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Background.  Most hospitals use traditional infection prevention (IP) methods for outbreak detection. We developed the 
Enhanced Detection System for Healthcare-Associated Transmission (EDS-HAT), which combines whole-genome sequencing 
(WGS) surveillance and machine learning (ML) of the electronic health record (EHR) to identify undetected outbreaks and the re-
sponsible transmission routes, respectively.

Methods.  We performed WGS surveillance of healthcare-associated bacterial pathogens from November 2016 to November 
2018. EHR ML was used to identify the transmission routes for WGS-detected outbreaks, which were investigated by an IP expert. 
Potential infections prevented were estimated and compared with traditional IP practice during the same period.

Results.  Of 3165 isolates, there were 2752 unique patient isolates in 99 clusters involving 297 (10.8%) patient isolates identified 
by WGS; clusters ranged from 2–14 patients. At least 1 transmission route was detected for 65.7% of clusters. During the same time, 
traditional IP investigation prompted WGS for 15 suspected outbreaks involving 133 patients, for which transmission events were 
identified for 5 (3.8%). If EDS-HAT had been running in real time, 25–63 transmissions could have been prevented. EDS-HAT was 
found to be cost-saving and more effective than traditional IP practice, with overall savings of $192 408–$692 532.

Conclusions.  EDS-HAT detected multiple outbreaks not identified using traditional IP methods, correctly identified the transmis-
sion routes for most outbreaks, and would save the hospital substantial costs. Traditional IP practice misidentified outbreaks for which 
transmission did not occur. WGS surveillance combined with EHR ML has the potential to save costs and enhance patient safety.
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Approaches for healthcare outbreak detection have remained 
essentially unchanged for decades [1]. When an outbreak is sus-
pected, a method to establish genetic relatedness such as whole-
genome sequencing (WGS) may be performed. This approach 
can miss outbreaks and falsely identify suspected outbreaks that 
are refuted by WGS.

Although WGS surveillance has been useful for identifying 
otherwise undetected transmission events, identifying the 
responsible transmission route has had limited success. 
This is because investigations have focused primarily on 
geotemporal clustering, which can miss complex transmis-
sion routes [2, 3].

In late 2016 we began development of the Enhanced Detection 
System for Healthcare-Associated Transmission (EDS-HAT), 
which combines WGS surveillance with machine learning (ML) 
of the electronic health record (EHR) to detect outbreaks and 
identify their routes of transmission [4–8]. We have found EHR 
ML useful for transmission routes that cannot be identified by 
traditional means [4, 5, 7].

The EDS-HAT was run with an at least 6-month lag between 
infection and WGS so that its performance could be compared 
with our practice of using WGS in reaction to suspected out-
breaks. We conducted a detailed analysis of EDS-HAT com-
pared with traditional infection prevention (IP) practice.

METHODS

Study Setting

This study was performed at the University of Pittsburgh 
Medical Center–Presbyterian Hospital (UPMC), an adult ter-
tiary care hospital with 758 total beds, 134 critical care beds, 
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and over 400 annual solid-organ transplants. An independent 
chronic care facility with 32 beds is physically embedded within 
the UPMC. Transfer of patients between this facility and UPMC 
is common. Ethics approval was obtained from the University 
of Pittsburgh Institutional Review Board.

Isolate Collection

A description of the outbreak detection process is shown in 
Figure 1. For WGS surveillance, we collected select bacterial 
pathogens isolated from clinical specimens between November 
2016 and November 2018: Acinetobacter species, Pseudomonas 
species, extended-spectrum B-lactamase-producing (ESBL) 
Escherichia coli, Klebsiella species, Clostridioides difficile, 
ESBL Enterobacter species, vancomycin-resistant Enterococcus 
(VRE), methicillin-resistant Staphylococcus aureus (MRSA), 
Stenotrophomonas species, Serratia species, Burkholderia spe-
cies, Legionella species, Providencia species, Proteus species, 
and Citrobacter species. These pathogens were selected because 
they cause serious infections and healthcare-associated out-
breaks. For Clostridioides difficile, we performed culture of stool 
specimens that were culture-independent diagnostic test–positive 
for C. difficile. Inclusion criteria were hospital admission or ob-
servation 3 or more days before the culture date and/or a recent 
inpatient or outpatient encounter in the 30 days before the cul-
ture date.

