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Integrated relationship of nasopharyngeal
airway host response and microbiome
associates with bronchiolitis severity

Michimasa Fujiogi 1 , Yoshihiko Raita 1, Marcos Pérez-Losada2,3,
Robert J. Freishtat4,5,6, Juan C. Celedón 7, Jonathan M. Mansbach8,
Pedro A. Piedra9, Zhaozhong Zhu 1, Carlos A. Camargo Jr. 1 &
Kohei Hasegawa 1

Bronchiolitis is a leading cause of infant hospitalizations but its immuno-
pathology remains poorly understood. Here we present data from 244 infants
hospitalized with bronchiolitis in a multicenter prospective study, assessing
the host response (transcriptome), microbial composition, and microbial
function (metatranscriptome) in the nasopharyngeal airway, and associate
themwith disease severity. We investigate individual associations with disease
severity identify host response, microbial taxonomical, and microbial func-
tional modules by network analyses. We also determine the integrated rela-
tionship of these modules with severity. Several modules are significantly
associated with risks of positive pressure ventilation use, including the host-
type I interferon, neutrophil/interleukin-1, T cell regulation, microbial-
branched-chain amino acid metabolism, and nicotinamide adenine dinucleo-
tide hydrogenmodules. Taken together, we show complex interplays between
host and microbiome, and their contribution to disease severity.

Bronchiolitis—the most common lower respiratory infection among
infants—is an important health problem1. While 30–40% of infants
develop clinical bronchiolitis, its severity ranges from a minor nui-
sance to fatal infection2,3. Bronchiolitis is also the leading cause of
hospitalization in US infants, accounting for ~110,000 hospitaliza-
tions annually4. Approximately 5% of these infants undergo
mechanical ventilation4. However, traditional risk factors (e.g., pre-
maturity) do not sufficiently explain the differences in disease
severity3 and its pathobiology remains to be elucidated. Our limited
understanding of the disease mechanisms has hindered efforts to

develop targeted treatment strategies in this large patient
population.

Emerging evidence has pointed out the pathobiological role of
respiratory viral pathogens, host response, and microbiome in infant
bronchiolitis3. Studies have reported individual associations of upper
airway5,6 and circulating7–10 transcriptome, microRNA11, cytokine12–16,
proteome10, metabolome17–20, and microbiota7,17,21–27 profiles with
bronchiolitis severity. However, these findings using single-element
data were unable to uncover the integrated contribution of host
response and microbiome to the pathobiology of bronchiolitis.
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Despite their clinical and research significance, no study has integrated
host response and microbiome (both composition and function) to
determine their interrelationship with disease severity in infants with
bronchiolitis.

To address this major knowledge gap, we applied integrated-
omics and network approaches to dual-transcriptome data—host
response (transcriptome), microbiome composition and its function

(metatranscriptome) in the nasopharyngeal airway—from a multi-
center prospective cohort of infants hospitalized for bronchiolitis
(Fig. 1). First, we examined the individual relationship of each omics
element with disease severity (positive pressure ventilation [PPV] use)
and identified the unique host response,microbiomecomposition and
function signatures. Second,we identified distinct networks (modules)
in each omics element—9 host response, 7 microbial composition, and
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8 microbial function modules—that have distinct biological and
microbial characteristics. Finally, we examined their integrated rela-
tionship with the PPV risk and identified that several modules were
associated with bronchiolitis severity, including the host-type I inter-
feron (IFN), neutrophil/interleukin (IL)−1, T-cell regulation, Strepto-
coccus pneumoniae/Staphylococcus aureus, and microbial-branched-
chain amino acid (BCAA) metabolism, and nicotinamide adenine
dinucleotide hydrogen (NADH) modules.

Results
Baseline characteristics
We analyzed data from a multicenter prospective cohort study of
infants hospitalized for bronchiolitis—the 35th Multicenter Airway
Research Collaboration (MARC-35) study. This study enrolled 1,016
infants (age < 1 year) with bronchiolitis at 17 sites across 14 US states
(Supplementary Table 1) over three bronchiolitis seasons28. The cur-
rent study included 244 infants who were randomly selected for
nasopharyngeal airway dual-transcriptome testing (Supplementary
Fig. 1). The analytic and non-analytic cohorts did not significantly differ
in the baseline characteristics (P ≥0.05; Supplementary Table 2),
except for daycare use and RSV infection. Among the analytic cohort,
the median age was 3 (IQR, 2–6) months, 40% were female, and 42%
were non-Hispanic white (Table 1). Overall, 91% of study participants
had RSV infection, 21% had rhinovirus (RV) infection, and 12% hadRSV/
RV coinfection. During hospitalizations for bronchiolitis, 7% of parti-
cipants underwent PPV and 17% received intensive care treatment
(defined by PPV use and/or admission to the intensive care unit).

