levels.

To additionally interrogate signaling pathways that may be activated by the metab-
olite combination, we next probed our RNAseq data set for all factors previously linked
to P-gp expression (16), including those involved in early transcription events as well
as late post-translational modifications. We found that expression of several of these
factors were increased or decreased by the metabolite incubation (Fig. 2F). CEBPB and
HIFTA are transcription factors that respond to inflammation and oxidative stress,
respectively, and have been shown to increase P-gp transcription (61-64). CEBPB is sig-
nificantly increased by the metabolite combination and may likely play a role in fur-
thering P-gp induction (Fig. 2F and G). While our results show variability in HIFTA
induction, a low level of induction of this transcription factor may contribute to furth-
ered P-gp induction (Fig. 2F and G).

NF-«B has been shown to increase or decrease transcription of P-gp in a cell-type spe-
cific manner; in non-multidrug resistant cells, NF-xB suppresses P-gp transcription through
interaction with an inhibitory transcription factor complex that binds the P-gp promoter
region (65). mRNA expression of NFKBT is significantly decreased with butyrate and combi-
nation treatment of IECs (Fig. 2F and G), and this reduction may also play a role in P-gp
induction. In addition to transcriptional regulation, P-gp also undergoes extensive post-
translational modifications including glycosylation, trafficking, and phosphorylation. Pim-1
kinase has been shown to phosphorylate P-gp to increase its stability and surface localiza-
tion. Pim-1 kinase mRNA expression is significantly increased with the metabolite combina-
tion as well as bile acids alone and may play a role in increasing stability of newly translated
P-gp protein (Fig. 2F and G).

Lastly, hepatocyte nuclear factor 4« (HNF4q) is a transcription factor not yet closely
linked to P-gp in the intestine. Knockdown of HNF4« in hepatocytes is associated with
reduced ABCBT mRNA expression (66), but the mechanism is unclear. HNF4« is also
expressed in IECs, is reduced in ulcerative colitis patients, and IEC-specific deletion of
HNF4« in mice leads to spontaneous colitis that closely mirrors the association of P-gp
in protection from colitis (67). Remarkably, the combination of metabolites significantly
increased HNF4a mRNA expression more than either metabolite individually (Fig. 2H).
Moreover, in colon tissue isolated from untreated mice with IEC-specific deletion of
HNF4« (HNF4aA'C), we observed a significant reduction of Abcbla mRNA expression
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compared to wild-type mice (Fig. 2I), supporting HNF4« plays a role in P-gp transcrip-
tion in IECs. Though not significantly reduced, P-gp protein expression in IECs from
HNF4 a2 ¢ mice is dysregulated with increased variability (Fig. S2), further pointing to a
requirement for HNF4« for stable expression of P-gp. Altogether these data unveil mul-
tiple intracellular signaling networks that are uniquely activated by the combination of
butyrate and secondary bile acids that involve both known and previously unknown
regulators of P-gp expression.

Butyrate induces P-gp transcription via HDAC inhibition but not NRF2. We next
sought to determine the pathways by which P-gp is induced downstream of butyrate
alone and secondary bile acids alone. Butyrate can activate cellular signaling through
multiple pathways and receptors (29-33). To begin determining the pathway by which
butyrate induces P-gp in IECs, we first looked at involvement of the transcription factor
NRF2, previously linked to P-gp regulation. NRF2 binds to gene promoter regions con-
taining an antioxidant response element (ARE) to coordinate antioxidant and detoxifi-
cation responses, termed the NRF2-ARE pathway (68). Prior studies have described a
link between the transcriptional activity of NRF2 and ABCBT mRNA induction, as well as
butyrate induction of NRF2 activation and translocation from the cytoplasm to the nu-
cleus (69, 70). Though our RNAseq data set shows mixed regulation of NRF2 target
genes in butyrate-treated cells compared to vehicle control (Fig. S3A), we assessed
whether NRF2 was involved in butyrate upregulation of P-gp. We found that sulfora-
phane (SFN), an inducer of oxidative stress that leads to NRF2 activation (69), did
increase mMRNA expression of two main NRF2 target genes, NQOT and HMOX1 (Fig. 3A).
However, SFN treatment did not change P-gp expression at the mRNA or protein levels
in T84 cells or Caco2 cells (Fig. 3A and B, and Fig. S3B). Additionally, while butyrate
increases MRNA expression of ABCBT as well as one, but not both, NRF2 target genes, short
hairpin RNA (shRNA) knockdown of NRF2 in T84 cells, resulting in reduced NRF2 mRNA
and protein expression (Fig. S3C and S3D), did not affect baseline or butyrate induction of
P-gp at the mRNA or protein levels (Fig. 3C and D). Moreover, we did not observe nuclear
localization of NRF2 after incubation with butyrate as was apparent with SFN (Fig. 3E and
Fig. S2E). Though pathway enrichment analysis of the RNAseq data set by gProfiler analysis
revealed NRF2-ARE regulation as being significantly enriched by butyrate treatment of T84
cells (Fig. 4A), our results oppose published findings by determining NRF2 is not required
for butyrate induction of P-gp.