Whole-Genome Sequencing

Whole-genome sequencing was performed on the NextSeq 
500 platform (Illumina, San Diego, CA). Reads were assembled 
with SPAdes v3.13 [9], annotated with Prokka v1.14 [10], and 
multilocus sequence types (STs) were assigned using PubMLST 
typing schemes (https://github.com/tseemann/mlst) [11].

Pairwise core genome single nucleotide polymorphism 
(cgSNP) differences were calculated using Snippy v4.3.0 
(https://github.com/tseemann/snippy) within species STs 
having 2 or more isolates. Genetically related clusters were as-
signed using initial SNP cutoffs using hierarchical clustering 
with single linkage [5, 6]. Based on our experience and the liter-
ature [3, 5, 6, 12–19], clusters were defined as isolates from more 
than 1 patient having 15 or fewer pairwise cgSNPs for all spe-
cies except for C. difficile, for which 5 or fewer pairwise cgSNPs 
were used to identify clusters. For this organism, we defined 
clusters as all isolates that were within 0–2 cgSNPs, regardless of 
whether a transmission route was identified, and included cases 
that were within 3–5 cgSNPs of one another only if we could 
identify a statistically significant transmission route detected at 
0–2 cgSNPs.

Extraction and Processing of Electronic Health Record Data

All patient encounters including inpatient, emergency room, and 
same-day surgery were mined for charge transaction codes, clin-
ical microbiologic data, admission data, discharge data, and length 

of stay [4]. Charge transaction codes were included because they 
reflect many types of exposures associated with transmission, 
such as medical procedures, medical services, and medications. 
Data were assigned a unique identification number using De-ID 

Figure 1.  Flow diagram of the EDS-HAT outbreak detection process, from clinical 
culture through adjudication of transmission route(s). ∗As described in Methods. 
Abbreviations: EDS-HAT, Enhanced Detection System for Healthcare-Associated 
Transmission; ML, machine learning; WGS, whole-genome sequencing.
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software (De-ID Data, Philadelphia, PA). The names of health-
care workers who signed clinical notes were also extracted and 
de-identified. Procedures with multiple charge codes were aggre-
gated into groups for transmission route analysis.

Machine Learning Algorithm

An ML algorithm based on point estimates for model param-
eters and incorporating case-control methodology was used [4, 7]. 
Case patients were defined as those with clinical isolates that 
clustered by WGS as defined above and control patients were 
all patients who were hospitalized in the 30 days prior to a case 
patient’s culture date and did not have a positive result for the 
genetically related strain. Only route exposures on or prior to a 
case patient’s culture date were considered.

The ML algorithm scores each outbreak by the maximum 
log-likelihood ratio of observing the case infections, given that 
exposure to the principal transmission route probabilistically 
causes infection over the likelihood of a nontransmission expla-
nation. A constant patient-to-patient transmission likelihood is 
added for each case infection not exposed to the principal trans-
mission route. Empirical P values are computed by estimating 
the likelihood of a higher outbreak score, given that no rela-
tionship exists between the case patients. This is done by sam-
pling random sets of patients of equal size and computing their 
outbreak score maximized over routes. Importance sampling is 
used to improve efficiency of this process. Model parameters 
were fit using 9 historical outbreaks between 2012 and 2016, 
which are separate from the analysis presented in this manu-
script (Supplementary Table 1). Parameter estimation was ac-
complished by transforming the outbreak detection problem 
into logistic regression, as previously described [4, 7].

Transmission routes for clustered isolates with statistically sig-
nificant odds ratios (ORs) (P < .05) from the algorithm for cate-
gory types (eg, procedures, locations, and providers) underwent 
manual EHR review for accuracy and biological plausibility. The 
manual EHR review was performed by an experienced infection 
preventionist (A. J. S.), who subsequently reviewed the findings 
with 2 senior investigators (L. H. H. and G. M. S.), all who have 
experience in hospital epidemiology and outbreak investigation. 
The purpose of the manual EHR review was to determine the 
most likely transmission route predicted by the ML algorithm 
or to investigate routes of transmission that were not identified 
by the algorithm. For some clusters, more than 1 transmission 
route was considered plausible (eg, transmission from a medical 
device with subsequent hospital unit–based transmission).