Individual relationships of nasopharyngeal airway host tran-
scripts, microbial composition, and function with disease
severity
Of 19,056 host transcripts detected in the nasopharyngeal airway of
infants with bronchiolitis, 197 were significantly associated with the
risk of PPV use (Benjamini–Hochberg false discovery rate [FDR] of
<0.05 and ≥|1.5|-fold change; Fig. 2A). In the functional pathway ana-
lysis of Gene Ontology (GO) biological process, infants with PPV use
had 102 differentially enriched pathways (FDR <0.05)—e.g., down-
regulated type I IFN, IFN-γ, virus defense response, and T-cell activa-
tion pathways as well as upregulated neutrophil pathways, compared
to those without PPV use (Fig. 2B). The differentially enriched path-
ways in the GO molecular function (e.g., downregulated NADH dehy-
drogenase pathways) and cellular component (e.g., downregulated
major histocompatibility complex [MHC] class II protein complex, and
upregulated secretary granule pathways) domains are shown in Sup-
plementary Fig. 2.

A total of 320 microbial species were detected in the nasophar-
yngeal airway of infants with bronchiolitis. The overall relationship of
the 20 most abundant microbial species with the severity outcomes is
shown in Fig. 3A. The 20 most abundant species come from 4 major
phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria).
In the investigation of the 10 most abundant microbial species (which
collectively accounted for 93% of the overall composition), all species
were significantly associated with the risk of PPV use (all FDR <0.001;
Fig. 3B). For example, a higher abundance of S. pneumoniae and a
lower abundanceofMoraxella catarrhaliswere significantly associated

Fig. 1 | Analytic flow of integrated-omics analysis. This flowchart presents a brief
overview of the main analytical steps in the current study. The steps are shown in
order from top to bottom (A toC). For each of 1) host response (transcriptome), 2)
microbial composition (metatranscriptome), and 3) microbial function (meta-
transcriptome) data elements, we individually performed the analysis in steps A
andB.Then,wesubsequently integrated these omicsdata in stepC.AWeexamined
the relationship of each omics data element with the risk of PPV use at the indivi-
dual data level. B To reduce the dimensions of the host response, microbial com-
position, and microbial function data, we performed a weighted gene co-

expression network analysis and identified distinct networks (modules). In each
omics element,we selected the topfivemoduleswith the highest correlationof PPV
use and biological significance for the subsequent integrated analyses. C Finally, to
determine the integrated relationships of these dual-transcriptome modules with
the risk of PPV use, we constructed a logistic regression model with ridge reg-
ularization. To uncover the causal relationship structure between these dual-
transcriptome modules, we also applied a causal structural learning approach.
Abbreviations: FDR, false discovery rate; PPV, positive pressure ventilation;
WGCNA, weighted gene co-expression network analysis.

Table 1 | Patient characteristics of 244 infants hospitalized for
bronchiolitis

Overall (n = 244)

Characteristics

Age (month), median (IQR) 3.1 (1.7–6.2)

Female sex 98 (40)

Race/ethnicity

Non-Hispanic white 102 (42)

Non-Hispanic black 57 (23)

Hispanic 76 (31)

Other or unknown 9 (4)

Maternal smoking during pregnancy 34 (14)

C-section delivery 84 (34)

Prematurity (<37 weeks) 47 (19)

Mostly breastfed for the first 3 months of age 115 (47)

Previous breathing problems before the index hospitalizationa

1 episode 30 (12)

≥2 episodes 10 (4)

History of eczema 31 (13)

Ever attended daycare 71 (29)

Corticosteroid use before the index
hospitalization

18 (7)

Lifetime history of systemic antibiotic use 79 (32)

Clinical presentation

Body weight at presentation (kg), median (IQR) 6.1 (4.6–8.0)

Respiratory rate at presentation (per minute),
median (IQR)

48 (40–60)

Oxygen saturation at presentation

<90% 18 (7)

90–93% 29 (12)

≥94% 190 (78)

Respiratory virus

Any RSV 222 (91)

Any rhinovirus 51 (21)

RSV/rhinovirus coinfection 29 (12)

Other coinfection pathogensb 47 (19)

Clinical outcomes

Positive pressure ventilation during
hospitalizationc

18 (7)

Intensive care use during hospitalizationd 42 (17)

Hospital length of stay (day), median (IQR) 2 (1–3)

IQR interquartile range, RSV respiratory syncytial virus.
Data are n (%) of infants unless otherwise indicated. Percentages may not equal 100 because of
rounding and missingness.
aDefined as an infanthaving a cough thatwakeshimorher at night or causes emesis, orwhen the
child has wheezing or shortness of breath without cough.
bAdenovirus, bocavirus,Bordetella pertussis, enterovirus, humancoronavirusNL63,OC43, 229E,
or HKU1, human metapneumovirus, influenza A or B virus, Mycoplasma pneumoniae, and para-
influenza virus 1–3.
cDefined as use of invasive and/or non-invasivemechanical ventilation (e.g., continuous positive
airway pressure ventilation).
dDefined as use of positive pressure ventilation and/or intensive care unit admission.
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with the PPV risk. Additionally, a total of 340 fungal species were
detected. Of 10 most abundant species, 9 species were significantly
associated with the PPV risk (FDR <0.001; Supplementary Fig. 3). For
example, a higher abundance of Malassezia restricta was significantly
associated with a higher PPV risk (FDR <0.001).