Pathway enrichment analysis of the RNAseq data set more prominently revealed regu-
lation of MAPK signaling and pathways related to cell cycle and carcinogenesis enriched in
butyrate-treated T84 cells compared to vehicle control (Fig. 4A). MAPK signaling is involved
in many pathways and found downstream of GPCR signaling. Butyrate has been shown to
activate signaling cascades leading to transcription through GPCRs including GPR41,
GPR43, and GPR109A, all of which are classified as G-associated GPCRs (29-31). We there-
fore tested whether G protein inhibitors could block induction of P-gp by butyrate using
Pertussis toxin (PTx), an inhibitor of G, subunits, and BIM-46187, a reported inhibitor of all
G, subunits (71, 72), as well as inhibitors of G, subunit (Gallein) and g-arrestin (Barbadin)
as controls (71, 73). Butyrate induction of P-gp protein was not affected by the G protein
inhibitors tested, suggesting a GPCR-independent mechanism (Fig. S4).

Butyrate is also reported to inhibit HDACs, leading to increased histone acetylation.
Cell cycle and carcinogenesis pathways, found to be enriched in butyrate-treated cells
compared to vehicle control, are often associated with chromatin modifications (74).
We therefore tested whether butyrate induces P-gp through HDAC inhibition. Butyrate
has been previously shown to induce P-gp and this induction has been correlated to
that induced by other HDAC inhibitors (37), however a direct link of butyrate acting
through HDAC inhibition to induce P-gp has not yet been shown. We utilized the pan-
HDAC inhibitor Panobinostat and showed induction of both ABCBT mRNA and P-gp
protein with either Panobinostat or butyrate, but no further induction with a combi-
nation of the two in support of their having the same mechanism of action (Fig. 4B
and C). Additionally, this induction of P-gp by either Panobinostat or butyrate was
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FIG 3 Butyrate induces a transcriptional program to increase P-gp expression independent of NRF2. (A) Fold change
expression of ABCB1, NQO1, and HMOXT in T84 cells treated with butyrate or sulforaphane for 4 h. One-way ANOVA with
Dunnett's multiple-comparison test, ns P > 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. (B) Densitometry analysis
of P-gp protein expression by Western blot in T84 cells and Caco2 cells after 24 h incubation with sulforaphane. ns
P > 0.05 by unpaired t test for each cell line. (C) Fold change expression of ABCBT in T84 scrambled control and NRF2
knockdown cells after 4 h incubation with butyrate. ns P > 0.05 by one-way ANOVA. (D) Representative Western blot and
densitometry for P-gp expression in T84 scrambled control and NRF2 knockdown cells after 24 h incubation with
butyrate. ns P > 0.05 by one-way ANOVA. (E) Representative Western blot of NRF2 nuclear localization in T84 cells after
incubation with butyrate (20 mM) or sulforaphane (20 M) for 4 h and 24 h. GAPDH and Histone H3 detected as controls
for cytoplasmic and nuclear lysate fractions, respectively. (A-E) All data representative of at least two independent
experiments.

accompanied by acetylation of the lysine27 residue of histone H3 (H3K27), an acety-
lation mark shown to be associated with P-gp induction with increasing multi-drug
resistance in cancer cells (75) (Fig. 4D). Altogether these data support and confirm
that butyrate induces P-gp expression through HDAC inhibition.

