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Abstract 

Cigarette smoke is a complex aerosol containing a large number of compounds with a variety of toxicity and carci-
nogenicity. Long-term exposure to cigarette smoke significantly increases the risk of a variety of diseases, including 
chronic obstructive pulmonary disease (COPD) and lung cancer. Epithelial–mesenchymal transition (EMT) is a unique 
biological process, that refers to epithelial cells losing their polarity and transforming into mobile mesenchymal cells, 
playing a crucial role in organ development, fibrosis, and cancer progression. Numerous recent studies have shown 
that EMT is an important pathophysiological process involved in airway fibrosis, airway remodeling, and malignant 
transformation of COPD. In this review, we summarized the effects of cigarette smoke on the development and 
progression of COPD and focus on the specific changes and underlying mechanisms of EMT in COPD induced by 
cigarette smoke. We spotlighted the signaling pathways involved in EMT induced by cigarette smoke and summarize 
the current research and treatment approaches for EMT in COPD, aiming to provide ideas for potential new treatment 
and research directions.

Keywords:  Epithelial–mesenchymal transition, Cigarette smoke, COPD, Signaling pathways

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Chronic obstructive pulmonary disease (COPD) is a 
common, preventable, and treatable condition charac-
terized by persistent respiratory symptoms and airflow 
restriction caused by respiratory and/or alveolar abnor-
malities, usually caused by high exposure to harmful par-
ticles or gases [1]. COPD is currently the third leading 
cause of death globally and is associated with significant 
social and economic burdens [2, 3].

The most commonly encountered risk factor for COPD 
is long-term direct or passive exposure to cigarette smoke 
(CS). Cigarette smoke contains several toxic compounds 

that contribute to the pathogenesis of many respiratory 
diseases, such as COPD and lung cancer [4]. Compared 
with non-smokers, smokers are more susceptible to suf-
fering from respiratory symptoms and abnormal lung 
function, with a higher annual decline rate of FEV1 and a 
higher COPD mortality rate [5, 6].

Epithelial–mesenchymal transformation (EMT) is a 
unique biological process in which epithelial cells lose 
their polarity and transform into mobile mesenchymal 
cells [7]. EMT serves a crucial role in embryonic devel-
opment, chronic inflammation, tissue reconstruction, 
cancer metastasis, and a variety of fibrotic diseases [8, 9]. 
Moreover, EMT is increasingly being considered a pos-
sible core pathophysiological factor in COPD and lung 
cancer progression [10–14]. In smoking-related COPD, 
recent studies further highlight that EMT is associated 
with airway remodeling, airway fibrosis, and subsequent 
airflow obstruction and may be associated with a higher 
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prevalence of lung cancer [15–18]. All of these findings 
suggest the importance of EMT in the development of 
smoking-related COPD. It is important to better under-
stand the mechanisms that lead to EMT and to develop 
treatments that target EMT.

Here, we provide a brief overview of the pathogen-
esis of cigarette smoke-induced COPD. We focus on the 
specific changes and underlying mechanisms of EMT in 
COPD induced by cigarette smoke, which may provide 
new ideas for innovative prevention or treatment targets 
for COPD. This review may contribute not only to under-
standing the key elements of EMT but also to developing 
new strategies for the treatment of COPD.

Cigarette smoke and COPD
Cigarette smoke
Cigarette smoke is a complex aerosol composed of gas 
phase and particle phase. It contains more than 7000 dif-
ferent types of chemical components with various toxic 
and carcinogenic properties [19]. Among these sub-
stances are nicotine, carbon monoxide, carbon dioxide, 
tar, ammonia, formaldehyde, acrolein, acetone, polycyclic 
aromatic hydrocarbons (benzo (a) pyrene), hydroxyqui-
nones, nitrogen oxides, and heavy metals (nickel, cad-
mium, chromium, and arsenic) [20]. The adverse effects 
of cigarette smoking on human health have been well 
documented over the past decades. It has been suggested 
that cigarette smoking has irreversible effects on genetic 
material (DNA mutations) as well as possibly reversible 
effects on the epigenetic landscape (DNA methylation 
and chromatin modification) [21]. It is increasingly rec-
ognized that smoking not only causes health problems 
for smokers and passive smokers, but also environmental 
hazards, with consequences for ecosystems and human 
health [22]. Cigarette smoke is an important risk factor 
for several diseases, such as COPD, cardiovascular dis-
ease, and cancer [23–25]. Smoking is the primary cause 
of preventable disease globally. Public health should pro-
mote understanding of the current pathology of smok-
ing-related diseases and encourage individuals to reduce 
their exposure to cigarette smoke, thereby reducing the 
harmful consequences of related diseases.

Effects of cigarette smoke on the development 
and progression of COPD
Factors that influence the development and progression 
of COPD include genetic factors, age and gender, and 
exposure to particulate matter such as cigarette smoke. 
Cigarette smoking is the most crucial risk factor for the 
development of COPD. Repeated cigarette smoke expo-
sure can cause chronic inflammation in the lungs, which 
increases the number of certain inflammatory cells, 
as well as structural changes resulting from repeated 

damage and repair. These changes contribute to the 
clinical features of COPD, including airway remodeling, 
chronic bronchitis, and emphysema [1]. The following is 
a brief overview of the pathological changes, and cellular 
and molecular mechanisms underlying smoking-induced 
COPD.

The ciliated epithelium of the respiratory tract is 
the first protective line against harmful substances. It 
removes pathogens from the mucus layer through muco-
ciliary clearance, establishes barriers through tight and 
adherent junctions, and activates and recruits immune 
cells in the submucosa through cytokine and chemokine 
production [26, 27]. Cigarette smoke contains a large 
number of toxic substances, including a large number 
of oxygen metabolite-derived or reactive oxygen spe-
cies (ROS), which can directly disrupt this physical bar-
rier, resulting in increased permeability of respiratory 
epithelial cells and hindering clearance of mucus cilia 
[28]. Importantly, cigarette smoke could induce oxidative 
damage to cell membrane lipids through various mecha-
nisms, such as DNA damage, lipid peroxidation, amino 
acid oxidation, inorganic enzyme cofactor oxidation, etc. 
[29–31].