Of 5064 microbial transcripts detected in the nasopharyngeal
airway of infants with bronchiolitis, 129 were significantly associated
with the risk of PPV use (FDR <0.05 and ≥|1.5|-fold change; Fig. 4A). In
the functional pathway analysis of GO biological process, infants with
PPV use had 5 differentially enriched pathways (FDR<0.05)—e.g.,
upregulated lipid metabolism and oxidant detoxification pathways
(Fig. 4B). The differentially enriched pathways in the GO molecular
function (e.g., upregulated NADH oxidoreductase and antioxidant
pathways) and cellular component (e.g., upregulated NADH

dehydrogenase complex pathway) domains are shown in Supple-
mentary Fig. 4.

Identification of dual-transcriptome modules with distinct bio-
logical function
By using differentially enriched host transcripts, microbial species,
andmicrobial function data, the network analysis (weighted gene co-
expression network analysis [WGCNA]29) identified 9 distinct host
response (e.g., T-cell regulation, neutrophil/IL-1, type I IFN modules),
7 distinct microbial composition (e.g., S. pneumoniae/S. aureus
module), and 8 microbial function (e.g., BCAAmetabolism, oxidative
stress response, NADH modules) modules (Supplementary
Tables 3–5). Each of the identified modules was characterized by
distinct host biological pathways (Supplementary Table 3), microbial

Fig. 2 | Differential gene expression analysis of host transcriptome data with
regard to the use of positive pressure ventilation in infants hospitalized for
bronchiolitis. A Volcano plot of differentially expressed genes (transcriptome).
The thresholdof log2 fold change is |0.58| (i.e.,≥|1.5|-fold change), and thatof FDR is
<0.05. There were 197 differentially expressed transcripts that met these criteria.
BGene set enrichment analysis (transcriptome).We showed 30 host pathways (GO

biological process) with the most significant FDR in the gene set enrichment ana-
lysis (GSEA) with downregulated pathways on the left side and upregulated path-
ways on the right side. We also showed the absolute normalized enrichment score,
FDR, and the gene ratio for the corresponding pathways. Abbreviations: FDR false
discovery rate, GO gene ontology, GSEA gene set enrichment analysis, PPV positive
pressure ventilation.
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species (Supplementary Table 4), and microbial biological pathways
(Supplementary Table 5).

Integrated relationships of nasopharyngeal airway dual-
transcriptome modules with disease severity
The integrated analyses used the top five modules with the highest
correlation with PPV use and biological significance from each omics

element (Supplementary Tables 3–5). The eigenvalues (the first prin-
cipal component) of all host response modules, S. pneumoniae/S.
aureus module, and all microbial function modules were significantly
associated with the risk of PPV use (FDR <0.05; Fig. 5A). Likewise, in
the ridge regression analysis adjusting for potential confounders (age,
sex, and respiratory virus), the results were consistent (Fig. 5B). For
example, the host-T-cell regulation (adjusted odds ratio [adjOR] 0.24;

Fig. 3 | Relationship of abundant microbial species with the risk of higher
severity in infants hospitalized for bronchiolitis. A Phylogenetic plot of top 20
most abundant microbial species in the nasopharyngeal airway of infants hospi-
talized for bronchiolitis. The colors in the inner circle annotate the sixmajor phyla.
The colors in the two internal rings represent the magnitude of the association
between the relative abundance of each species and higher severity (PPV use and
intensive care use) outcomes. Greyscale bars on the outside of the circular graph
are proportional to the microbial species’ mean relative abundance. B The pirate

plots show the comparison of the distribution of ten most abundant species in the
nasopharyngeal microbiome in infants hospitalized for bronchiolitis, according to
the PPV use. Each point represents each infant. The gray bar and rectangle repre-
sent themean and 95% confidence interval. In the violin plots, the width represents
the probability that infants take on a specific relative abundance. The between-
group differences in the abundance were tested by fitting Poisson regression
models. n = 244 biologically independent samples. Abbreviations: FC fold change,
FDR false discovery rate, PPV positive pressure ventilation.
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95% confidence interval [CI] 0.11–0.53), neutrophil/IL-1 (adjOR 3.94;
95% CI 1.70–10.1), and type I IFN (adjOR 0.37; 95% CI 0.14–0.75)
modules were significantly associated with the risk of PPV use. Addi-
tionally, the S. pneumoniae/S. aureus (adjOR 2.55; 95% CI 1.18–5.78),
microbial-BCAAmetabolism (adjOR0.73; 95% CI 0.05–0.88), oxidative
stress response (adjOR 0.57; 95% CI 0.07–0.78), and NADH (adjOR
0.59; 95%CI0.06–0.80)moduleswere significantly associatedwith the
risk of PPV use. In the sensitivity analysis, similar results were observed
in the integrated associationswith the risk of intensive care use (Fig. 5A
and Supplementary Fig. 5). Additionally, in the sensitivity analysis
adjusting for race/ethnicity (in addition to age, sex, and virus), the
results did not materially change (Supplementary Figs. 6 and 7).