Secondary bile acids activate PXR and VDR upstream of P-gp. Secondary bile
acids are structurally distinct from butyrate and have been shown to activate cellular
receptors including nuclear receptors that function as transcription factors or co-
factors. ABCB1 is a known target of both pregnane X receptor (PXR) and vitamin D re-
ceptor (VDR). Therefore, we pursued clarifying the involvement of these two receptors
in secondary bile acid induction of P-gp. Rifampicin is an agonist of PXR, while Vitamin
D; (calcitriol) is an agonist of VDR, and both have been shown to increase P-gp expres-
sion in published studies (41, 47, 48), however the role of PXR and/or VDR in the induc-
tion of P-gp in response to LCA, DCA, and UDCA has not been determined. We have
confirmed and expanded on previous work to show Rifampicin and Vitamin D, induce
P-gp at both the transcriptional and protein level (Fig. 5A to C). While there is some
overlap between PXR and VDR DNA binding sites, LCA is a strong inducer of the VDR
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FIG 4 Butyrate increases P-gp expression via HDAC inhibition. (A) Significantly enriched pathways
(wikipathways) in butyrate-treated T84 cells determined by g:Profiler analysis of RNAseq data (Fig. 1).
(B) Fold change expression of Abcb1 by qPCR of T84 cells after 4 h incubation with panobinostat (Pb,
20 wM), butyrate (Buty., 5 mM), or a combination compared to DMSO vehicle (control). Ns P > 0.05;
¥ P < 0.01; ***, P < 0.005 by one-way ANOVA with Tukey's multiple-comparison test. (C)
Representative Western blot and densitometry of P-gp expression in T84 cells after 24 h incubation
with panobinostat or butyrate as in Fig. 3B, ns P > 0.05; *, P < 0.05; **, P < 0.01 by one-way ANOVA
with Tukey’s multiple-comparison test. (D) Western blot of histone 3 lysine 27 acetylation mark
(H3K27Ac) in T84 cells after 24 h incubation with panobinostat or butyrate as in Fig. 4B, with GAPDH
as loading control. (B-D) Representative data of at least two independent experiments.

target gene Cyp24A1, while LCA shows less induction of the PXR target gene Cyp3A4
(Fig. 5C). Whether this is due to differing baseline expression levels of PXR and VDR is
unclear.

LCA has been published to increase P-gp transcription via VDR (47), however the
involvement of PXR or VDR in upregulation of P-gp by DCA or UDCA has not been
shown. DCA and UDCA activate Cyp3A4 transcription, but not Cyp24A7, supporting
DCA and UDCA activation of PXR but not VDR. To determine whether PXR is required
for DCA and/or UDCA induction of P-gp, we performed CRISPR/Cas9 knockout of PXR
in T84 cells (Fig. S5). We confirmed loss of rifampicin-induced Cyp3A4 transcription
(Fig. S5) that coincided with a reduction of Abcb1 transcription at baseline (Fig. 5D), as
well as loss of rifampicin induction of Abcb1 transcription (Fig. 5E). While PXR knockout
had no effect on UDCA induction of P-gp, the effect of DCA was eliminated (Fig. 5E).
These data suggest PXR is required for DCA induction of P-gp, but not required for
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FIG 5 Bile acids activate PXR and VDR nuclear receptors upstream of P-gp induction. (A) Representative Western blot and
densitometry of P-gp expression in T84 cells after 24 h incubation with rifampicin versus DMSO control. **, P < 0.01 by unpaired t
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UDCA induction (Fig. 5E). These data also highlight the complex involvement of multi-
ple factors in secondary bile acid-induction of P-gp expression.

Pathway enrichment analysis using gProfiler of the RNAseq data set of bile acid-
treated cells versus vehicle control revealed nuclear receptors meta-pathway and the
vitamin D receptor pathway among those significantly enriched (Fig. 5F), in support of
our findings (Fig. 5A to E). Further, this analysis also highlights additional pathways
that may be involved, including apoptosis pathways and aryl hydrocarbon receptor ac-
tivity (Fig. 5F).

DISCUSSION

P-gp expression in the intestinal epithelium is critical for maintenance of homeosta-
sis and suppression of aberrant neutrophil infiltration that is characteristic of ulcerative
colitis. Yet the mechanisms underlying its relatively high expression in the colon com-
pared to other healthy tissues is still being unraveled. Previous work has shown the
healthy microbiome is responsible for high induction of P-gp above baseline. This
work has identified key components of the signaling networks shown to be directly
involved in regulation of P-gp expression in IECs by either butyrate or the secondary
bile acids LCA, DCA, and UDCA. While butyrate is a known HDAC inhibitor and expres-
sion of P-gp, like many other proteins, is likely increased by histone modifications, for
the first time we have shown that P-gp induction in IECs by butyrate is directly linked
to the HDAC inhibition activity of butyrate.