In the early stage of smoking, protective responses 
and DNA repair triggered by the lung barrier may 
inhibit these changes to some extent [32]. In the case 
of long-term smoking, these mechanisms seem to break 
down and lead to disease progression. Chronic inflam-
mation and the oxidant–antioxidant balance are the 
main driving molecular mechanisms promoting the 
progression of COPD and exacerbations [33, 34]. Spe-
cifically, cigarette smoke activates damage-associated 
molecular patterns (DAMP) and pathogen-associated 
molecular patterns (PAMPS) in lung epithelial cells 
and alveolar macrophages, which activate Toll‑like 
receptors (TLRs) and NOD‑like receptors (NLRs). This 
process produces excess ROS and reactive nitric oxide 
(RNS), which may lead to an oxidation/antioxidant 
imbalance [35, 36]. Stimulants such as ROS in cigarette 
smoke attract macrophages, neutrophils, dendritic 
cells, natural killer cells, and T lymphocytes to migrate 
to the lungs by releasing cytokines and chemokines 
(e.g., NF-κB, IL-8, IL-1β, ROS, and TNF-α). During 
the chronic phase, inflammatory cells are continu-
ously recruited and release inflammatory mediators, 
such as proteases (e.g., MMPs and neutrophil elastase), 
chemokines, cytokines, and ROS. Epithelial cells and 
macrophages also release fibroblast mediators, such 
as TGFβ, which activate fibroblasts and lead to small 
airway fibrosis. In addition, cigarette smoke impairs 
structural cell function and initiates the EMT, a pro-
cess leading to dysfunction in endothelial as well as an 
epithelial barrier, hamper tissue repair, and eventually 
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leading to fibrosis. Thus, chronic exposure to ciga-
rette smoke causes persistent inflammation and oxida-
tive stress in the lungs, leading to repeated repair and 
remodeling (leading to airway remodeling), stimulating 
mucus hypersecretion (leading to chronic bronchitis), 
and degrading the alveolar walls (leading to emphy-
sema) (Fig.  1) [28, 37–40]. Cigarette smoke induces 
COPD-related airway remodeling phenotypes, includ-
ing airway epithelial hyperplasia, myocyte hyperpla-
sia, squamous metaplasia, EMT, ciliary alterations, loss 
of secretory cells that produce Scgb1a1, and reduced 
integrity of the apical junction barrier that controls air-
way epithelial permeability. Together, these phenotypes 

lead to airway obstruction and reduced airway epithe-
lial barrier and host defense function [28, 41].

In recent years, it has become increasingly clear that 
the structural integrity and functional stability of multi-
ple organelles are important for the function and survival 
of cells. Various organelle dysfunction plays an impor-
tant role in the pathogenesis and progression of COPD 
[42]. In fact, these organelles showed significant struc-
tural derangement and aberrant function under expo-
sure to cigarette smoke. The excessive oxidative burden 
is considered to be one of the underlying mechanisms of 
COPD epithelial barrier breakdown. Chronic exposure of 
the lungs to cigarette smoke disrupts the mitochondrial 
activity and endoplasmic reticulum (ER) homeostasis 

Fig. 1  Overview of the effect of cigarette smoke on the development and progression of COPD. Cigarette smoke activates DAMP and PAMPS 
in lung epithelial cells and alveolar macrophages and produces excess ROS. Stimulants such as ROS attract macrophages, neutrophils, DC, NK 
cells, and T lymphocytes to migrate to the lungs by releasing cytokines and chemokines (e.g., NF-κB, IL-8, IL-1β, ROS, TNF-α). During the chronic 
phase, inflammatory cells are continuously recruited and release inflammatory mediators, such as proteases (e.g., MMPs and neutrophil elastase), 
chemokines, cytokines, and ROS. Epithelial cells and macrophages also release fibroblast mediators, such as TGFβ, which activate fibroblasts and 
lead to small airway fibrosis. In addition, cigarette smoke induces epithelial EMT, which leads to dysfunction of endothelial cells and epithelial 
barrier, hinders tissue repair, and ultimately leads to fibrosis. Hence, long-term exposure to cigarette smoke causes sustained inflammation and 
oxidative stress in the lungs, leading to repeated repair and remodeling (leading to airway remodeling), degrading the alveolar walls (leading to 
emphysema), and stimulating mucus hypersecretion (leading to chronic bronchitis)
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that triggers an unresolvable unfolded protein response 
activation. Mitochondrial dysfunction induces oxidative 
stress through excessive production of mitochondrial 
ROS, thereby increasing epithelial barrier permeability. 
Furthermore, cigarette smoke leads to the accumulation 
of damaged and misfolded proteins in the endoplasmic 
reticulum (ER), a condition known as ER stress, accom-
panied by enhanced unfolded protein response (UPR). 
Although UPR is a compensatory cellular response that 
reduces protein synthesis and enhances protein folding 
and degradation, UPR also contributes to lung cell apop-
tosis and lung inflammation during excessive ER stress 
[43–47]. Therefore, quality control of multiple organelles 
is of great significance for maintaining cell survival and 
function, and maybe a potential therapeutic target for 
COPD.