A correlation network (Supplementary Fig. 8) suggests a complex
relationship between clinical characteristics, airway microbiome, and
host immune responses in the nasopharyngeal airway of infants with
bronchiolitis. To uncover the underlying causal relationship between
these dual-transcriptome modules, causal structure learning was
applied (Fig. 5C). The analysis suggested that, for example, the S.
pneumoniae/S. aureusmodulehasdirect effects onbothhost-type I IFN
and neutrophil/IL-1 modules, which have a subsequent effect on the
PPV use through the host-T-cell regulation modules. Additionally, the
S. pneumoniae/S. aureus module also had subsequent effects on PPV
use through microbial-mRNA and oxidative stress response modules.

Discussion
In thismulticenter prospective cohort study of infants hospitalized for
bronchiolitis, we first individually investigated the relationships of
dual-transcriptome data—host response (transcriptome), microbial
composition, and microbial function (metatranscriptome)—with dis-
ease severity. For example, compared to infantswithout PPVuse, those
with PPV use had downregulated host-type I IFN, virus defense
response, and T-cell activation pathways as well as upregulated neu-
trophil pathways. We also found that these infants with higher severity
had an increased abundance of S. pneumoniae and upregulated
microbial-NADH oxidoreductase and antioxidant pathways. Second,
we performed the network and integrated-omics analysis. This
approach not only demonstrated the modules consistent with the
individual-level analyses, but also identified biologically important
modules (or networks) that contributed to higher severity. For exam-
ple, the host-type I IFN, neutrophil/IL-1, T-cell regulation, S. pneumo-
niae/S. aureus, microbial-BCAAmetabolism, oxidative stress response,

and NADH modules were significantly associated with the risk of PPV
use. To the best of our knowledge, this is the first study that has
demonstrated interrelations between host response, microbial com-
position, and its function in the airway, and their integrated con-
tributions to the disease severity in infants with bronchiolitis.

In agreementwith the current study, recent bronchiolitis research
has suggested pathobiological roles of respiratory viruses, host
response, and microbiome by using single-element data—e.g., upper
airway5,6 and circulating7–10 transcriptome data, and microbiome
composition data using 16S ribosomal RNA (16S rRNA) gene
sequencing7,17,21–25,27 or quantitative PCR assay26. For example, in a
single-center study of 55 infants hospitalized for RSV bronchiolitis
using nasopharyngeal transcriptomeprofiling, Thwaites et al. reported
that a lower type I IFN expression was associated with higher severity6.
In another single-center study of 132 infants with RSV infection using
16S rRNA gene sequencing and whole-blood transcriptome profiling,
Piters et al. reported that nasopharyngeal Streptococcus-dominated
microbiota was associatedwith overexpression of neutrophil signaling
and higher severity7. Similarly, in our previous analysis of two cohort
studies of infants with bronchiolitis using 16S rRNA gene sequencing,
wedemonstrated that Streptococcus-dominatedmicrobiota profilewas
associated with a higher risk of intensive care use21. Furthermore, our
previous integrated-omics analysis of infants with RSV bronchiolitis—
which focused on the microbiome taxonomy (i.e., not function),
transcriptome, metabolome, and asthma outcome—found that the
most-severe endotype (e.g., 19% with PPV use) also had a higher
abundance of S. pneumoniae and unique host response profile (e.g.,
low type I interferon response). This endotype also had a non-
significantly higher risk of asthma by age 5 years30. The current study—
applying integrated-omics and network analyses to the dual-
transcriptome data—corroborates these prior reports and extends
them by demonstrating the integrated relationships of host response,
microbial composition, and its functionwith disease severity in infants
with bronchiolitis.

The mechanisms underlying the observed interrelationships
warrant clarification. In concordance with our data, studies have sug-
gested the role of host immune response—e.g., type I IFN, neutrophil,
and regulatory T cells (Treg)—in the bronchiolitis pathobiology. First,
research has shown that RSV infection (specifically with its non-
structural 1 and 2 proteins) suppresses induction of type I IFN and IFN-
inducible genes, thereby inhibiting innate immune response31 and that

Fig. 4 | Differential gene expression analysis of microbial function data with
regard to the use of positive pressure ventilation in infants hospitalized for
bronchiolitis. A Volcano plot of differentially expressed microbial transcripts
(metatranscriptome). The threshold of log2 fold change is |0.58| (i.e., ≥|1.5|-fold
change), and thatof FDR is <0.05. Therewere 129differentially expressedmicrobial
transcripts that met these criteria. B Gene set enrichment analysis (GSEA) of the