Bile acids overall are suggested, and in some cases shown, to be agonists of the nuclear
receptors PXR and VDR. However, we uniquely discerned the involvement of PXR in P-gp
induction by LCA, DCA, and UDCA. LCA and UDCA have been shown to protect from colitis
(40, 41). Likewise, activation of PXR protects from induced colitis in mouse models (44). The
expression profile of PXR and its target gene Cyp3A4 mirror P-gp at baseline, and both are
decreased in mouse models of colitis and human ulcerative colitis similar to P-gp (69, 76). It
has been previously suggested that Cyp3A4 and P-gp play synchronous roles in detoxifica-
tion responses to promote cell and tissue health (77). Our findings highlight another exam-
ple in which the two are co-regulated. VDR has been previously linked to P-gp induction in
response to LCA (47). While DCA and UDCA have been suggested as potential agonists of
VDR as well (43), our findings show limited induction of VDR activity by DCA and UDCA, and
instead that DCA increases expression of P-gp through PXR activity. Beyond confirmation of
these suggested links based on previous studies, our RNAseq analysis has highlighted addi-
tional pathways that may also be involved in secondary bile acid regulation of P-gp.

More notable, our work has unveiled networks of intracellular signaling that are sig-
nificantly triggered in IECs only when the two classes of metabolites are combined,
and these networks converge to intensify the expression of P-gp. We have highlighted
key signaling pathways that have already been linked to P-gp induction and likely play
a role in response to butyrate and secondary bile acids. Based on our findings and sup-
porting literature, we propose a multi-faceted model: confirming our hypothesis, the
first tier of the model for the synergistic effect is through overall increased access of
chromatin to transcription factors and other co-factors in the presence of butyrate; bu-
tyrate increases acetylation, and therefore accessibility, of chromatin, which may
increase access of factors downstream of bile acids that would be otherwise nonfunc-
tional, increasing overall P-gp transcription (Fig. 6).

FIG 5 Legend (Continued)

test. (B) Representative Western blot and densitometry pooled from two independent experiments of P-gp expression in T84 cells
after 24 h incubation with vitamin D3 versus DMSO control. *, P < 0.05 by one-way ANOVA with Dunnett’'s multiple-comparison
test. (C) gPCR analysis of ABCB1, CYP3A4, and CYP24A1 expression in T84 cells treated with compounds as shown for 4 h compared
to DMSO control. One-way ANOVA with Dunnett’'s multiple-comparison test, *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****,
P < 0.0001. (D) gPCR analysis of ABCBT expression at baseline in Cas9 control and PXR KO T84 cells. *, P < 0.05 by unpaired t test.
(E) gPCR analysis of ABCB1 expression in Cas9 control and PXR KO T84 cells after 4 h incubation with rifampicin or bile acids as
indicated. One-way ANOVA with Dunnett’s multiple-comparison test performed for each cell line, *, P < 0.05; **, P < 0.01 for each
condition versus DMSO vehicle control. (A-E) Representative data of at least two independent experiments. (F) Significantly
enriched pathways (wikipathways) in butyrate-treated T84 cells determined by g:Profiler analysis of RNAseq data (Fig. 1).
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FIG 6 Multi-tiered model of P-gp regulation by butyrate and bile acids. Tier 1: Butyrate and bile acids
increase P-gp transcription via HDAC inhibition and nuclear receptor activation (PXR and VDR), respectively.
Tier 2: The combination of butyrate and bile acids increases expression of transcription factors that activate,
and decrease expression of transcription factors that repress, P-gp transcription resulting in increased P-gp
expression. Tier 3: These metabolites increase expression of factors including Pim-1 kinase that contribute
to post-translational modifications of P-gp. Diagram created with BioRender.

We also uncovered a second tier of promoting P-gp expression related to the
kinetics of induction of both P-gp and its regulators (Fig. 1 and 6). Expression of tran-
scription factors linked to P-gp, including cJun, cFos, CEBPB, and HIF1¢, is increased
by the metabolite combination at an early time point. We posit that as protein levels
of these transcription factors increase, this will further shift the cell to more transcrip-
tion of P-gp and their other targets at later time points. We have also identified expres-
sion of HNF4« is significantly increased in the presence of butyrate and bile acids, and
that P-gp expression in IECs is partially dependent on HNF4« as seen in the IEC condi-
tional HNF4«a knockout mice (Fig. 2I). It has been shown that HNF4« interacts with the
P-gp promoter, though its binding decreases in germ-free mice upon colonization with
a specific pathogen-free microbiota (78), where we have shown P-gp expression is
increased (23). Therefore, HNF4a may promote P-gp expression indirectly through
interaction with yet other promoters or co-factors. The third tier underlying butyrate
and secondary bile acid synergistic induction of P-gp expression is through post-
translational modifications such as phosphorylation by Pim-1 (Fig. 6). In this way, the
inputs from the microbial community work in concert to provide critical induction and
maintenance of P-gp expression.