The possible link between cigarette smoking‑related COPD 
and lung cancer
Cigarette smoking is the principal factor driving the 
pathogenesis and progression of COPD and lung cancer. 
Several epidemiological and observational cohort stud-
ies have systematically confirmed the close relationship 
between COPD and lung cancer [48–52]. Epidemiologi-
cal studies have shown a four- to sixfold increased risk 
of lung cancer in patients with COPD, with the onset of 
lung cancer associated with the severity of COPD [53, 
54]. Significantly, many phenotypic and genotypic fea-
tures of COPD, such as a history of smoking, chronic 
bronchitis, airway obstruction, and emphysema, are 
associated with an increased risk of lung cancer [55, 56]. 
COPD has been reported to be an additional burden and 
risk factor for the development of lung cancer, primarily 
squamous cell carcinoma, especially in smokers [10, 57]. 
Genetic susceptibility, DNA methylation changes, local 
chronic lung inflammation, and abnormal repair mecha-
nisms in COPD patients are important potential factors 
for lung cancer development [58–60]. Indeed, COPD and 
lung cancer have many common biological mechanisms, 
including chronic inflammation, oxidative stress, matrix 
degradation, genetic susceptibility, lung barrier dysfunc-
tion, and epithelial–mesenchymal transition (EMT) [4, 
59, 61]. Among these, oxidative stress, chronic inflamma-
tion, and EMT are the most studied drivers of carcino-
genesis. Cigarette smoke exposure causes inflammation, 
oxidative stress, and lung barrier dysfunction, and leads 
to EMT that end up with ultimately abnormal tissue 
repair [4]. The protracted inflammation gave rise to EMT 
which ended up with aberrant tissue repair. This might 
help explain the link between COPD and lung cancer in 
smokers and may provide guidance for management and 
prevention strategies for COPD and lung cancer.

Epithelial–mesenchymal transformation in chronic 
obstructive pulmonary disease
Epithelial–mesenchymal transformation
The pulmonary epithelial cell lining forms an exter-
nal protective barrier against the environmental toxins 
produced by smog and microbial infection. EMT is a 
unique biological process, that refers to epithelial cells 
losing their polarity and transforming into mobile mes-
enchymal cells. Generally, EMT can be classified into 
three main types based on the physiological tissue set-
ting: type I EMT occurs in embryonic development and 
organogenesis, type II EMT occurs in tissue repair and 
fibrosis, and type III EMT occurs in epithelial malignan-
cies associated with aggressive or metastatic phenotypes 
[62]. The Morphological alterations characteristic of 
EMT include the disruption of epithelial cell junctions, 
the destruction of polar complex, and the reorganization 
of cytoskeletal structure. Molecularly, EMT is character-
ized by downregulation of epithelial junction proteins 
(e.g., E-Cadherin and Occludins) and activation of EMT 
transcriptional activators (e.g., Snail, Slug, and Twist) and 
mesenchymal markers (e.g., S100A4, Vimentin, Fibronec-
tin, and N-Cadherin) [63].

Alterations of epithelial–mesenchymal transformation 
biomarkers in COPD
The role of EMT is well documented in embryonic devel-
opment, wound healing, tumor progression, and tis-
sue fibrosis [64]. Aberrant wound repair and fibrosis 
are associated with many respiratory diseases. EMT has 
been implicated as fundamental for lung development 
and many respiratory diseases, particularly those char-
acterized by increased deposition of collagen and other 
ECM proteins in the airways or parenchyma. These dis-
eases include COPD, lung cancer, asthma, pulmonary 
fibrosis, and bronchiolitis obliterans syndrome [62, 65]. 
Extensive research has shown that EMT is activated in 
the airway tissue of smokers, particularly in those cur-
rent-smoking COPD patients [66–69]. EMT is increas-
ingly being considered a possible core pathophysiological 
factor in COPD and lung cancer progression [10–14]. 
Interestingly, EMT has been linked to airway fibrosis, air-
way remodeling, and airflow obstruction, and may even 
contribute to the high incidence of lung cancer in COPD 
patients [8, 12, 70]. In this part, we will describe in detail 
the alterations of EMT biomarkers in COPD.

EMT transcription factors and mesenchymal markers 
were up-regulated and epithelial markers down-regu-
lated in COPD, and were associated with lung function, 
as shown in Table 1. Specifically, the expression of EMT-
related transcription factor Snail1 in α 1-antitrypsin defi-
cient COPD was significantly higher than that in normal 
COPD [71]. Moreover, Mahmood et  al. [17] found that 
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transcriptional factors Snail1 and Twist were upregula-
tion and nuclear translocation in smokers and current-
smoking COPD, and their expression is closely associated 
with EMT activity (S100A4 expression) and the levels of 
airflow obstruction.

Among the expression alterations of epithelial and 
mesenchymal cell markers, E-cadherin is considered a 
prominent hallmark of EMT and serves a central role in 
the EMT process. E-cadherin is an adhesion molecule 
responsible for the organization of interepithelial junc-
tions [72, 73]. Numerous studies have shown that E-cad-
herin was markedly decreased in smokers and COPD [68, 
74–78]. Particularly, the expression of E-cadherin was 
positively related to FEV1/VC ratio [74]. The extracellu-
lar portion of E-cadherin can be degraded by proteases 
including MMPs to form circulating molecules soluble 
E-cadherin (sE-cadherin). Shirahata et  al. [79] demon-
strated that Plasma sE-cadherin levels were significantly 
lower in patients with COPD and symptomatic smokers 
than in healthy smokers and healthy non-smokers, and 
sE-cadherin levels were associated with the severity of 
airflow limitation in COPD and symptomatic smokers 
plasma.

In addition, mesenchymal markers (S100A4, N-cad-
herin, Vimentin, and α-SMA proteins) and ECM pro-
teins (type I collagen and fibronectin) were also found 
increased in smokers and COPD. S100A4 (also named 

fibroblast specific protein 1, FSP1) is considered a 
canonical mesenchymal marker in EMT with biologi-
cal functions of promoting cell motility, invasion, ECM 
remodeling, autophagy, and angiogenesis [80]. Numerous 
studies have demonstrated that S100A4 was upregulated 
in COPD and inversely associated with airflow limitation 
[67, 69, 81, 82]. Vimentin is expressed in all mesenchymal 
cells and is the core of EMT-mediated metastasis. Dur-
ing EMT, vimentin can induce cell migration by forming 
cell processes, reducing cell adhesion, and increasing cell 
migration ability [83]. Vimentin has also been found to 
be upregulated in smokers and COPD [67, 68, 74, 75, 77, 
78], and the expression of vimentin in the bronchial epi-
thelium of COPD is associated with basement membrane 
thickening and airflow limitation [74].

