Skip to main content
. 2022 Aug 17;12:990176. doi: 10.3389/fonc.2022.990176

Table 2.

Radiomic characteristics of studies included in the systematic review.

Author Segmentation method Radiomic feature categories Machine-learning method for feature selection Number of selected features Model AUC of radiomic model with the best performance clinical factor AUC of radiomic-clinical model
Training set Validation set Training set Validation set
Xu Semi-automatic segmentation(3D) Signal intensity histogram-based features and 3D ND-Haralick texture features based intensity and its high-order derivative maps SVM-RFE","SMOTE 13 SVM-RFE 0.861 NA NA NA NA
Garapati Automatic segmentation(3D) First-order statistics, shape, contrast, GLRLM, Stepwise feature selection 3 subsets of radiomic features LDA, NN, SVM, RF 0.97 NA NA NA NA
Tong Manual segmentation(3D) LBP、GLCM An optimal biomarker approach 9 SVM Patient level:0.806,radial sector level:0.813 NA NA NA NA
Xu Manual segmentation(2D) Histogram, CM , RLM, SVM-RFE","SMOTE, 19 SVM-RFE 0.9857 NA NA NA NA
Zheng Semi-automatic segmentation(3D) first-order statistics,shape-based,GLCM,GLRLM,GLSZM,NGTDM,and GLDM LASSO LR 23 LASSO 0.913;Optimism-corrected:0.912 0.874 Tumor size 0.922;optimism-corrected AUC of 0.921 0.876
Xu Manual segmentation and automatic segmentation(3D) First-order intensity features,high-order texture features,and shape ,GLCM,GLRLM,GLSZM and NGTDM Boruta 21 RF, AR .0.907 0.904 RandomForest model and TURBT NA NA
Wang Manual segmentation and automatic segmentation(2D) Histogram , CM, RLM, NGTDM and GLSZM SVM-RFE 36 LR, LASSO 0.88 external validation cohort 0.813 Radscore and tumor stalk 0.924 0.877
Hammouda Automatic segmentation(3D) Histogram ,GLCM,GLRLM,and morphological features NA NA NN(best)","RF,SVM 0.9864 NA NA NA
Zhang Semi-automatic segmentation(3D) NA NA NA FGP-Net development cohort:0.936, tuning cohort:0.891 internal validation cohort: 0.861,external validation cohort: 0.791 NA NA NA
Zheng manual segmentation (3D) shape and size-based features, image intensity, textural features and wavelet features mRMR 40 Lasso(best)、SVM、RF 0.934 0.906 VI-RADS 0.97 0.943
Zhou semi-automatic segmentation(3D) GLDM,Shape2D,GLCM,Shape3D,First-order,GLRLM,GLSZM,and NGTDM SVM-RFE 6 LR, Decision Tree, SVM(best), and Adaboost algorithm 0.898 0.702 Rad-score, albuminuria and metabolic syndrome 0.8457

AR, all-relevant model; AUC, area under the curve; CM, Co-occurrence matrices; 3D, three dimensional; 2D, two dimensional; FGP-Net, Filter-guided Pyramid Network; GLCM, grey-level co-occurrence matrix; GLDM, gray level dependence matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone matrix; LASSO, least absolute shrinkage and selection operator; LBP, local binary pattern; LDA, linear discriminant analysis; LR, logistic regression; mRMR, min-redundancy; NA, not available; ND, nondirectional Haralic textural features; NN, neural network; NGTDM, neighborhood gray-tone difference matrix; RF, random forest model; RFE, recursive feature elimination; RLM, run length matrix; SMOTE, synthetic minority oversampling technique; SVM, support vector machine classififier; TURBT, transurethral resection of bladder tumor.