The multiple layers of signaling networks that contribute to regulation of P-gp have to
date been underappreciated. P-gp is an evolutionarily conserved transporter and the host
has evolved many pathways to maintain its expression in the intestinal epithelium due to
its diverse and important roles in maintaining intestinal health. The intestinal microbiome
contributes to maintenance of intestinal health, yet has been shown to fluctuate between
various healthy states, often driven by environmental factors such as diet (58, 79-81). The
intestinal microbiome has evolved with the host, thus we hypothesize the activation of
multiple signaling networks converging on P-gp transcription by this combination of
microbiome-derived metabolites is a mechanism that has evolved between the bacteria
and mammalian intestine in the context of the fluctuating commensal microbiome to
ensure high expression of P-gp at the intestinal surface.

Much like the functional output of the microbial community is complex, the array
of intracellular networks in the IEC triggered by these microbial metabolites is equally
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complex. This study raises further questions regarding what other networks are being
co-regulated with P-gp. We have shown that endocannabinoids released by P-gp sup-
press aberrant inflammation via inhibition of neutrophil infiltration (1). Studies are be-
ginning to unravel how endocannabinoids may alter the microbiome community (82).
Moreover, these findings identify new mechanisms for the roles for PXR and VDR in in-
testinal health via induction of P-gp in response to the microbiota. Additionally, TGF3
signaling can promote pro-inflammatory and immunosuppressive responses depend-
ing on the cytokine context; TGF B signaling has also shown to be important in anti-
microbial peptide production, which are important for maintaining the mucosal barrier
as well as shaping the local microbiota. Taken together, these findings suggest that P-
gp along with VDR activation, PXR activation, and TGF 3 signaling, could constitute an
immune-suppressive program that is co-regulated by the microbiota and supports ho-
meostasis in the intestine.

Overall, these findings identify new links of the microbiota and protection from colitis,
including novel findings of how multiple classes of bacterial metabolites from the micro-
biota can synergistically promote an intestinal phenotype that in turn involves many inte-
grated signaling networks. Further, while many of the signaling pathways have been
associated with multi-drug resistance in other tissue types, these microbial metabolites
are largely limited to the intestine lumen and are primarily taken up by the IECs (butyrate)
or recycled to the liver (bile acids) (83, 84). Therefore, utilizing the mechanisms identified
here that underlie the beneficial effect of these metabolites and P-gp induction in the
local context of the intestine can be regarded as a potential therapeutic opportunity in ul-
cerative colitis and other inflammatory conditions of the intestine.

MATERIALS AND METHODS

Materials. Sodium butyrate, sodium deoxycholate, ursodeoxycholic acid, doxycycline, MG132, sulfora-
phane, cefoperazone, and BIM-46187 were purchased from Sigma. Lithocholic acid, Panobinostat, and pertus-
sis toxin were purchased from Cayman Chemical. Gallein was purchased from Tocris Bioscience. Barbadin
was purchased from Axon MedChem, LLC.

Cell lines. Human intestinal epithelial cell lines (T84, Caco2, and HEK293) were maintained in a
humidified incubator (5% CO,, 95% air, 37°C). T84 adenocarcinoma colon cells (ATCC) were maintained
in growth media (DMEM:Ham'’s F12 media, 7.5% FBS (HyClone) and 100U/mL penicillin/streptomycin
(Gibco) at passages 60-70). For assays, cells were seeded onto collagen-coated tissue culture plates and
allowed to reach confluence before incubation with compounds.

Caco2 cells (a gift from Dr. Pradeep Dudeja) were maintained in growth media (EMEM) (ATCC), 10%
FBS (Optima) and 100U/mL penicillin/streptomycin (Gibco) at passages 5-20. For assays, cells were
seeded onto tissue culture plates or collagen-coated 0.4 wm Transwell (Corning) plates and allowed to
reach confluence. Cells seeded on plastic were used for experiments 1 week after reaching confluence.
Cells seeded on Transwells were differentiated for 3 weeks post-seeding.

HEK293 cells (a gift from William McDougall) were maintained in DMEM growth media with 10% FBS
and 100U/mL penicillin/streptomycin.

RNA isolation from human cell lines. Cells were washed with phosphate-buffered saline (PBS) and
either stored suspended in Cell Protect Reagent (Qiagen) at —20°C or directly lysed in Buffer RLT
(Qiagen). Total RNA was extracted using the RNeasy Mini kit (Qiagen), with a DNA removal step using
RNase-free DNase | (Qiagen). Purity and concentration were measured by NanoDrop.