Clinical and Economic Modeling

Clinical and economic impact analysis was conducted from 
a hospital’s perspective. The analysis utilized the transmis-
sion network of outbreaks, effectiveness of IP interventions by 
transmission route, and time needed to implement IP interven-
tions to estimate the expected number of transmissions under 

EDS-HAT, based on the method we previously described [8]. 
Since the effectiveness of IP interventions can decrease with 
time, we estimated lower and upper impact boundaries, with 
the true value likely between these estimates. For the lower 
boundary, we assumed that effectiveness would decline lin-
early and measured effectiveness from the time when the IP 
team first intervened. The effect of subsequent IP interventions 
that would have been implemented whenever an additional 
patient was infected through the same route was ignored. For 
the upper boundary, intervention effectiveness was assumed 
to remain constant. For outbreaks with more than 1 plausible 
transmission route, we weighted routes by the OR generated by 
the ML algorithm. If any route was missed by ML but detected 
by manual EHR review, we conservatively assigned the lowest 
OR score. Additionally, we performed a downstream cluster 
analysis to calculate the number of preventable infections if an 
intervention based on 1 outbreak could potentially prevent an-
other outbreak using the same IP effectiveness parameters. For 
example, if EDS-HAT detected an outbreak in a hospital unit 
and an intervention was implemented, theoretically that inter-
vention could prevent a subsequent outbreak.

Outcomes were incremental costs per transmission averted, 
number of readmissions averted, and lives saved. Probabilistic 
sensitivity analysis was conducted to assess the impact of un-
certainty in parameter values of EDS-HAT. Data sources are 
described in Supplementary Table 2. All costs were adjusted to 
2020 using the medical component of the Consumer Price Index 
[20]. Costs and benefits were discounted at 3%. Readmissions at 
7 and 30 days postdischarge were recorded. An EHR review was 
performed to ascertain if readmissions were attributable to the 
infection; attributable readmissions were incorporated into the 
economic impact analysis.

Traditional Infection Prevention Practice

Whole-genome sequencing was performed in reaction to IP re-
quests (reactive WGS) for suspected outbreaks. For the 2-year 
study period, the number of outbreaks detected by EDS-HAT 
versus traditional IP practice was determined.

RESULTS

Of 3165 clinical isolates that underwent WGS, 2752 unique pa-
tient isolates were clustered by ST. A total of 297 (10.8%) isolates 
representing 99 distinct, genetically related clusters ranging in 
size between 2 and 14 isolates were identified (Figure 2, Table 
1). A total of 269 (90.6%) isolates were from inpatient cultures, 
27 (9.1%) were from the emergency room, and 1 (0.3%) was 
from an outpatient visit. EDS-HAT detected potential transmis-
sion routes for 65 (65.7%) clusters containing 221 (74.4%) of the 
related isolates (Supplementary Table 3). No significant trans-
mission routes were detected by the EDS-HAT ML algorithm 
or manual review in the remaining 34 clusters, which ranged 
in size from 2 to 5 patients and contained 76 isolates. A brief 
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description of high-impact or notable outbreaks and transmis-
sion routes detected by EDS-HAT ML is provided in Table 2, 
while Supplementary Table 3 describes all outbreaks.

Outbreaks Detected by Traditional Infection Prevention Practice

During the study period, our IP department requested reactive 
WGS for 15 suspected and potentially actionable outbreaks while 
EDS-HAT was running in parallel (2 Acinetobacter baumannii, 
1 Burkholderia cepacia, 6 C. difficile, 1 Klebsiella pneumoniae, 
3 Serratia marcescens, 2 Serratia maltophilia) involving 133 
patients. Of these 15 suspected clusters, 5 (3.8%) patient iso-
lates from 2 clusters (A. baumannii and Stenotrophomonas 
maltophilia) were found to be genetically related. Of these 5 pa-
tients with related isolates, 2 of the transmissions involving A. 
baumannii were also detected by EDS-HAT.