Additionally, there is an increasing number of stud-
ies identifying new biomarkers for EMT in COPD. 
β2-microglobulin (β2M), also known as the class I 
major histocompatibility complex (MHC I) light chain, 
is involved in the regulation of EMT processes in sev-
eral diseases [84–87]. It was shown that plasma β2M 
concentrations were significantly higher in smoking 
patients with COPD and emphysema than those in nor-
mal subjects [88]. Wu et al. [89] indicated that β2M was 
increased in COPD patients and was correlated with 
lower pulmonary diffusing capacity values, increased 
alveolar wall/septal thickening (fibrosis changes), and 

Table 1  Alterations in epithelial–mesenchymal transitions biomarkers in COPD and pathological significance

EMT biomarkers Physiological role Alterations in COPD Refs

Snail1 EMT transcriptional activator Higher expression in smokers, COPD with current smoking, and 
COPD with α1-antitrypsin deficiency, and is associated with EMT 
activity and lung function

[17, 71]

Twist EMT transcriptional activator Upregulation and nuclear transport in smokers and current-
smoking COPD, and expression is closely related to both emt 
activity and airway obstruction

[17, 69]

S100a4 Mesenchymal marker Upregulation in COPD and inversely associated with airflow 
limitation

[67, 69, 81, 82]

Zo-1 Tight junction marker Deceased in the smokers and patients with COPD [68, 74]

E-cadherin Epithelial marker The lower expression was found in smokers and patients with 
COPD

[68, 74–78]

N-cadherin Cell-surface proteins Increased in smokers and COPD [75, 78]

Collagen type I ECM proteins Higher expression in smokers and COPD [68, 75]

Vimentin Mesenchymal markers Increased in smokers and COPD, epithelial expression of vimen-
tin correlated with airway obstruction

[67, 68, 74, 75, 77, 78]

Α-SMA Cytoskeletal marker Increased in smokers and COPD [68, 74, 75, 78]

Fibronectin ECM proteins Increased in smokers and COPD [75]

Mmp9 Basement membrane Increased in smokers and COPD [75]

Β2-microglobulin MHC I light chain Increased in COPD [88, 89]

Sphingosine-1-phosphate Bioactive sphingolipid metabolite Upregulated and inversely associated with lung function in 
COPD

[81]

Cullin4A E3 ubiquitin ligase Upregulation in smokers and COPD, and negatively correlated 
with the FEV1%

[97]
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higher expressions of TGF-β1, Smad4, and a-SMA. 
They further found that β2M expression of lung tis-
sues was correlated with EMT and fibrosis progression 
in cigarette smoke-exposed COPD rats. Sphingosine-
1-phosphate (S1P), a bioactive sphingolipid metabo-
lite, plays an important role in the occurrence and 
development of cancer by regulating and promoting 
cell growth, migration, invasion, and cell survival [90]. 
Previous studies found that S1P drove the EMT pro-
cess via the TGF-β axis and was correlated with lung 
function in patients with idiopathic pulmonary fibrosis 
and asthma-like disease [91, 92]. In  vivo studies have 
shown that S1P expression is increased and associated 
with pulmonary resistance in cigarette smoke-induced 
COPD mice [93]. The latest finding showed that serum 
S1P was upregulated and inversely associated with lung 
function in patients with COPD. In addition, serum S1P 
was positively associated with mesenchymal marker 
S100A4 in COPD [81]. Cullin 4A (CUL4A), an E3 ubiq-
uitin ligase, is involved in the regulation of the cell 
cycle, DNA replication, and DNA damage repair [94]. 
CUL4A has highly expressed in non-small cell lung 
cancer (NSCLC) tissues and can promote lung cancer 
progression by inducing EMT [95, 96]. Ren et  al. [97] 
found that the expression of CUL4A in lung epithelium 
of smokers and smoke patients with COPD was signifi-
cantly higher than that of non-smokers and CUL4A was 
negatively correlated with the FEV1%. Moreover, they 

found that silencing CUL4A inhibited CSE-induced 
EMT in human small airway epithelial cells.

During the EMT process in COPD, alterations in cell 
phenotypes contributed to the emergence of specific 
biomarkers. These specific biomarkers can identify lev-
els of EMT activity level and may be used to assess air-
flow restriction, COPD exacerbation risk, and malignant 
transformation. Future studies are needed to clarify the 
association of specific EMT biomarkers with lung func-
tion, pulmonary fibrosis, and malignant transformation 
in smoking-related COPD patients.

Signalling pathways involved in EMT induced 
by cigarette smoke in COPD
Recently, several studies have explored the important role 
of cigarette smoke in the induction of EMT in COPD. We 
summarized these reports and suggested that cigarette 
smoking may induce the occurrence of EMT by using 
the specificity of different signaling pathways. This sec-
tion provides a brief overview of the mechanisms and 
signaling pathways involved in EMT induced by cigarette 
smoke in COPD. These signaling pathways include the 
TGF-β/Smad signaling pathway, the Wnt/β-catenin sign-
aling pathway, PI3K-Akt signaling pathway, and NF-κB 
signaling pathway, etc. (Fig.  2). A better understanding 
of the signaling pathways underlying cigarette smoke-
induced EMT could provide new targets and potential 
strategies for COPD patients.