RNA sequencing. RNA was isolated as described above from T84 cells incubated with butyrate
(5 mM), LCA/DCA/UDCA (50 uM each), a combination (5 mM butyrate, 50 uM each LCA, DCA, UDCA) or
DMSO vehicle for 4 h. RNA samples were isolated from six sets of biological replicates seeded from sepa-
rate cell passages. RNA integrity was analyzed using a 5300 Fragment Analyzer (Agilent) and concentra-
tion further quantified using the Qubit high sensitivity RNA fluorometric assay (Thermo). Samples with
RQN =9 were submitted to Novogene Corporation Inc for stranded mRNA library preparation with poly
A enrichment and sequenced on an lllumina Novaseq 6000 with 150 bp paired end reads at 40-50 mil-
lion reads per sample, with a final Q30 score of >90%. Raw data was filtered to remove adapters and
low-quality reads. rRNA reads were filtered out using bowtie2 aligner (v2.3.5) with default settings.
Reads were then aligned to the human hg38_gencode_V34 reference genome using STAR (v2.6.1) and
count matrices were produced using FeatureCounts. Count data were analyzed for differential gene
expression using DEBrowser and DESeq2, followed by gProfiler analysis of pathway enrichment.
Corresponding plots and heat maps were produced in DEBrowser, R, and/or GraphPad Prism v8.

Quantitative PCR (qPCR). For samples from HNF4a*'¥ mice, RNA was reverse transcribed using
iScript cDNA synthesis kit (Bio-Rad). For all other experiments, RNA was reverse transcribed into cDNA
using the Quantitect Reverse Transcription assay (Qiagen). mRNA expression was quantified using
TagMan probe by gPCR using the ViiA7 real-time PCR system (ThermoFisher), using the following
assays:

July/August 2022 Volume 13 Issue 4

10.1128/mbio.01993-22

mBio

13


https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.01993-22

Microbial Metabolite Regulation of Intestinal P-gp

Gene

TagMan assay ID (ThermoFisher)

Human Abcb1
Human ARNTL
Human CEBPB
Human Cyp24A1
Human Cyp3A4
Human FOS
Human GAPDH
Human HIF1a
Human HMOX1
Human HNF4A
Human JUN
Human NFE2L2
Human NFKB1

Hs00184500_m1
Hs00154147_m1
Hs00270923_s1
Hs00167999_m1
Hs00604506_m1
Hs00170630_m1
Hs02758991_g1
Hs00153153_m1
Hs01110250_m1
Hs00230853_m1
Hs99999141_s1
Hs00975961_g1
Hs00765730_m1

Human Nqo1 Hs00168547_m1
Human Pim1 Hs01065498_m1
Mouse Abcb1a MmO00440761_m1
Mouse ARNTL Mm00500223_m1
Mouse HPRT MmO03024075_m1

ACt values were calculated using GAPDH (human) or HPRT (mouse) and AAC, values were used for sta-
tistical analysis of differential expression. Data are reported as fold change (2¢42%Y) relative gene
expression.

Lysate generation. Whole cell lysates of T84 and Caco2 cells were prepared for Western blot as pre-
vious described (23). Briefly, cells were washed in PBS then lysed at 4°C in buffer (20 mM Tris pH 7.4,
120 mM NaCl, T mM EDTA, 1% Triton X-100, 0.5% sodium deoxycholate, 1x protease inhibitor cocktail
[Roche]) for 30 min followed by centrifugation at 13,000rpm for 5 min at 4°C. Cleared lysates were stored
at —20°C until further analysis.

Nuclear and cytoplasmic fractions of cell lysates were prepared as previously described by
Rockland Inc. (85). Briefly, cells were washed in PBS prior to cytoplasmic extract (CE) collection in CE
buffer (10 mM HEPES, 60 mM KCI, 1 mM EDTA, 0.075% (vol/vol) NP-40, 1 mM DTT, 1 mM PMSF, pH
7.6). Remaining nuclear pellets were lysed in nuclear extract buffer (NE) (20 mM Tris Cl, 420 mM
NacCl, 1.5 mM MgCl,, 0.2 mM EDTA, 1T mM PMSF, and 25% (vol/vol) glycerol, pH 8.0). CE and NE
extracts were centrifuged at 29,000g for 10 min at 4°C and cleared lysates supplemented with glyc-
erol were stored at —80°C.