metatranscriptome data. We showed 30 microbial functional pathways (GO bio-
logical process) with the most significant FDR in the gene set enrichment analysis
(GSEA). Downregulated pathways were not detected. We also showed the nor-
malized enrichment score, FDR, and the gene ratio for the corresponding path-
ways. Abbreviations: FDR false discovery rate; GO gene ontology; GSEA gene set
enrichment analysis.
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their F protein can also activate IFN-inducible genes with subsequent
cell exhaustion of IFNs32. Consequently, lower type I IFN level in the
airway has been associated with higher disease severity6,15. Addition-
ally, a study has also found that type I IFNs are exploited for enhancing
immunity against S. pneumoniae via regulating innate immune cells33.
Second, an excessive neutrophil function has been implicated in air-
way damage and severe bronchiolitis34. Neutrophils—the dominant
inflammatory cell in the airways of children with bronchiolitis35–37—
detect virus-associated molecular patterns through their pattern
recognition receptors (e.g., toll-like receptors), produce an array of

antimicrobial products (e.g., cathelicidins), and assist the adaptive
immune responses38,39. Indeed, a previous study has reported an
interaction between antimicrobial products and nasopharyngeal air-
way microbiome composition (e.g., Streptococcus-dominance) on the
disease severity in infants with bronchiolitis40. Third, Tregs have an
essential role in ensuring efficient viral clearance by coordinating the
recruitment of CD8+ cytotoxic T cells to the airway, controlling innate
immune response by neutrophils and NK cells, and limiting an exces-
sive virus-specific T-cell pro-inflammatory response41. A previous study
revealed that, in infants with severe RSV infection, circulating Tregs
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were depleted42, suggesting protective effects of Tregs in this popu-
lation. Lastly, these potential mechanisms linking respiratory viruses,
host immune response, airway microbiome, and bronchiolitis patho-
biology are not mutually exclusive.

Using the metatranscriptome data, the current study also identi-
fied unique microbial functions—e.g., BCAA metabolism, oxidative
stress response, NADH pathways—that are individually and/or syner-
gistically related to the disease severity. First, research has shown that
the lack of BCAAs (e.g., isoleucine)—essential nutrients in bacteria43—
biosynthesis in S. pneumoniae lead to decreased growth, colonization,
and expression of virulence factors44. Second, studies have also shown
the role of oxidative stress response in the virulence ofmicrobes in the
oxygen-rich environment, such as the airway45. For example, S. pneu-
moniae employs predominantly enzymatic mechanisms (e.g., NADH
oxidase, superoxide dismutase) to eliminate the effects of oxidative
stress45. Indeed, loss of the NADH oxidase activity encoded by nox
results in a decrease in the virulence of S. pneumoniae46. Additionally,
NADH oxidase contributes to the virulence of S. pneumoniae as an
adhesin—an important cell-surface component in the infectious pro-
cess—and elicits a protective immune response in mice47. Lastly,
research has also shown that direct interactions between RSV and S.
pneumoniae alter microbial gene expression (e.g., ply, pbp1A), thereby
increasing the virulence and worsening disease severity48. Our infer-
ences—in conjunction with the existent evidence—indicate a complex
interplay between respiratory viruses, these microbial species, their
function, and host response in the airway, and their integrated con-
tribution to the bronchiolitis pathobiology. Our data should facilitate
further investigations to disentangle the complex web and to deter-
mine the role of modulating microbiome (e.g., prebiotics and pro-
biotics) in the treatment of severe bronchiolitis.

The current study has several potential limitations. First, the study
did not have “healthy controls”. Yet, the study objective was not to
evaluate the role of transcriptome and metatranscriptome in the
development of bronchiolitis but to investigate their relationship with
the disease severity within infants with bronchiolitis. Second,
bronchiolitis involves inflammation of both upper and lower airways,
while our study is based on nasopharyngeal specimens. The use of
upper airway specimens is preferable because lower airway sampling
(e.g., bronchoscopy) would be invasive in these young infants. Studies
have suggested that upper airway sampling possibly represents the
lung transcriptome49 and microbiome50 profiles in children. In con-
trast, studies in adults have reported similar but distinct microbial

communities between concurrently sampled upper and lower airway
specimens51–53. Third, the current study did not have mechanistic
experiments to validate the identifiedmicrobial functions. Fourth, our
inferencesmaybebiaseddue to the relationshipbetween the timingof
treatments, specimen collections, and PPV use despite that the speci-
mens were collected within a short time period. Fifth, while this study
derives well-calibrated hypotheses that facilitate future experiments,
our inferences warrant external validation. Lastly, although the study
sample consisted of a racially/ethnically and geographically diverse
multicenter cohort, our inferences should be generalized cautiously
beyond infants hospitalized for bronchiolitis. Nonetheless, our
observations remain highly relevant for 110,000 US children hospita-
lized each year—a population with a substantial health burden4.

In conclusion, by applying an integrated-omics approach to dual-
transcriptome data from a multicenter prospective cohort of 244
infants with bronchiolitis, we demonstrated a complex interplay
between host response, microbial composition, and its function, and
their integrated relationship with the disease severity. For example,
host-type I IFN, neutrophil/IL-1, T-cell regulation, S. pneumoniae/S.
aureus, microbial-BCAA metabolism, oxidative stress response, and
NADH modules were associated with the risk of PPV use. Our obser-
vations should facilitate further research into the interplay between
respiratory viruses, airway host response, microbiome, and disease
pathobiology. This will, in turn, advance the development of targeted
therapeutic measures (e.g., modification of immune response, micro-
biome composition and function) and help clinicians manage this
population with a large morbidity burden.