Fig. 2  Schematic overview of EMT-related signaling pathways in cigarette smoke-induced COPD and the potential therapies targeting these 
signaling pathways. Cigarette smoke can induce EMT in COPD through multiple different signaling pathways. These pathways are intricate and 
inextricably partly crosslinked. Additionally, potential therapies based on targeting these signaling pathways were shown. Each is depicted in the 
text
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TGF‑β/Smad signaling pathway
The transforming growth factor-β (TGF-β) superfam-
ily consists of a group of distinct polypeptides involved 
in regulating a wide range of cellular and physiological 
processes, including proliferation, differentiation, migra-
tion, adhesion, ECM synthesis and cell death [98]. TGF-β 
can induce EMT via both canonical TGF-β/Smad signal-
ing pathway and non-canonical pathway (e.g. ERK, P38, 
MAPK, PI3K/Akt) [99, 100]. In the canonical TGF-β/
Smad signaling pathway, TGF-β ligands regulate key 
transcription factors that promote EMT through Smads 
protein and synergistic kinase pathway. In general, TGF-
β1 and the Smad signaling pathways are regarded as the 
key to the EMT-related pathogenesis of COPD [101, 
102]. Particularly, TGF-β1 is a multifunctional cytokine 
that induces angiogenesis and regulation of extracellular 
matrix (ECM) components, a which is considered to be 
a key regulator of COPD airway pathology [16]. Studies 
have shown that exposure to TGF-β1 induces mesen-
chymal phenotype and EMT in cultured human bron-
chial and lung epithelial cells in  vitro [74, 103–105]. In 
addition, TGF-β1 expression was significantly increased 
in the airway epithelium of both smokers and COPD 
patients, accompanied by the expression of ρ Smad2/3 
[16, 106]. Likewise, cigarette smoke induces EMT in 
lung and bronchial epithelial cells through TGF-β1/
Smad signaling pathway in  vivo and in  vitro [107–111]. 
Together, these studies suggest that cigarette smoke tar-
geting the TGF-β/Smad signaling pathway induces EMT 
in COPD.

Wnt/β‑catenin signaling pathway
The Wnt/β-catenin signaling pathway plays an important 
role in embryonic development, adult tissue homeostasis, 
and regeneration, and its abnormal regulation is closely 
related to various diseases [112]. After activation of the 
Wnt/β-catenin pathway, β-catenin is translocated to the 
nucleus and interacts with the transcription factor LEF/
TCF to activate transcription. In addition, the Wnt/β-
catenin signaling pathway has been reported to regulate 
EMT in several cancers [113]. Interestingly, β-catenin is a 
crucial regulator in the Wnt/β-catenin signaling pathway, 
and phosphorylation or down-regulation of β-catenin 
can inhibit the activation of the Wnt/β-catenin signaling 
pathway [114]. Numerous recent studies indicated that 
the Wnt/β-catenin signaling is activated in smokers and 
COPD, and is strongly correlated with EMT activity and 
airway obstruction. Carlier et al. [66] reported that Wnt/
β-catenin signaling pathway-related genes and proteins 
were significantly upregulated in the airway epithelium 
of COPD smokers. They further found that activation of 
the Wnt/β-catenin signaling pathway in human airway 
epithelial cells from COPD smoking patients resulted 

in increased Vimentin expression, increased fibronectin 
release, and enhanced TGF-β1/Smad signaling. Con-
versely, inhibition of the Wnt/β-catenin signaling path-
way increases ciliary cell count, epithelial polarity, and 
barrier function, while inhibiting EMT, thereby reversing 
COPD characteristics. This study demonstrates the rela-
tionship between Wnt/β-catenin and EMT and its impor-
tant role in promoting COPD pathology. Moreover, the 
expression of β-catenin and Snail1 is up-regulated in the 
airway wall of both smokers and COPD, and their expres-
sion was strongly associated with typical EMT biomark-
ers (S100A4) and airway obstruction [17, 115]. Likewise, 
in  vitro studies have shown that cigarette smoking and 
nicotine induce EMT by activating the Wnt/β-catenin 
signaling pathway in HBE cells and A549 cells [116, 117]. 
Therefore, regulation of Wnt/β-catenin could serve as a 
promising therapeutic strategy to control EMT induction 
by cigarette smoking in COPD.

PI3K/AKT signaling pathway
The PI3K/AKT signaling pathway is a key regulator of 
important biological functions, including metabolism, 
cell proliferation, epithelial–mesenchymal transition, 
survival, and apoptosis [118]. Rac1 is involved in several 
dynamic cell biological processes, such as cell survival, 
cell–cell contact, cell motility, EMT, and cell invasion 
[119]. A previous study showed CS-induced EMT via 
Rac1/PI3K/Akt and Rac1/Smad2 signaling pathways. 
Pharmacological inhibition of Rac1 could alleviate TGF-
β1 production and prevent alterations in the expression 
of EMT markers in CS-exposed mice. In addition, knock-
down or inhibition of Rac1 ameliorated CSE-induced 
TGF-β1 release and CSE-induced EMT and inhibited 
CSE-induced Akt and Smad2 activation in A549 pulmo-
nary epithelial cells. Furthermore, inhibition of PI3K, 
Akt, or Smad2 could suppress CSE-induced alterations 
in epithelial and mesenchymal marker expression [107]. 
Another study has found that Rac1 could regulate ciga-
rette smoke-induced pulmonary inflammation in the lung 
through the STAT3 and Erk1/2 MAPK signaling path-
ways [120]. According to Milara et  al. [121], in primary 
human bronchial epithelial cells, CSE induces EMT par-
tially through the activation of Rac1, PI3K/Akt/β-catenin 
pathways, and the generation of ROS. Particularly, EMT 
can be induced by TGF-β through the activation of PI3K/
AKT and MAPK in the Smad-independent pathway 
[122–124]. mTOR is a member of the PI3K family and an 
effector protein downstream of the PI3K/AKT signaling 
pathway [125]. A study by Jiang et al. [126] found that CS 
exposure in mice and CSE exposure in bronchial epithe-
lial cells could induce EMT by activating the Akt signal-
ing pathway. They further demonstrated inhibition of Akt 
activity can inhibit the progression of smoke-induced 
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EMT by down-regulating TGF-β1/Akt/Smad/mTOR and 
Akt/P38 MAPK signaling pathway. Collectively, these 
results suggest that PI3K/AKT signaling pathway activa-
tion may be involved in the pathogenesis of CS-induced 
pulmonary EMT and has potential therapeutic signifi-
cance in COPD, lung cancer, and other smoking-related 
diseases.