Western blot. Protein concentration in cleared lysates was measured using the DC Assay (Bio-Rad).
Samples were prepared for SDS-PAGE using LDS sample buffer (ThermoFisher) supplemented with
12.5 mM DTT before heating at 70°C for 10 min. Samples were loaded onto NUPAGE 3 to 8% Tris Acetate
(ThermoFisher) or 4 to 20% Tris glycine (Bio-Rad) gels and electrophoresis run at 120V. Samples were
transferred to nitrocellulose prior to blocking in Intercept PBS Blocking Buffer (LI-COR). Primary antibod-
ies [anti-Pgp clone C219 (Millipore) at 1:500, anti-NRF2 (Abcam cat# Ab137550) at 1:4,000, anti-GAPDH
(Millipore cat# MAB374) at 1:40,000, anti-Histone H3 (Cell Signaling cat# 14269) at 1:5,000, anti-H3K27Ac
(Cell Signaling cat# 8173) at 1:500] were incubated on membranes overnight at 4°C. After washing with
PBST (PBS + 0.1% Tween20), secondary antibodies (IRDye 800CW Goat anti-Mouse IgG, IRDye 800CW
Goat anti-Rabbit 1gG, IRDye 680RD Goat anti-Mouse IgG or IRDye 680RD Goat anti-Rabbit 1gG) (LI-COR)
at 1:5,000-1:200,000 were incubated protected from light for 1 h at room temperature prior to imaging
on the Odyssey CLx (LI-COR). Densitometry was measured using Image Studio version 5.2 (LI-COR) with
values normalized to internal protein loading control GAPDH.

shRNA knockdown of NRF2. shRNA knockdown of NRF2 in T84 cells was performed using lentiviral
introduction of shRNA-expressing plasmid, similar to that previously described for T84 cells (1). Plasmids con-
taining puromycin and ampicillin resistance genes and doxycycline-inducible promoters upstream of
scrambled control shRNA (Tet-pLKO-puro-Scrambled, Addgene #47541), NRF2-targeting shRNA #1 (tet_
pLKO.1_puro_shNRF2 #1, Addgene #136584), and NRF2-targeting shRNA #2 (tet_pLKO.1_puro_shNRF2 #2,
Addgene #136585) were purchased from Addgene. These constructs were previously deposited by (86).
Cultures from bacterial stabs were grown in Luria Broth (LB) with 100 ng/mL ampicillin prior to plasmid puri-
fication using the ZymoPURE Il Plasmid Midiprep Kit (Zymo Research). Lentiviruses were produced by trans-
fecting HEK293 cells with psPAX2, pMD.2G, and each pLKO.1 plasmid construct using TransIT-293 transfection
reagent (Mirius). After 48 and 72 h, lentiviral supernatants were harvested, pooled, and filtered through
0.45 um low protein-binding membrane. T84 cells at 50% confluence were transduced with filtered lentivirus
twice prior to selection using 10 wg/mL, 5 ug/mL, and 2 wg/mL puromycin in T84 growth media. Non-
transduced T84 cells were incubated with puromycin as a control for selection. shRNA expression was
induced by incubating cells with 100 wg/mL doxycycline (Sigma) in T84 growth media for 3 days.
Knockdown of NRF2 expression was confirmed by qPCR and Western blot. To visualize NRF2 protein expres-
sion by Western blot, cells were first incubated with the proteasome inhibitor MG132 (Sigma) at 10 uM in
T84 growth media for 6 h prior to lysate collection.
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CRISPR-Cas9 knockout of PXR. Guide RNA (gRNA) sequences were selected based on CHOP CHOP
(87-89) and CRISPick (Broad Institute) (90, 91) predictions, as well as reported gRNA sequences in the
Toronto Knockout version 3.0 (TKOv3) library (92).

Single guide RNA (sgRNA) construct (QRNA sequence: CCAAATCTGCCGTGTATGTG), Cas9 nuclease, and
electroporation enhancer were purchased from Integrated DNA Technologies (IDT). Ribonucleoprotein (RNP)
complexes were prepared by incubation for 20 min at room temperature. RNPs were electroporated into T84
cells in suspension in Hanks Buffered Saline Solution (without Ca?* or Mg?*) by 1 pulse at 1200V using
GenePulser (Bio-Rad) in 0.4 cm cuvettes. Pooled cells were recovered for 5-7 days in growth media prior to
single cell plating in 384-well tissue culture plates in growth media.

