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Abstract

Background: How conscious experience becomes disconnected from the environment, or disappears, across arousal

states is unknown. We sought to identify the neural correlates of sensory disconnection and unconsciousness using a

novel serial awakening paradigm.

Methods: Volunteers were recruited for sedation with dexmedetomidine i.v., propofol i.v., or natural sleep with

high-density EEG monitoring and serial awakenings to establish whether subjects were in states of disconnected

consciousness or unconsciousness in the preceding 20 s. The primary outcome was classification of conscious states by

occipital delta power (0.5e4 Hz). Secondary analyses included derivation (dexmedetomidine) and validation (sleep/pro-

pofol) studies of EEG signatures of conscious states.

Results: Occipital delta power differentiated disconnected and unconscious states for dexmedetomidine (area under the

curve [AUC] for receiver operating characteristic 0.605 [95% confidence interval {CI}: 0.516; 0.694]) but not for sleep/pro-

pofol (AUC 0.512 [95% CI: 0.380; 0.645]). Distinct source localised signatures of sensory disconnection (AUC 0.999 [95% CI:

0.9954; 1.0000]) and unconsciousness (AUC 0.972 [95% CI: 0.9507; 0.9879]) were identified using support vector machine

classification of dexmedetomidine data. These findings generalised to sleep/propofol (validation data set: sensory

disconnection [AUC 0.743 {95% CI: 0.6784; 0.8050}]) and unconsciousness (AUC 0.622 [95% CI: 0.5176; 0.7238]). We identified

that sensory disconnection was associated with broad spatial and spectral changes. In contrast, unconsciousness was

associated with focal decreases in activity in anterior and posterior cingulate cortices.

Conclusions: These findings may enable novel monitors of the anaesthetic state that can distinguish sensory discon-

nection and unconsciousness, and these may provide novel insights into the biology of arousal.
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Editor’s key points

� EEG correlates of sensory disconnection and con-

sciousness could providemore sensitive monitors for

anaesthesia and disorders of consciousness.

� A novel wake-up paradigm was used to identify EEG

markers for various states of consciousness during

infusion of dexmedetomidine or propofol and natural

sleep in volunteers.

� Sensory disconnection and unconsciousness had

distinct EEG signatures that were conserved across

drug-induced and endogenous sleep states, with loss

of consciousness associated with a reduction in ac-

tivity within the anterior and posterior cingulate

cortices.

� These findings contribute to our understanding of

connectedness and consciousness and objective EEG

measures of these phenomena that should improve

monitors for clinical and research purposes.
Understanding the neural correlates of sensory awareness and

conscious experience remains an open problem of great

clinical and scientific importance. Without this knowledge, we

are unable to monitor the anaesthetic state adequately or

diagnose disorders of consciousness, particularly when

responsiveness to the environment is impaired.1e3 Perhaps

most intriguing are the mechanisms by which consciousness

becomes disconnected from the physical world in dreaming;

practically, an understanding of the mechanisms of sensory

disconnection would inform titration of anaesthetic dosing,

development of therapies for insomnia, and improved neuro-

logical diagnosis.4

Prior research has used functional imaging technologies to

study subjects who are sleeping or anaesthetised, contrasting

baseline recordings with periods of putative ‘unconscious-

ness’ to identify neural correlates of consciousness.5e9 Such

studies have yielded a variety of markers that have been

ascribed to consciousness; however, their methodologies have

confounded consciousness with responsiveness making these

results ambiguous. Unresponsive subjects may still be

consciously aware of their environment or unaware of the

environment, but they are still having a conscious experience,

such as dreaming.2,4,10 Furthermore, studies of anaesthesia

that identify ‘unconsciousness’ based solely on the dose of

anaesthetic given suffer from the additional confound of drug

concentration.

These limitations have made it difficult to know which

reported signatures are relevant to consciousness per se (i.e.

the presence of phenomenological content) or perception of

the external world. Serial awakening paradigms offer a way to

approach this problem. A prior study made use of this para-

digm to distinguish between dreaming consciousness and

unconsciousness during sleep,11 implicating a ‘posterior hot

zone’12 of activity in the maintenance of consciousness.