Clinical and Economic Impact Analysis

EDS-HAT could have prevented 25 (lower bound) to 63 
(upper bound) transmissions. Moreover, 3.1–8.0 fewer 30-day 

attributable readmissions and 1.6–3.3 fewer deaths would have 
occurred had EDS-HAT been running in real time. Under 
EDS-HAT, the increase in cost of sequencing would be offset by 
savings in costs of treating infections, resulting in overall cost-
savings of $192 408 to $692 532 over the study period. EDS-HAT 
was found to be a more-effective and cost-saving program than 
traditional IP practice by providing savings of $7745–$10 939 
for each transmission averted. Based on the lower bound esti-
mates, EDS-HAT remained cost-saving and more effective in 
various independent scenarios: when the time needed for ef-
fective intervention was increased to 21 days, the proportion 
of time spent towards outbreak detection under EDS-HAT was 
doubled (20%), effectiveness against procedures and healthcare 
workers was reduced to 30% (relative risk = 0.7), the duration 
after which the IP intervention’s effectiveness would become 
zero was reduced to 13 weeks for all transmission routes except 
for instruments, or the proportion of untreated cases was in-
creased to 70% for respiratory, 50% for urine, 25% for wound, or 
10% for stool. In a probabilistic sensitivity analysis, EDS-HAT 

Figure 2.  Cluster network of EDS-HAT isolates sequenced, grouped by bacterial species. The outer circle shows patient isolates that are not genetically related. The inner 
circle shows outbreaks of genetically related isolates as defined by cgSNP cutoffs described in Methods. The network plot was visualized with Gephi. Abbreviations: cgSNP, 
core genome single nucleotide polymorphism; EDS-HAT, Enhanced Detection System for Healthcare-Associated Transmission.

479• CID 2022:75 (1 August) •Enhanced Hospital Outbreak Detection

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab946#supplementary-data


was cost-saving and more effective than traditional IP practice 
alone in more than 88% of simulations in lower and 99% in 
upper bound scenarios (Figure 3, Supplementary Table 4).

DISCUSSION

In this study, we demonstrate the value of combining WGS sur-
veillance with ML of the EHR for enhanced hospital outbreak 

Table 1.  EDS-HAT Isolates Sequenced and Attributable Readmissions

 Sequenced
Attributable  

Readmissions

Species Collected Unique Patient Isolates No. Relateda (%) Clusters 7-Day 30-Day 

Acinetobacter species 83 72 12 (16.7) 3 1 1

Burkholderia species 12 12 0 (0) 0 0 0

Citrobacter species 126 118 2 (1.7) 1 0 0

Clostridioides difficile 558 524 80 (15.3) 21 2 10

Escherichia coli (ESBL) 170 149 10 (6.7) 4 0 1

Klebsiella species (ESBL, not pneumoniae) 25 20 0 (0) 0 0 0

Klebsiella pneumoniae (ESBL) 111 102 27 (26.5) 8 0 1

Legionella species 1 1 0 (0) 0 0 0

Methicillin-resistant Staphylococcus aureus 425 365 39 (10.7) 18 1 5

Proteus species 151 140 2 (1.4) 1 0 0

Providencia species 14 13 0 (0) 0 0 0

Pseudomonas aeruginosa 881 693 31 (4.5) 10 2 3

Pseudomonas species (not aeruginosa) 28 27 0 (0) 0 0 0

Serratia species 181 173 14 (8.1) 7 1 3

Stenotrophomonas species 127 114 4 (3.5) 2 0 0

Vancomycin-resistant Enterococcus faecalis 17 17 0 (0) 0 0 0

Vancomycin-resistant Enterococcus faecium 247 212 76 (35.8) 24 5 16

Total 3165 2752 297 (10.8) 99 12 40

Abbreviations: EDS-HAT, Enhanced Detection System for Healthcare-Associated Transmission; ESBL, extended-spectrum B-lactamase; SNP, single nucleotide polymorphism.
aFifteen or fewer pairwise SNPs for all organisms except for C. difficile (≤2 SNPs) (see Methods).

Table 2.  High-Impact or Notable Outbreaks Detected by EDS-HAT

Outbreak Details 

Vancomycin-resistant Entero-
coccus faecium outbreak asso-
ciated with IR and injection of 
sterile contrast [6]

This outbreak involved 10 initial patients and was ongoing when it was discovered. The EDS-HAT ML algorithm iden-
tified IR as a significant transmission route (OR: 43.8; P < .01; 95% CI: 5.6 to 346). Nine patients, including 3 with 
bacteremia, were identified as having IR procedures involving unsterile practices in the preparation of contrast. Safe 
practices and enhanced environmental cleaning were implemented and no additional IR-associated infections occurred. 
Subsequently, transmission of the outbreak strain occurred among 4 patients on shared hospital units.