Genomic DNA was isolated from cells in suspension after washing with PBS using the Wizard
Genomic DNA purification kit (Promega). DNA regions were amplified using 500units/reaction Q5 Hot
start high fidelity polymerase (NEB), 200uM dNTP solution mix (NEB), TuM primer (Forward primer: 5'-
CACATGTTCTACTCCAGGGCTC-3’; Reverse primer: 5'-GGGTGAAGGCTGATGGGTAAC-3’), 1x Q5 reaction
buffer, and 10 ng template DNA with thermalcycler conditions as follows: 98°C 30 s, 30 cycles of [98°C
10 s, annealing at 68°C 30 s, extension 72°C 30 s], 72°C 2 min. PCR amplicons were excised and purified
using Gel Extraction Kit (Qiagen) and submitted for sanger sequencing to Azenta Life Sciences.
Percentage of insertion/deletion (indel) were confirmed via ICE analysis (Synthego).

Single cell clones of T84 cells were expanded, gDNA indel confirmed as described above, and seeded
for mRNA and protein analysis by qPCR and Western blot, respectively, as described above. Cells electro-
porated with Cas9 only were maintained as a control.

Animal studies. Mice were maintained in a specific pathogen-free (SPF) facility at the University of
Massachusetts Chan Medical School.

Circadian rhythm animal study. Female C57BL/6J wild-type mice were purchased from Jackson
laboratories (Bar Harbor, ME) and provided with irradiated standard chow (Prolab IsoPro #5P76) and
acidified water ad libitum. Animals were housed 4 weeks to acclimate to the facility and light/dark cycle
prior to beginning experiment. 8 week old animals were treated for 7 days with 0.5g/L cefoperazone
(Sigma) in drinking water or plain water as vehicle control as previously described (23). Mice were eutha-
nized every 4 h throughout a continuous 24-h cycle. Following euthanasia, colons were excised, rinsed
in HBSS, and flash-frozen as 0.5 cm pieces for further analysis of RNA expression. For analysis of effect of
antibiotic treatment on circadian rhythm-driven P-gp expression, amplitude of Abcb1 for untreated and
antibiotic-treated mice was calculated as (peak/trough) of the 24-h cycle as described in (93).
Experiments were approved by the University of Massachusetts Chan Medical School Institutional
Animal Care Use Committees (Protocol 202000132).

HNF4« IEC conditional knockout mice. Hnf4a” mice (94) were kindly gifted by Dr. Frank Gonzalez
and crossed to Vil-Cre (Jax-021504). Hnf4a"”" Vil-Cre were bred to Hnf4a” mice to generate experimental
mice. Vil-Cre, loxp alleles and Hnf4a deletion was determined through Transnetyx. Vil-Cre positive and
negative littermates remained cohoused after weaning. Both male and female mice were used for
experiments at 8-12 weeks old. Following euthanization, whole colons were excised for intestinal epi-
thelial cell isolation or 0.5 cm pieces of distal colon tissue were collected for further analysis of RNA
expression. Experiments were approved by the Institutional Animal Care Use Committees (docket # A-
1633-19).

RNA isolation from mouse tissues. For mouse samples from circadian rhythm experiments, flash-
frozen mouse tissues were thawed directly into Buffer RLT (Qiagen) prior to homogenization using
Lysing Matrix D (MP Biomedical). Total RNA from tissue was extracted using the RNeasy minikit (Qiagen)
as described above for human cell lines. For samples from HNF4a* " mice, Total RNA was extracted
using Aurum Total RNA minikit (Bio-Rad). Colon tissue pieces (~0.5 cm) were sonicated in lysis buffer
and processed per manufacture’s instruction. RNA concentrations were quantified by SpectraMax iD5 or
NanoDrop. 500 ng of RNA was reversed transcribed using iScript cDNA synthesis kit (Bio-Rad). gPCR anal-
ysis of gene expression was performed as described above.

Preparation of intestinal epithelial cell lysates. Whole colon (between cecum and anus) was
used. Intestines were opened longitudinally and washed with PBS to remove fecal contents. Tissues
were cut into ~1 c¢cm pieces and incubated in dissociation buffer (HBSS supplemented with 2.5 mM
EDTA, 1 mM HEPES, 1 mM dithiothreitol (DTT), and 5% of FCS) at 37°C, 250 rpm for 30 min. Cells that
passed through 70 um cell strainers were washed with PBS and collected as IECs. IECs were resus-
pended in RIPA lysis buffer (ThermoFisher) supplemented with Halt protease inhibitor cocktail
(ThermoFisher). Lysates were incubated on ice for 30 min, sonicated, and centrifuged to remove the
debris.

Data availability. Access to databases and protocols generated under the project will be available
for educational, research, and non-profit purposes. RNA sequencing data are accessible through NCBI
GEO accession number GSE198478.
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