Whilst this made large improvements over previous experi-

mental designs, the results were still limited in terms of

external validity, as the data were only derived under natural

sleep conditions and the authors did not comment on the

mechanisms of sensory disconnection. Attempts to define

similar changes with sedatives have had insufficient data to

contrast dreaming consciousness and unconsciousness.13
In this study, we combined the serial awakening paradigm

with titration of sedatives compared with natural sleep to

probe for conserved, cross-state mechanisms of sensory

disconnection and unconsciousness.4 Additionally, we tested

whether the neural correlates of consciousness included a

posterior hot zone solely, as reported previously. By collecting

reports of sensory disconnection and unconsciousness across

multiple conditions and drug concentrations, we present

generalisable signatures of connectedness and consciousness.

Our primary outcome was chosen as a simple measure of

brain activity over the ‘posterior hot zone’, occipital delta po-

wer. A priori, we also planned exploratory analyses to identify

if superior markers of the conscious state could be derived.

Following prior reports of a ‘posterior hot zone’,11,12 we con-

ducted these secondary analyses in source space to obtain

information on the regions involved in different conscious

states. We hypothesised previously that perturbed noradren-

ergic signalling is a critical mechanism of sensory disconnec-

tion; hence, we focused our studies on dexmedetomidine

(Dex). We also collected data on natural sleep and propofol

(Prop), which we combined into a validation data set with

which we could test the generalisability of our findings.
Methods

Subjects and drug administration

Subjects were enrolled in the Understanding Consciousness

Connectedness and Intraoperative Unresponsiveness Study

(NCT03284307). Participants were healthy volunteers between

18 and 40 yr old without prior contraindications to anaes-

thetics. The study was stopped prematurely because of study

suspension by the COVID-19 pandemic and a change in insti-

tution of the primary investigator (RDS), at which time the

primary Dex data set was complete. Data on ketamine were

not included, as conscious reports could not be obtained by

serial awakening from unresponsive subjects. The sevoflurane

arm was removed before suspending recruitment because of

concerns over whether verbal reports would be intelligible

through a face mask (no subjects were recruited to this arm).

Anaesthesia was administered under the supervision of an

anaesthetist to achieve a series of stable drug-dose plateaus.

For Dex, a rapid infusion of 3.0 mg kg�1 h�1 was initially

administered over a 10min period followed by a 0.5 mg kg�1 h�1

maintenance infusion to achieve the first drug step. The sec-

ond step was similarly achieved by a 10 min infusion of 3.0 mg
kg�1 h�1 followed by a 1.5 mg kg�1 h�1 maintenance infusion.

Plasma Dex concentration was estimated using pharmacoki-

netic/pharmacodynamic modelling.14,15 Propofol administra-

tion involved target-controlled infusion using RUGLOOP

(Ghent University, Ghent, Belgium) according to the model of

Schnider and colleagues.16 The duration of drug exposure was

limited to 4 h for each experiment.
Serial wake reports

Subjects were allowed to rest with their eyes closed for 2e10

min at a time during drug sessions and 20e40 min at a time

during sleep sessions without researcher intervention. Each

rest period was concluded by a researcher calling the partici-

pant’s name and initiating a brief structured interview con-

sisting of questions designed to assess if the participant had

been having a conscious experience directly before the name

call and if the experience was connected to the environment
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through the senses (Fig 1). Participant answers were evaluated

by twomembers of the research team to code eachwake report

as connected consciousness (CC; conscious awareness of the

environment), disconnected consciousness (DC; a conscious

experience but no awareness of the environment, such as a

dream), orunconsciousness (Unc; complete lackof experience).

Both team members had to agree that a report could be

unambiguously coded using the criteria in Figure 1 for it to be

included in analysis. Selected examples of subject reports are

available in Supplementary Figure S4. If the subjects were not
What was the last thing going
through your mind before I

spoke to you?

Q1

Do you think you were
awake, having a dream, or

unconscious?

Q2

Do you think you were asleep
or awake?

Q3

Were you aware of the
external world?