NF‑κB signaling pathways
The transcription factor nuclear factor-kappa B (NF-kB) 
is an essential stressor in the cellular environment and 
regulates a series of genes involved in survival, oxida-
tive stress, inflammation, and immunity [127]. EMT is 
regarded as an intersection of inflammation, oxidative 
stress, fibrotic diseases, and cancer. Moreover, NF-kB is 
a major pro-inflammatory transcription factor activated 
by inflammatory cytokines and ROS, which is one of 
the key roles in the formation of EMT [128, 129]. Zhao 
et  al. [130] reported that the NF-κB signaling pathway 
is involved in CSE-induced EMT in HBE cells, suggest-
ing that NF-κB activation acts as a bridge between CSE-
induced chronic inflammation, EMT, and lung cancer. 
The data showed that inhibition of NF-κB activation 
could block CSE-induced upregulation expression of 
E-cadherin, and reverse the downregulation of IL-6 and 
N-cadherin in HBE cells. In addition, the study found that 
silencing of NF-κB decreased CSE-induced colony for-
mation and the invasion and migration capacities in HBE 
cells [131]. Li et al. [132] further demonstrated that CSE 
can induce EMT through activation of the IL17R/NF-κB 
signaling pathway in murine bronchial epithelial cells. 
Interestingly, Hong et  al. [133] used N-acetylcysteine 
(NAC), an inhibitor of the oxidative stress signaling path-
way, to prove that the oxidative stress signaling pathway 
is involved in the cigarette smoke-induced EMT process. 
Taken together, the NF-κB signaling pathway is a suitable 
therapeutic target for CSE-induced EMT, inflammation, 
oxidative stress, and malignant transformation in COPD.

Other signaling pathways
EMT is an extremely complex pathological process, 
which is often not the activation of a single signal-
ing pathway. The protein tyrosine phosphatase Shp2 
is thought to be involved in chronic pneumonia and 
fibrosis [134]. Shp2 plays a key role in acute cigarette 
smoke-induced lung inflammation, in which pulmonary 
epithelial knockout of Shp2 reduced IL-8 release and 
lung inflammation in CS-exposed mice [135]. Further-
more, Liu et al. [136] found that Shp2 inhibition reduced 
BMP-9 production, EMT progression, and phosphoryla-
tion of ERK1/2, JNK, and SMAD2/3 in CS and CSE expo-
sure mouse lungs and pulmonary epithelial cells. MAPK, 
an intracellular Ser/Thr protein kinase, is involved in a 

variety of signaling pathways and plays an important role 
in cell cycle regulation [137]. Studies have reported that 
NAC can improve COPD-related pulmonary fibrosis by 
activating immune response and suppressing the EMT 
process through VWF/P38 MAPK signaling pathway 
in vivo and in vitro experiments [15]. In addition, TACE/
TGF-α/EGFR signaling pathway is found activated in 
CSE-exposed human airway epithelial cells, and blocking 
the TACE/TGF-α/EGFR signaling pathway can inhibit 
the CSE-induced EMT process [138].

P53 (TP53), as a tumor suppressor, is thought to be 
the most frequently mutated gene in cancer cells. There 
is increasing evidence that mutated p53 enhances tumor 
metastasis and affects EMT processes [139]. Moreover, 
a large number of recent studies have shown that p53 
signaling plays a role in regulating the EMT process in 
lung cancer [140–143]. Notably, chronic exposure to 
cigarette smoke has been linked to the development of 
p53 mutations and may contribute to p53 mutations in 
lung cancer [144–147]. A bioinformatics study has found 
that the P53 pathway may play an important role in pro-
moting the progression of COPD to lung squamous cell 
carcinoma [148]. In addition, studies have shown that 
p53 gene polymorphisms are associated with apoptotic 
signaling and smoking-related emphysema in smokers 
[149]. Additionally, previous studies have shown that 
p53 gene polymorphism was significantly related to the 
incidence of smoking-related COPD, and p53 protein 
was markedly increased in COPD smokers [150, 151]. 
Given the key role of p53 in EMT and lung cancer, ciga-
rette smoke-induced EMT may involve p53; thus, the 
relationship between P53, EMT, and cancer transforma-
tion in cigarette smoking-related COPD requires further 
investigation.

In fact, EMT induced by cigarette smoke in COPD is 
a complex network involving the regulation of multiple 
signaling pathways. These pathways are intricate, inevita-
bly partially cross-linked and require further exploration. 
Therefore, cigarette smoking induces EMT through the 
above signaling pathways, and whether there are other 
signaling pathways affecting EMT deserves further study.

Potential therapies for EMT in COPD
At present, bronchodilators (short-acting Beta2-ago-
nists (SABA) and long-acting Beta2-agonists (LABA)), 
antimuscarinic drugs (short-acting antimuscarin-
ics (SAMAs), and Long-acting muscarinic antagonists 
(LAMAs)), methylxanthines (Theophylline), anti-inflam-
matory agents, Inhaled corticosteroids (ICS), antibiot-
ics, mucolytic (mucokinetics and dmucoregulators), 
antioxidant agents (N-acetylcysteine, carbocysteine, and 
erdosteine) and Phosphodiesterase-4 (PDE4) inhibitors 
are commonly used drugs for the treatment of COPD 
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[1]. However, many patients are unable to manage their 
daily symptoms even with standard care. Therefore, 
there is a critical need to explore new drug targets and 
develop more effective drugs. EMT plays a critical role 
in the development of smoking-related COPD airway 
remodeling disease and related lung cancer, especially 
in smoking-related COPD, where it may lead to airway 
remodeling, obstruction/occlusion, and tumor devel-
opment. Therefore, drugs that inhibit the EMT process 
or kill EMT-type cells will be a novel therapeutic target 
for COPD. However, there are few studies on the anti-
EMT effects of different drugs and even fewer data from 
human clinical studies in vivo. Drugs already used to tar-
get COPD may be able to retarget their long-term anti-
EMT prophylaxis.