Methods
Ethical statements
With the exception of specimen collection, all study participants were
evaluated and treated as usual andwithout regard to this observational
study. Parent/legal guardians were approached about participating
after the medical team had finished their assessments and stabilized
the study participant. The institutional review board at each of the
participating hospitals approved the study. Written informed consent
was obtained from the parent or guardian.

Study design, setting, and participants
We collected and managed data using REDCap 10.0.30 (Nashville, TN,
USA) electronic data capture tools. We analyzed data from a multi-
center prospective cohort study of infants hospitalized for

Fig. 5 | Integrated associations of the dual-transcriptomemoduleswith the use
of positive pressure ventilation in infants hospitalized for bronchiolitis.
A Heatmap of the median eigenvalues (the first principal component) for the cor-
responding modules in each outcome group. The areas of circles and colors repre-
sent the median value of the corresponding eigenvalue. The between-group
differences tested using two-tailed t-test s, accounting for multiple comparisons by
applying Benjamini–Hochberg false discovery rate (FDR). Asterisks indicate statis-
tical significance (FDR<0.05). The exact P values and FDR are the following: In PPV
use, T-cell regulation, P value = 7.3 × 10−5, FDR=0.002; Neutrophil/IL-1, P value =
6.7 × 10−3, FDR=0.014; GPCR, P value = 1.1 × 10−2, FDR=0.018; Type I IFN; P value =
7.2 × 10−5, FDR=0.014; HR-1, P value = 2.5 × 10−2, FDR=0.034; S. pneumonia/S. aur-
eus, P value = 1.3 × 10−2, FDR=0.020; MC-1, P value = 1.6 × 10−1, FDR=0.197; Morax-
ella, P value = 2.3 × 10−1, FDR=0.244; Streptococcus, P value = 2.0 × 10−1, FDR=0.226;
Haemophilus, P value = 3.8 × 10−1, FDR=0.379; Plasma membrane, P value = 1.1 ×
10−17, FDR<0.001; mRNA metabolism, P value = 2.1 × 10−4, FDR=0.001; BCAA
metabolism, P value =6.0 × 10−3, FDR=0.014; Oxidative stress response, P value =
6.4 × 10−5, FDR<0.001; andNADH, P value = 5.5 × 10−5, FDR<0.001. In intensive care
use, T-cell regulation, P value = 2.0 × 10−3, FDR=0.030; Neutrophil/IL-1, P value =
6.5 × 10−3, FDR=0.036; GPCR, P value = 1.3 × 10−2, FDR=0.036; Type I IFN, P
value = 8.7 × 10−3, FDR=0.036; HR-1, P value = 3.4*10−2, FDR=0.064; S. pneumonia/S.
aureus, P value = 3.4 × 10−2, FDR=0.064; MC-1, P value = 6.2 × 10−1, FDR=0.659;
Moraxella, P value = 3.4 × 10−1, FDR=0.422; Streptococcus, P value = 3.9 × 10−1, FDR=
0.448; Haemophilus, P value = 7.4 × 10−1, FDR=0.739; Plasma membrane, P value =

1.4 × 10−2, FDR=0.036; mRNA metabolism, P value = 5.0 × 10−2, FDR=0.083; BCAA
metabolism, P value = 1.4 × 10−1, FDR=0.211; Oxidative stress response, P value =
2.0 × 10−1, FDR=0.278; and NADH, P value = 1.4 × 10−2, FDR=0.036. B Integrated
relationship of the dual-transcriptome modules with the risk of PPV use in infants
hospitalized for bronchiolitis. The adjusted odds ratio for the outcome was esti-
matedper one unit increased in the eigenvalue (the first principal component) of the
correspondingmodule by fitting amultivariable logistic regressionmodel with ridge
regularization. The 95% CIs were estimated by a bootstrap method with 2000
replicates. In the model, we adjusted for age, sex, and respiratory virus. Statistically
significant modules are in bold. C Causal structural learning is applied to the dual-
transcriptomics data. It identifies an underlying causal relationship between these
host immune response (blue), microbial species (pink), and microbial function
(orange) modules in the niche, and demonstrates it as a directed acyclic graph
(DAG). This approach is distinctly different fromaco-occurrencenetwork,which can
reparent only correlations between variables and is agnostic about their underlying
causal relationships. For example, the S. pneumoniae/S. aureusmodule has direct
effects on themicrobial-mRNAmetabolismmodule and the host neutrophil/IL-1 and
type I IFN modules, which have a subsequent effect on the PPV use. Abbreviations:
BCAAbranched-chain amino acid, FDR false discovery rate, GPCRG-protein-coupled
receptor, HR host response, IFN interferon, IL interleukin, NADH nicotinamide
adenine dinucleotide hydrogen, MC microbial composition, PPV positive pressure
ventilation.
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bronchiolitis—the 35th Multicenter Airway Research Collaboration
(MARC-35) study21. MARC-35 is coordinated by the Emergency Medi-
cine Network (EMNet, www.emnet-usa.org), an international research
collaboration with 247 participating hospitals. Site investigators
enrolled infants (age < 1 year) hospitalized with bronchiolitis at 17 sites
across 14 U.S. states using a standardized protocol during three con-
secutive bronchiolitis seasons (from November 1 through April 30)
during 2011–201428. The diagnosis of bronchiolitis was made accord-
ing to the American Academy of Pediatrics bronchiolitis guidelines,
defined as the acute respiratory illness with a combination of rhinitis,
cough, tachypnoea, wheezing, crackles, or retraction54. We excluded
infants with a pre-existing heart and lung disease, immunodeficiency,
immunosuppression, or gestational age of <32 weeks, history of pre-
vious bronchiolitis hospitalization, or those who were transferred to a
participating hospital >24 h after initial hospitalization.