Q4

Fig 1. Wake report questions. Questions asked during wake reports to

were evaluated by two members of the research team who had to agree

conscious awareness of the environment), disconnected consciousness

such as a dream), or unconsciousness (Unc; complete lack of experien
rousable, they were not presumed unconscious and the

attempted wake-up was excluded from the analysis. Likewise,

internally conflicting reports for which an unambiguous state

could not be assigned were also excluded from the analysis.
EEG data acquisition

High-density EEG data were collected using a NA300 EGI

system with 256-channel gel caps. Electrodes were manually

prepared with application of electrolyte gel to achieve
Something

Nothing

Evidence of
consciousness

Evidence of
unconsciousness

Dream

Awake

Unconscious

Evidence of connected
consciousness

Evidence of disconnected
consciousness

Evidence of
unconsciousness

Awake

Asleep

Evidence of sensory
connection

Evidence of sensory
disconnection

Yes

No

Evidence of sensory
connection

Evidence of sensory
disconnection

assess states of sensory connection and consciousness. Responses

on a state assignment of awake (W), connected consciousness (CC;

(DC; a conscious experience but no awareness of the environment,

ce) for a report to be included in the analyses.
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electrode impedances <50 kU. Data were recorded using EGI

Net Station Acquisition 5.4 software (Eugene, OR, USA).

Data processing was performed by a member of the

research team experienced in EEG analysis whilst blinded to

the assigned conscious state using EEGLAB.17 Data were

filtered between 0.1 and 55 Hz. Filtered data were then visually

inspected for noisy channels and noisy epochs, which

were removed. Independent component analysis was then

computed using the InfoMax18 algorithm, and components

dominated by eye movements or muscle artifacts were rejec-

ted. After these cleaning steps, data were average referenced,

and the last 20 s of data before the wake report was segmented

out for analysis. Sensor-space power spectra were generated

by computing the Welch power spectral density of the spline-

based Laplacian transformed data.19

Primary outcome

Power spectral density in the delta band (1e4 Hz) was averaged

at electrode Oz and tested for differences between conscious

states (DC vs CC and Unc vs DC) using linear mixed effects

models (LMEMs) as implemented in the R lme4 library20 (see

Statistical methods section). The predictive utility of the pri-

mary outcome was tested using empirical receiver operating

characteristic (ROC) curves, which were summarised by the

area under the curve (AUC) with bootstrapped 95% confidence

intervals (CIs).

Source reconstruction

EEG data were imported into FieldTrip21 and source recon-

structed by frequency band using the eLORETA22 algorithm.

Frequency bands were specified as slow-wave activity (SWA;

0.5e1 Hz), delta (1e4 Hz), theta (4e8 Hz), alpha (8e14 Hz), beta

(18e25 Hz), and gamma (28e55 Hz). An average brain model,

taken from the SPM8 release (FieldTrip file cortex_20484.

surf.gii), was used for the source model. The volume conduc-

tance model was a three-shell boundary element method

model with conductances of 0.33, 0.0041, and 0.33 for skin,

skull, and brain, respectively (FieldTrip file standard_bem.mat).

Statistical analysis

Source reconstructed data were analysed voxel-wise using

LMEMs, in which the log-transformed power at each voxel was

regressed on wake state and predicted plasma drug concen-

tration with by-subject random intercepts and by-subject

random slopes for predicted plasma drug concentration to

account for non-independence of repeated measures from the

same subject. For all analyses involving the Sleep data set, the

baseline W coded data were used as the equivalent of CC, as

the sleep condition does not have a W/CC distinction equiva-

lent to that of the Dex or Prop condition. Wake state was

treated as a dummy-coded variable to perform pairwise state

contrasts. Drug concentration was treated as a continuous

covariate to adjust for the non-specific effects of anaesthesia

that are not relevant to connectedness or consciousness.

P-values were generated using Type III analysis of variance

with KenwardeRoger degrees of freedom for the F-test. To

correct for multiple comparisons, P-values corresponding to

voxels within the same frequency band were adjusted using

the BenjaminieHochberg false discovery rate (FDR) procedure.

To ascribe anatomical labels to the significant results, we

masked the significant voxels against the automated

anatomical labelling (AAL) atlas23 from SPM8.
Machine learning

Machine learning was performed separately for classification

of DC vs CC and Unc vs DC wake reports, using Dex as a

training set and Prop/Sleep as a test set. For the DC vs CC

contrast, the source activation at each voxel across all fre-

quency bands was included from training. These data were log

transformed to improve normality and subjected to principal

component analysis to reduce dimensionality of the highly

collinear data. The relative predictive value of each principal

component for classification was calculated using the random

forest recursive feature elimination algorithm implemented

in the R caret library.24 Principal components with mean

decrease in accuracy values greater than 0 were retained as

training features. The number of features retained in each

machine learning model is outlined in Supplementary

Table S2.