EMT is considered to be part of the pathophysiology of 
fibrosis, remodeling, and malignant consequences associ-
ated with COPD, and thus clinical trials targeting EMT 
have been conducted. The following sections, summa-
rized in Table 2, will give an overview of EMT-targeting 
therapies and an understanding of how these may specifi-
cally or non-specifically target the EMT process. These 
therapies are Inhaled corticosteroids (ICS), N-acetyl-
cysteine (NAC), Phosphodiesterase-4 (PDE4) inhibitors 
and statins, urokinase-type plasminogen activators and 
urokinase-type plasminogen activator receptor (uPA and 
uPAR), Adipose-derived stem cell-conditioned medium 
(ADSC-CM) and Ginsenoside Rg1. Partial potential 
therapies based on these signaling pathways are shown 
in Fig. 2. These therapies will require further mechanism 
exploration, and preclinical and clinical trials to establish 
their efficacy as a single or combined treatment of EMT 
in COPD.

Inhaled corticosteroids (ICS)
Inhaled corticosteroids (ICS) have become a standard 
treatment in more severe COPD, based on empirical 
results from large multicenter studies. A “proof of con-
cept” randomized controlled trial concluded that the use 
of inhaled corticosteroids for more than 6 months inhib-
ited EMT-related changes in COPD patients. Results 
showed that epithelial activation (EGFR expression), 
“clefts/fragmentation” in the Rbm, and EMT biomarkers 
(S100A4 and MMP-9) were significantly regressed after 
treatment in the ICS group compared to the placebo 
group [152]. According to some cohort studies, inhaled 
corticosteroids may reduce the incidence of lung cancer 
[153–155]. Interestingly, EMT activity in epithelial cells 
may be prone to malignant transformation, and EMT in 
the airway of COPD patients is likely to be an important 
bridge between airway fibrosis and cancer development 
[8]. An analysis of nine prospective cohorts suggests that 
inhaled corticosteroids have a protective effect against 

lung cancer in COPD patients. Results showed that 
inhaled corticosteroids were correlated with a reduced 
risk of lung cancer in COPD patients, providing clini-
cians with guidance for lung cancer prevention in COPD 
patients [156]. However, further study is needed to deter-
mine whether inhaled corticosteroids have a protective 
effect against lung cancer in COPD through anti-EMT. 
These may suggest that EMT may be a potential path-
way through which the therapeutic effects of inhaled 
corticosteroids may occur in COPD patients. This has 
important implications for treatment and public health 
policy. Because it recommends that inhaled corticoster-
oids or other drugs with similar effects be administered 
early in the natural course of COPD, this not only inhibits 
airway inflammation, but may also inhibit epithelial acti-
vation, EMT, and associated fibrosis and malignant con-
sequences. Larger sample sizes are needed in the future 
to verify whether inhaled corticosteroids are treated with 
EMT in COPD by acting directly on the EMT.

N‑acetylcysteine (NAC)
The antioxidant N-acetylcysteine (NAC) is a mucolytic 
agent that is involved in the treatment of COPD as a muc-
olytic agent and has been shown to prevent exacerbation 
of COPD [157, 158]. COPD rat models demonstrated 
that N-acetylcysteine significantly reduced α-SMA level, 
collagen volume fraction, wall thickness/bronchiole 
diameter, and wall area/total bronchiole area (MA%) in 
COPD rats. Moreover, NAC inhibits the EMT process 
by inhibiting VWF/P38 MAPK signaling pathway. This 
suggested antioxidant N-acetylcysteine may contribute 
to EMT inhibition, thereby alleviating COPD pulmonary 
fibrosis. NAC could ameliorate COPD-induced pulmo-
nary fibrosis by promoting immune response and inhibit-
ing the EMT process via the VWF/p38 MAPK axis [15].

Phosphodiesterase‑4 (PDE4) inhibitors and statins
Phosphodiesterase 4 (PDE4) inactivates adenosine cyclo-
phosphamide and guanosine cyclophosphamide and is 
the main PDE isoenzyme in cells involved in inflamma-
tory airway diseases such as COPD. Roflumilast, an oral 
PDE4 inhibitor, has proven to reduce the rate of acute 
exacerbation rates and help improve mortality and qual-
ity of life in COPD patients [159, 160]. Studies have 
found that PDE4 inhibitors could affect lung architec-
tural remodeling. In vivo studies indicate that roflumilast 
mitigated cigarette smoke-induced airspace enlargement 
and alleviated bleomycin-induced lung fibrotic and vas-
cular remodeling in mice [161, 162]. Likewise, Roflu-
milast N-oxide (RNO) protected CSE-induced EMT in 
human bronchial epithelial cells (HBECs). It was shown 
that RNO inhibited the upregulation of mesenchymal cell 
markers (α-SMA, vimentin, and collagen type I) induced 
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by CSE in HBECs. RNO also reversed the downregula-
tion of epithelial markers (E-cadherin, ZO-1, and KRT5) 
in HBECs. Moreover, RNO reduced mesenchymal mark-
ers while increasing epithelial markers in primary human 
bronchial epithelial cells isolated from smokers and 
COPD patients’ small bronchi. In addition, RNO reduced 
the CSE-induced increase in TGF-β1 release and Smad3 
and ERK1/2 phosphorylation [163].