Pseudomonas aeruginosa out-
break associated with gastros-
copy [5]

This outbreak comprised 6 patients housed on different units over 7 months. Two patients had bacteremia, 3 had pneumonia, 
and 1 had a urinary tract infection. The EDS-HAT ML algorithm detected gastroscopy as a significant route for  
4 patients (OR: 300.6; P < .01; 95% CI: 15.8 to 5690.5) with a fifth patient who did not have a charge code that reflected 
the gastroscopy procedure but who had a clinical note reflecting the procedure that was identified on manual EHR review. 
A post-disinfection gastroscope culture performed as part of routine IP practice was positive for P. aeruginosa; the isolate 
was sequenced and belonged to the outbreak, confirming gastroscopy as the responsible transmission route.

Outbreaks of multiple pathogens 
at the embedded chronic care 
facility

EDS-HAT ML identified 11 clusters involving 38 patients over 22 months, with a range of 2–9 total patients per cluster; 
25 (65.8%) patients had this facility as a plausible transmission route. Pathogens included C. difficile (6 clusters), Kleb-
siella pneumoniae (1 cluster), MRSA (1 cluster), P. aeruginosa (2 clusters), and VRE (1 cluster). Three patients with 
C. difficile in 3 clusters were subsequently transferred to our institution and had unit-based commonalities with  
3 additional patients who later developed C. difficile infection suggesting continuing transmission.

Outbreaks of multiple pathogens 
on an ICU

There were 12 clusters with 57 patients (range: 2–14), of whom 28 (49.1%) had a single ICU stay identified by EDS-HAT 
ML as the potential transmission route. Organisms included C. difficile (3 clusters involving 10 patients), K. pneumoniae 
(3 clusters involving 16 patients), P. aeruginosa (1 cluster involving 3 patients), Serratia marcescens (1 cluster involving 
2 patients), and VRE (4 clusters involving 26 patients).

C. difficile outbreaks associated 
with wound care

There were 9 C. difficile clusters, ranging in size from 2 to 12 patients. Of 52 patients, 29 (55.8%) had wound care service 
identified as a potential transmission route, with exposures occurring 1–92 days (mean: 16 days; median: 9 days) be-
fore the positive test for C. difficile. This consult service involved nurses providing management of sacral pressure ulcer 
wounds.

MRSA infections associated with 
EEG

This cluster consisted of 2 patients with culture dates separated by 8 days. The EDS-HAT ML algorithm identified EEG as 
a transmission route. Manual EHR review determined that both patients had a bedside EEG performed on the same 
day on separate units by the same physician and technician, 2 and 10 days before positive culture dates.

Abbreviations: CI, confidence interval; EDS-HAT, Enhanced Detection System for Healthcare-Associated Transmission; EEG, electroencephalography; EHR, electronic health record; ICU, 
intensive care unit; IP, infection prevention; IR, interventional radiology; ML, machine learning; MRSA, methicillin-resistant Staphylococcus aureus; OR, odds ratio; VRE, vancomycin-resistant 
Enterococcus faecium.
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detection. EDS-HAT detected consequential outbreaks and 
transmission routes that were undetected by traditional IP prac-
tice, whereas the latter mostly identified suspected outbreaks 
that were not confirmed by reactive WGS. Both components 
of EDS-HAT are essential: WGS surveillance is used to “con-
nect the dots” between seemingly unrelated patients to signal an 
outbreak and ML, in combination with review by an IP expert, 
then identifies the responsible transmission route. In our study, 
we found that 10.8% of sequenced isolates were related, which 
is in line with other studies of WGS surveillance [12, 16, 21–24].

The results of our clinical and economic impact analysis sug-
gest that, had it been running in real time, EDS-HAT would 
be highly cost-saving. The cost of sequencing 1 bacterial isolate 
is low ($70) relative to the high costs of treating a single, po-
tentially preventable infection (eg, >$24 000 for Pseudomonas 
pneumonia). Recent budget and clinical impact analyses of 
WGS surveillance of multidrug-resistant pathogens in Australia 
also demonstrated that this approach is cost-saving [25, 26]. 
Our analysis showed cost-savings despite our conservative 
modeling assumptions, which included the effectiveness of var-
ious types of interventions and the fact that we did not consider 
the cost of personal protective equipment and other costs asso-
ciated with isolation precautions of patients. By using this con-
servative approach, we likely underestimated the true impact 
and cost-savings of EDS-HAT.