Ensemble machine learning was performed by bootstrap

aggregating 500 linear support vector machines (SVMs). To

address the unbalanced nature of the training classes,

balanced bootstrap samples were used to train each model.

The n for each class was chosen as 50, the n of the smaller class

(CC), such that each model was trained with a bootstrapped

sample of 50 CC and 50 DC data points. The model cost tuning

parameter was allowed to vary across models and was chosen

from the range (0.1, 0.25, 0.5, 1, 2, 4, 8, 16, 32) based on the

model that produced the largest kappa statistic. When

applying the ensemble learner to the test set, each SVM pro-

duced a probability score for the DC/CC classification; these

were averaged across all 500 models, and the class with the

larger probability was chosen as the predicted class for

the ensemble. Themachine learning process for the Unc vsDC

classification problem was identical to that used for DC vs CC,

except that only seed voxels for beta and delta bands from

significant regions of interest (ROI) of the beta/delta ratio were

included. For quantification of SVM ensemble performance,

we calculated 95% CIs for the AUC of each ROC and compared

against chance levels of 0.5.
Results

States of consciousness show similar EEG signatures
across conditions

To disentangle the constructs of connectedness and con-

sciousness, we recruited healthy volunteers to record high-

density EEG (256 channels) with i.v. infusion of Dex (n¼20) or

Prop (n¼6), or during natural sleep (n¼15). Dexmedetomidine

and Prop were titrated to multiple drug steps to promote

increasing somnolence (Fig 2a). Totals of 398, 104, and 202

wake-ups were attempted for Dex, Prop, and Sleep conditions,

respectively. Because of instances in which the subjects did

not give a verbal report or the report was ambiguous, not all

attempted wake-ups resulted in usable data. The numbers of

wake-ups analysed were 330 for Dex, 88 for Prop, and 188 for

Sleep (see Fig 2b legend for additional details). Frequency of

each reported state (W, CC, DC, or Unc) varied across experi-

mental conditions (Fig 2b), predicted plasma drug concentra-

tion (Fig 2c), and responsiveness (Fig 2d); however, each state

was observed, to some degree, across each of these variables.

Spectral analysis of the EEG data from the 20 s before each

wake report showed similar (although not identical) patterns

of activity inW/CC states and DC/Unc states (Fig 3a). The most

notable qualitative differences between connected (W/CC)

and disconnected (DC) or unconscious (Unc) states were



Drug start Drug stopWake reportResting

Dex.
(ng ml–1)

Prop.
(mcg ml–1)

Drug step 2

Drug step 1

Baseline

0

0.0

1.0

2.0

3.0

0.0

0.5

1.0

1.5

60 120
Time (min)

Pl
as

m
a 

dr
ug

 c
on

ce
nt

ra
tio

n (...) (...) (...) (...) Sleep

111

12

65

Prop

39

24
11

14

Dex

151

5772

50

W
ak

e-
up

 c
ou

nt
s

0
0.5 1.0

Dex plasma concentration (ng ml–1)

1.5 2.0

10
20
30
40
50

0

3

6

9

12

1.00.0 2.0

Prop plasma concentration (mcg ml–1)

3.0 4.0

a b

c

W
ak

e-
up

 c
ou

nt
s

0

20

40

60

Dex

Prop

5 4 3
OAA/S

2 1
0

30

20

10

d

Conscious state W CC DC Unc

Fig 2. Drug administration and wake report collection. a: Hypothetical drug dosing diagram illustrating experimental paradigm for serial

wake reports, which results in multiple wake reports per subject. b: Distribution of analysed wake reports by state in each experimental

condition. States coded as W (wake; connected consciousness pre-drug), CC (connected consciousness with drug), DC (disconnected

consciousness), or Unc (unconsciousness). Additional wake-ups were attempted (Att), but the data were unusable because of either no

verbal response (NVR) or ambiguous answers that could not be confidently classified (Amb). The final analysed counts by condition were

(Dex) 330¼398Atte12NVRe56Amb, (Prop) 88¼104Atte7NVRe9Amb, and (Sleep) 188¼202Atte2NVRe12Amb. c: Distribution of wake states across

modelled plasma drug concentrations of Dex and Prop. d: Distribution of wake states by level of responsiveness as assessed by the OAAS.