Of 1016 infants enrolled into the cohort, the current analysis
investigated 244 infants who were randomly selected for the dual-
transcriptome profiling (Supplementary Table 2 and Supplementary
Fig. 1). While some of the cohort data were used in a previous study
(e.g., microbiome taxonomy data)30, the current analysis tested for a
hypothesis by using additional clinical data (e.g., acute severity out-
comes), expanded study sample (e.g., patients with non-RSV infec-
tion), and microbiome function data.

Data collection and measurement of virus and dual-
transcriptome (host transcriptome and metatranscriptome)
profiling
Clinical data (patients’ demographic characteristics, and family,
environmental, and medical history, and details of the acute illness)
were collected via structured interview and chart reviews21. All data
were reviewed at the EMNet Coordinating Centre (Boston, MA, USA),
and site investigators were queried about missing data and dis-
crepancies identified bymanual data checks. In addition to the clinical
data, nasopharyngeal airway specimens were collected by trained site
investigators using the standardized protocol that was utilized in a
previous cohort study of children with bronchiolitis21,55. All sites used
the same collection equipment (Medline Industries, Mundelein, IL,
USA) and collected the specimens within 24 h of hospitalization. For
the collection, the child was placed supine, 1mL of normal saline was
instilled into one naris, and mucus was removed by means of an 8
French suction catheter. This procedure was performed once on each
nostril. After specimen collection from both nares, 2mL of normal
saline was suctioned through the catheter to clear the tubing and
ensure that a standard volume of aspirate was obtained. Once col-
lected, the nasopharyngeal aspirate specimen was added to the
transport medium at a 1:1 ratio. The specimens were immediately
placed on ice within 1 h of collection and then stored at −80 °C within
24 h of collection21,55.

These specimens underwent (1) real-time reverse transcription
PCR to test for 17 respiratory viruses (including RSV andRV) using real-
time polymerase chain reaction (RT-PCR) assays (Supplementary
Table 6) in the nasopharyngeal airway at Baylor College of Medicine
(Houston, TX, USA) and (2) dual-transcriptome profiling through
RNAseq at the University of Maryland (Baltimore, MD, USA).

RNA extraction, RNA sequencing, and quality control
Total RNA was isolated from the nasopharyngeal specimens using
Trizol LS reagent (ThermoFisher Scientific, Waltham, MA, USA) in
combination with the Direct-zol RNA Miniprep Kit (Zymo Research,
Irvine, CA, USA). RNA quantity was measured with the Qubit 2.0 fluo-
rometer (ThermoFisher Scientific, Waltham, MA, USA); its quality was
assessed with the Agilent Bioanalyzer 2100 (Agilent, Palo Alto, CA,
USA) using the RNA 6000 Nano kit. Total RNA underwent DNase
treatment using the TURBO DNA-free™ Kit (ThermoFisher Scientific,
Waltham, MA, USA) and rRNA reduction for both human and bacterial

rRNA using NEBNext rRNA Depletion Kits (New England Biolabs, Ips-
wich, MA, USA). RNA was prepared for sequencing using the NEBNext
Ultra IIDirectional RNALibraryPrepKit (NewEnglandBiolabs, Ipswich,
MA, USA) and sequenced on an Illumina NovaSeq6000 using an S4
100PE Flowcell (Illumina, SanDiego, CA, USA). All RNAseq samples had
sufficient sequence depth (mean, 8,067,019 pair-end reads/sample) to
obtain a high degree of sequence coverage.

Nasopharyngeal airway host transcriptome
Transcript abundances from clean RNAseq reads were estimated in
Salmonusing thehuman transcriptome (hg38) and themapping-based
mode56. We first generated a decoy-aware transcriptome and then
quantified the reads using Salmon’s default settings and the following
flags: –validateMappings, –recoverOrphans, –seqBias, and –gcBias.
Salmon is fast and accurate, corrects for potential changes in gene
length across samples (e.g., from differential isoform usage), and has
great sensitivity.