The inability to demonstrate transmission routes that do not 
involve geotemporal clustering is a serious limitation of previous 
studies of WGS surveillance for outbreak detection in hospitals 
[2, 3]. EDS-HAT overcomes this limitation by incorporating 
EHR ML [27–29]. Outbreaks that were detected exclusively by 

EDS-HAT tended to involve common hospital pathogens that 
lacked geographic clustering and had transmission routes that 
were not readily apparent on manual EHR review. For example, 
the interventional radiology VRE outbreak identified a newly dis-
covered procedural vulnerability, the outbreak of Pseudomonas 
aeruginosa affirmed known risks of endoscopy, outbreaks in the 
chronic care facility highlighted the problem of high-risk trans-
mission in this vulnerable patient population, the outbreak asso-
ciated with wound care highlighted operational susceptibilities in 
the nature of care provided, and the cluster of MRSA associated 
with electroencephalography and specific providers shows how 
EDS-HAT can detect unusual and specific routes.

Implementation of real-time WGS surveillance and ML of 
the EHR will require investment in healthcare infrastructure; 
the results of our economic analysis provide evidence that im-
plementation can be cost-saving for hospitals that perform 
reactive WGS. Parcell et al [30] highlight barriers to implemen-
tation and methods for integration into IP practice. We view 
EDS-HAT as complementary to IP practice because it alerts 
to possible outbreaks, which prompts additional investigating 
and intervention. EDS-HAT requires input from infection 
preventionists to evaluate the transmission routes that are gen-
erated and determine what interventions are needed.

There are several limitations to our study. First, it is un-
likely that all outbreaks and outbreak patients were captured 
in this study, because, for example, some infected patients 
may not have cultures taken or cultures may have been neg-
ative because of recent antibiotic administration. In addition, 
our exclusion of cultures during the first 3 days of hospital-
ization likely led us to miss transmission events. Second, we 
did not include surveillance swabs, meaning that we likely 
missed transmission events for, for example, VRE. Third, the 
retrospective nature of the study did not allow us to inves-
tigate and confirm potential transmission routes for some of 
our outbreaks; this limitation can be alleviated and the po-
tential impact will likely increase when EDS-HAT is run in 
real time. Fourth, during this 2-year evaluation, we had fewer 
transmissions identified by traditional IP practice at our insti-
tution than usual [4, 31, 32]. However, EDS-HAT would likely 
have detected any IP-identified outbreak more quickly. Fifth, 
our economic modeling of real-time interventions may not re-
flect true intervention effectiveness and timeliness. However, 
we adjusted for both conservative and loose parameters to es-
timate the true effectiveness in between those bounds. Sixth, 
we did not account for potential asymptomatic carriage of 
urinary and wound cultures in our model. However, infection 
preventionists would intervene regardless of clinical presen-
tation given that it would aid in interrupting future transmis-
sion. In addition, many of these positive cultures are treated 
and, therefore, incur costs, whether the treatment is appro-
priate or not. Finally, we included only a limited number of 
pathogens in WGS surveillance because of feasibility and 

Figure 3.  EDS-HAT cost-savings and effectiveness plot for estimated lower and 
upper bound boundaries (see Methods). Cost-savings of EDS-HAT were examined 
by estimated costs associated with number of transmissions averted, using 1000 
simulations in probabilistic sensitivity analysis comparing EDS-HAT with traditional 
infection prevention practice. Each point represents 1 simulation of the economic 
model. The best-fit linear model is shown as a straight line. Abbreviation: EDS-HAT, 
Enhanced Detection System for Healthcare-Associated Transmission.
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cost and therefore likely missed outbreaks caused by other 
pathogens.

Advances in microbial genomics and bioinformatics, digital-
ization of healthcare data, and ML technology have made en-
hanced outbreak detection in hospitals feasible. Taken together, 
our results suggest that EDS-HAT represents a potential para-
digm shift in how outbreaks are detected in hospitals. If insti-
tuted in real time, this approach can reduce healthcare-related 
costs and significantly improve patient safety.
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