Dex, dexmedetomidine; OAAS, Observer’s Assessment of Alertness/Sedation; Prop, propofol.

1010 - Casey et al.
reduced high-frequency power (16e55 Hz) and posterior alpha

power (9e12 Hz) and increased low-frequency power (0.5e9

Hz) with DC/Unc states.

Primary outcome

Occipital delta power showed a linear relationship with

conscious state (Fig 3b). Using a linear mixed effects model

with by-subject random effects (intercept and predicted

plasma drug concentration) and fixed effects for conscious

state and predicted plasma drug concentration, we compared

the effect of conscious state on delta power using DC as the

reference condition. Mean delta power during CC was 65.2% of

that recorded during DC (P<0.001), whilst mean Unc delta

power was 124.2% of that recorded during DC (P¼0.030) (Fig 3c

and Supplementary Table S1). Occipital delta power showed a

weak classification for disconnected and unconscious states

(Fig 3d), the primary outcome, for Dex (AUC for the ROC 0.605

[95% CI: 0.516; 0.694]). However, this effect was not evident for
Sleep/Prop (AUC 0.512 [95% CI: 0.380; 0.645]); hence, this

marker is unlikely to represent a reliable marker of conscious

state for clinical application. To further interrogate the sig-

natures of connectedness and consciousness, we source

reconstructed the EEG data, allowing us to investigate the

anatomical sources of spectral changes.

Disconnected consciousness differs from connected
consciousness

Our primary motivation was to investigate generalisable EEG

signatures of connectedness and consciousness. We adopted

a machine learning analytical approach, in which we divided

the data into a discovery set for Dex and a generalisability

test set for Prop and Sleep. We chose the a2 adrenoceptor

agonist Dex for the discovery data set to identify whether

perturbed noradrenergic signalling offers a conserved mech-

anism of sensory disconnection based on reduced locus

coeruleus activity in the disconnected state of sleep25 and on
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500 models and selecting the class with the higher average probability. d: ROC curves for the ensemble learner, training using all bands

except alpha, applied to the training set and test set with AUC quantification. The black line represents chance performance (AUC¼0.5).

AUC, area under the curve; CC, connected consciousness; DC, disconnected consciousness; Dex, dexmedetomidine; FDR, false discovery

rate; LMEM, linear mixed effects model; PCA, principal component analysis; Prop, propofol; ROC, receiver operating characteristic; SVM,

support vector machine; SWA, slow-wave activity.

0.3

0.0

–0.3

0.3

0.0

–0.3

0.3

0.0

–0.3

0.5

0.0

–0.5

0.6

0.0

–0.6

0.6

0.0

–0.6

0.4

0.0

–0.4

0.4

0.0

–0.4

–2.8

–3.2
–3.4

–3.8

–5.0

–5.6

–6.2

–2.0

–2.4

–2.8

–3.6

–4.0

–4.4

–6.6

–7.2

–7.8

–4.4

–4.8
–5.0

–5.4

–3.8

–4.2
–4.4

–4.8

–0.6

–1.2

–1.8

SWA

b

Delta

Theta

Alpha

Beta

Gamma

Beta/delta

Gamma/delta

CC DC DC vs CC

Fig 4. Continued

Unconscious/Disconnected EEG signatures - 1013



c

DC
CC

Dex
(Training set) Prop Sleep

Test set

PCA/feature selection

Principal components
Project test set into
PCA feature space

Classify test set via
ensemble voting

Bootstrap sampling/
SVM training

Balanced
sample

SVM
CC DC

C
la

ss
 p

ro
ba

bi
lit

y

0

M
ea

n 
de

cr
ea

se
d

ac
cu

ra
cy

CC

CC

W
DC

DC

DC

d

0.00
0.00 0.25 0.50 0.75 1.00

0.25

AUCTraining=0.999

AUCTesting=0.743

0.50

Se
ns

iti
vi

ty
 (T

PR
)

1 - Specificity (FPR)

0.75

1.00

500 X

Fig 4. Continued

1014 - Casey et al.
the characteristics of norepinephrine to provide gain across

the sensory cortical hierarchy.26 Within the Dex discovery

set, we performed a source space voxel-wise analysis, making

use of LMEMs to predict spectral power as a function of wake

report state whilst adjusting for predicted plasma drug con-

centration, overcoming a major limitation of prior studies of
that did not dissect non-specific drug effects from conscious

state.