Nasopharyngeal airway microbial composition and function
profiling
Raw sequence reads were filtered and trimmed for adapters and con-
taminants using the k-mers strategy in KneadData v0.10.057. We used
PathoScope 2.058 and the expandedHumanOralMicrobiomeDatabase
(eHOMD) database59 to infer bacterial taxonomy. This database only
includes bacteria, hence viruses and fungi were classified using
Kraken60 and the maxikraken2_1903 database (https://lomanlab.
github.io/mockcommunity/mc_databases.html). Samples with <1000
reads, singletons, and strains not present in at least 10% of the samples
were eliminated. The metatranscriptomic analysis obtained
1,968,352,599 merged sequences and identified 320 microbial species
after singleton removal.

We inferred microbial gene functions and Gene Ontologies from
the metatranscriptomic contigs annotated with EggNOG-mapper61,62.
Briefly, we removed the reads of human origin bymapping against the
human genome sequence using Bowtie263. Then, we collected all the
unassigned reads using the MEGAHIT algorithm64, after gene annota-
tion, we assigned the reads to contigs using the HISAT2 aligner65,66, as
the last step to count the transcript we used HTSeq67.

Outcome measures
The primary outcomewas higher disease severity defined by the use of
PPV (continuous positive airway pressure and/or intubation with
mechanical ventilation) during the hospitalization for bronchiolitis20.
The secondary outcome was intensive care use defined by the use of
PPV and/or intensive care unit admission during the hospitalization for
bronchiolitis21. We used PPV use as the primary outcome as it is con-
sidered more specific than intensive care use68.

Statistical analyses
In the current study, our aims are to investigate (1) the individual
relationship of nasopharyngeal airway dual-transcriptome—(i) host
response (transcriptome), (ii) microbial composition, and (iii) micro-
bial function (metatranscriptome)—with disease severity and (2) their
integrated relationships. The analyticworkflow is summarized in Fig. 1.

We examined the association of each omics data element with the
risk of PPV use at the individual data level. First, in the examination of
the host transcriptome data, we conducted differential expression
gene and functional pathway analyses by comparing infants with PPV
use to thosewithout PPV use. To investigatewhether genes for specific
biological pathways are enriched, we conducted a functional class
scoring analysis using R clusterProfiler and fgsea packages69–71. Second,
in thenasopharyngealmicrobial composition data,we investigated the
relationship of the abundance of the top 20 most abundant microbial
species with the PPV outcome by computing the log2 fold change of
median abundance. Third, in the microbial function data, we
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conducted differential expression gene and functional pathway ana-
lyses, similar to the analysis of the host transcriptome data.

Next, to reduce the dimensionality of the host transcript, micro-
bial composition, and microbial function data, and to identify co-
expression networks (modules)—that is, clusters of densely inter-
connected genes or species—we applied a WGCNA approach by using
R wgcna package29 As low-expressed or non-varying genes represent
noise in WGCNA29, we selected differentially enriched transcripts and
metatranscripts with an FDR of <0.40 and high variance (top 90%) and
microbial species with high variance for the WGCNA. We identified a
soft thresholding power for network construction and confirmed the
whole-network connectivity distribution by log-log plots (Supple-
mentary Fig. 9).We thenmerged highly correlatedmodules using a cut
height that is chosen to identify anoptimal number of adequately sized
modules for the analysis29,72. To identify biologically meaningful
pathways within each of the transcriptome and metatranscriptome
modules, we performed functional pathway analyses (gene ontology
enrichment analyses) using R clusterProfiler package70,71.

We investigated the integrated associations of these dual-
transcriptome modules with each severity outcome by constructing
a logistic regression model with ridge regularization73 that adjusts for
potential confounders (sex, age, and respiratory viruses [RSV, RV, and
coinfection]). Ridge regularization is a statistical approach that miti-
gates overfitting in the setting of a limited sample size73.Weused leave-
one-out cross-validation to yield an optimal regularization parameter
that minimizes the sum of least squares plus a shrinkage penalty by
using R glmnet and caret packages74,75. We also estimated 95% CI by a
bootstrap method with 2000 replicates. Lastly, to visualize relation-
ship between major clinical characteristics and dual-transcriptome
modules, we developed a co-occurrence plot based on the Spearman’s
correlation by using Cytoscape76. Additionally, to identify the under-
lying causal relationships between the dual-transcriptome modules
and PPV use, we utilized the PC algorithm implemented in R pcalg
package77. This causal structure learning approach recovers the
underlying causal pathways through the conditional independence
relationships in the empirical data. In the sensitivity analysis, we
repeated the integrated analysis for the intensive care use outcome.
We also constructed the integratedmodels adjusting for race/ethnicity
in addition to age, sex, and virus.We reported all P values as two-tailed,
with P <0.05 considered statistically significant. To account for mul-
tiple comparisons, we used the Benjamini–Hochberg FDR method, as
appropriate78. We analyzed the data with the use of R version 3.6.1 (R
Foundation, Vienna, Austria).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available on the
NIH/NIAID ImmPort (https://www.immport.org/shared/study/
SDY1883) through controlled access to be compliant with the
informed consent forms of MARC-35 study and the genomic data
sharing plan. Source data without participant-level data are provided
with this paper as a Source Data file. Source data are provided with
this paper.

Code availability
Computational code from the study is available at https://zenodo.org/
record/6590728#.Yt53LXbMJdg.
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