Our modelling approach highlighted significant differences

in cortical rhythms in the SWA, delta, theta, beta, and gamma

bands (Fig 4a and b), whichwas greater in fronto-medial cortex

and surrounding the superior portion of the central sulcus in
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the DC condition (P<0.05; FDR corrected). We also observed a

small posterior cluster in the right hemisphere of increased

theta activity in DC compared with CC, consistent with

cuneus/precuneus. In contrast to the increase in lower fre-

quencies, the higher beta and gamma frequencies were

significantly decreased in DC relative to CC. Beta showed de-

creases in the right temporal lobe, whilst gamma decreased

bilaterally in frontal and temporal lobes. Prior research defined

a posterior hot zone of activity based on reductions in high-

frequency power and increased low-frequency power in un-

consciousness relative to dreaming in sleep.11 We tested the

specificity of this marker by operationalising it as a beta/delta

ratio or a gamma/delta ratio. The ratio of high-frequency to

low-frequency activity may represent how active an area of

cortex is, given that cerebral metabolism positively correlates

with high-frequency rhythms and negatively correlates with

low-frequency frequencies.27,28 Both ratios demonstrated

more widespread changes in DC vs CC than any of their con-

stituent frequency bands.

We further investigated the predictive utility and general-

isability of these power bands by using them as predictors in a

machine learning classifier of sensory disconnection. We

trained an ensemble of 500 SVMs to classify the Dex DC and CC

data using all frequency bands except alpha (which was

omitted because of no significant effects in the DC vs CC

contrast), and we tested its performance on the Prop and Sleep

data (Fig 4c). The ensemble had near-perfect performance

within the training set (AUC 0.999 [95% CI: 0.9954; 1.0000]) and

performed well above chance levels in the test set (AUC 0.743

[95% CI: 0.6784; 0.8050]), demonstrating generalisability of the

EEG signatures of disconnection observed for Dex (Fig 4d). In-

clusion of the alpha band did not substantially influence the

model (Supplementary Fig. S3a).
Unconsciousness differs from disconnected
consciousness in beta/delta activity

In contrast to the broad spectral changes observed when con-

trasting DC and CC states, the differences between Unc and DC

were much more specific. Unconsciousness showed significant

reductions in beta/delta ratio in a bilateral set of medial anterior

andposteriorvoxelsanda lateral lefthemisphericparietal cluster

(Fig 5a). These regions correspond with anterior cingulate cortex

(ACC), middle cingulate cortex and posterior cingulate cortex

(PCC), and left supramarginal gyrus, respectively. To test the

generalisability of these clusters asmarkers of unconsciousness,

we defined ROI as the average activity of all voxels within 10mm

around the centroid of each cluster observed in the Dex data set

(Supplementary Table S3). Modelling the beta/delta power at

these ROI from the independent Prop and Sleep data showed

similar results to the Dex data (Fig 5b and Supplementary

Table S4). The one exception was the left parietal ROI, which

was consistent for Dex and Prop but not for Sleep. Beta/delta

power within the anterior and posterior medial clusters during

Unc ranged from 16.7% to 53.2% of that recorded during DC (see

Supplementary Table S4 for specific percentages in each cluster

and condition). The non-significant results from the contrast of

Unc and DC can be found in Supplementary Figure S2.

We also applied our ensemble SVM machine learning

approach to these significant ROI using the samemethodology

as described for the DC vs CC classification (Fig 4c). An

exception was that for this model, we only trained our model

using beta/delta activity from voxels that were included as

part of the ROI (the same voxels shown in Fig 5b). Again, the
ensemble performed nearly perfectly within the training set

(AUC 0.972 [95% CI: 0.9507; 0.9879]), but it also performed above

chance levels in the independent Prop and Sleep test sets (AUC

0.622 [95% CI: 0.5176; 0.7238]) (Fig 5c). These results again

support the generalisability and predictive utility of our find-

ings in identifying unconsciousness under variable conditions.

Because the left parietal ROI was not significant in the sleep

condition, we performed a sensitivity analysis, in which the

ensemble was trained using only the fourmedial ROI that were

consistent across all conditions. This model performed

comparably with the model with all five ROI (AUC 0.635 [95%

CI: 0.5158; 0.7478]) (Supplementary Fig. S3b).
Discussion

Diffuse increases in delta and SWA and widespread sup-

pression of gamma and beta bands are associated with

anaesthetic drugs and non-rapid eye movement sleep.5 29e32

Unfortunately, because of lack of subjective reports, these

markers have often been assumed to be markers of uncon-

sciousness. Our data suggest that these broad spectral

changes are more accurately described as markers of sensory

disconnection, whilst more focal changes within the cingu-

late cortex are markers for loss of consciousness. However,

the simple marker of occipital delta power did not show

adequate classification of the conscious state across anaes-

thetics and sleep.

The PCC is a core node of the default mode network (DMN),

is highly active during autobiographical memory recall and

introspection, and has been implicated in a posterior hot

zone proposed to represent the neural correlates of con-

sciousness.12,33,34 The ACC is also part of the anterior DMN,35,36

and it has been proposed to be a key node supporting con-

sciousness in the global neuronal workspace model.37,38 Both

regions have been associated with deficits in consciousness

individually.33,39 Our data suggest that both anterior and

posterior cingulate regions of the DMN are critical for con-

sciousness, challenging the recent notion of a ‘posterior hot

zone’.6 Moreover, recent fMRI studies have shown reductions

in DMN activation during behavioural unresponsiveness for

multiple anaesthetics and unresponsive wakefulness syn-

drome, and a recent positron emission tomography (PET)

study identified reduced activity in ACC and PCC in unre-

sponsive anaesthetised and sleeping subjects.13,40 However,

because of the limitations of responsiveness measurements,

the authors were unable to conclude that these reductions

were indicative of unconsciousness per se, as opposed to

disconnected or covert consciousness. Our data build on this

work by showing that reduced activity in these DMN nodes is

associated with unconsciousness.

Our work is a significant advance on prior work as we work

to disentangle disconnected conscious-dream states from

unconsciousness.13 Prior studies that claimed to study con-

sciousness used unresponsiveness as a marker of uncon-

sciousness. We have attempted to overcome this substantial

limitation by using patient report to verify conscious state.

These prior studies did not consider the confounding induced

by changing drug concentrations. We adjusted for changes in

drug concentrations in our models to remove non-specific

drug effects from our analyses and focus our results on the

change in conscious state.

Potential limitations in this study stem from our depen-

dence on subjective reports to define the subjects’ internal

state. It is impossible to rule out subject error in reporting their
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state of consciousness. This is a substantial limitation to all

attempts to study consciousness and a primary motivation for

the current study. Experiments with pharmacological in-

terventions also run the risk of increasing self-report error

because of memory interference. We reason that miscoded

data attributable to report error are only likely to increase the

variance in our LMEMs, which could lead to more false-

negative but not more false-positive results. Similarly, such

miscoded data points would be expected to lower the
estimated accuracy of our machine learning classifiers. We

believe that, if such errors are present, results that achieve

statistical significance in spite of them are certainly robust.

We also acknowledge the limited spatial specificity of EEG

technology. Inprinciple, this addsuncertainty to the anatomical

sources of our findings.However, the overlapwith prior findings

using othermodalities (e.g. PET and fMRI) gives us confidence in

these results, although these prior studies could not distinguish

disconnected conscious and unconscious states.
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Our findings provide evidence that sensory disconnection

and unconsciousness have distinct EEG signatures that are

conserved across drug-induced and endogenous sleep states.

Sensory disconnection was accompanied by widespread al-

terations in EEG activity across many frequency bands, whilst

loss of consciousness was associated with a more specific

reduction in activity within the ACC and PCC. This research is

an important step in disentangling and quantifying the con-

structs of connectedness and consciousness, which are

necessary for progressing our understanding of these funda-

mental phenomena and our ability to measure them objec-

tively for clinical and research purposes.
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