Statins are commonly prescribed clinically to lower 
serum cholesterol. Retrospective studies [164–166] 
described statins improves survival in patients with 
lung cancer. However, whether statins’ effectiveness in 
lung cancer remains controversial [167, 168]. Nishi-
kawa et  al. [169] described statins suppress EMT and 
improve the prognosis of lung adenocarcinoma patients 
in a p53 mutation-dependent manner. Recently, popula-
tion pharmaco-epidemiological evidence suggests that 
statin use reduces the risk of lung cancer in patients with 
COPD [170, 171]. Milara et  al. [121] proved that RNO 
partly alleviated the CSE-induced EMT and simvasta-
tin increases the ability of RNO to Inhibit CSE-induced 
EMT in HBEC in  vitro. Moreover, PDE4 inhibitor and 
statin may act on different pathways involved in CSE-
induced EMT, such as ROS, PI3K/Akt, GTP-Rac1, and 
nuclear β-catenin. Further preclinical and clinical trials of 
PDE4 inhibitors and statins will be required to determine 
their efficacy as a single or combined treatment of EMT 
in COPD.

Urokinase‑type plasminogen activator and urokinase‑type 
plasminogen activator receptor (uPA and uPAR)
The binding of urokinase-type plasminogen activator 
(uPA) with urokinase-type plasminogen activator recep-
tor (uPAR) is involved in the proteolytic activation of 
plasmin, which degrades fibrin and other ECM compo-
nents, activating matrix metalloproteinases and promot-
ing cell migration [172]. A retrospective study found that 
uPA and uPAR expression was significantly increased 
in pulmonary macrophages and alveolar wall cells from 
patients with COPD compared to the control, and that 
uPA expression was positively correlated with colla-
gen levels [173]. Similarly, UPA and uPAR expression 
were increased in the airway epithelium of smokers and 
COPD patients compared with non-smokers. Moreover, 
in human small airway epithelial cell lines (HSAEpiCs), 
uPA and uPAR inhibition can block CSE-induced EMT 
by reversing the expression of E-cadherin and α-catenin 
and delaying the induction of N-cadherin and Vimentin 
[174, 175].

Adipose‑derived stem cell
Adipose-derived stem cells (ADSCs) are the most abun-
dant stem cell type in adults. The transplantation of 

ADSCs by intravenous injection could reduce inflamma-
tory cell infiltration, airway enlargement, and lung cell 
death in CS-exposure mice [176, 177]. In  vitro studies, 
ADSC-conditioned medium culture effectively reversed 
CSE-induced decreased E-cadherin expression, increased 
Vimentin expression, and accelerated cell migration in 
A549 cells [178]. This suggests that ADSCs might be a 
potential target for EMT in CSE-induced COPD or lung 
cancer. However, future animal studies and clinical trials 
are needed to verify these findings.

Ginsenoside Rg1
Ginsenoside Rg1 is the main active ingredient of Panax 
ginseng, having anti-inflammatory, antioxidant, and neu-
roprotective actions [179]. In CS-exposed COPD rats and 
CSE-exposed human bronchial epithelial (HBE) cells, 
Ginsenoside Rg1 alleviated CS or CSE-induced EMT via 
blocking the regulation of α-SMA and E-cadherin expres-
sion induced by CS or CSE. Additionally, ginsenoside Rg1 
inhibited CSE-induced EMT through the TGF-β1/Smad 
pathway in HBE [108].

Other EMT‑targeted therapies in clinical applications
EMT has been increasingly recognized as an interesting 
target for the development of new therapeutic strate-
gies. Particularly, multiple EMT-targeted therapies have 
emerged in oncology over the last decade. So far, rea-
sonable strategies such as inhibition of EMT induction, 
reversal of EMT process, and strategic killing of cells 
undergoing EMT seem to be promising in controlling the 
occurrence of EMT [180].

Galunisertib (LY2157299), a TGFβ receptor 1 inhibitor, 
has been studied in clinical trials in various solid tumors 
[181–184]. Notably, Galunisertib has been reported to 
be significantly sensitive to enzalutamide treatment in 
prostate cancer by inhibiting TGF-β-mediated EMT 
process [185]. This suggests that the anticancer effect 
of Galunisertib may be partly attributable to its abil-
ity to inhibit EMT. Additionally, other target inhibitors 
such as COX 2 inhibitors and AXL inhibitors have been 
found to block the EMT induction. Celecoxib, a selec-
tive cyclooxygenase‑2 inhibitor, has synergistic anti-can-
cer effects in different cancer types and has been found 
to inhibit the EMT process in oral squamous cell carci-
noma, hypopharyngeal ca, cancer and bladder cancer, 
etc. [186–189]. AXL is a tyrosine kinase receptor that 
has been reported as an oncogene in a range of cancers, 
including NSCLC [190]. Cabozantinib, a tyrosine kinase 
inhibitor that includes AXL, has been reported to reverse 
EMT-associated osimertinib resistance in NSCLC [191]. 
In addition, cabozantinib suppressed EMT-associated 
sunitinib resistance in renal cell carcinoma [192]. All-
trans retinoic acid (ATRA) is a front-line treatment of 
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acute promyelocytic leukemia and neuroblastoma [193, 
194]. ATRA is now widely used in preclinical and clinical 
studies and has shown great anticancer potential in phase 
II and III clinical trials in patients with various cancers 
[180]. Specifically, ATRA has been shown to reverse the 
EMT process in breast cancer cells and hepatocarci-
noma cells [195–197]. Compared with the prevention 
of EMT induction, a promising alternative strategy is to 
selectively target EMT-induced mesenchymal‐like can-
cer cells by therapeutically inhibiting the functions of 
EMT-specific markers. N-cadherin antagonist ADH-1 
is the synthetic cyclic peptide (also known as CHAVC 
and Exherin). The biological effects of ADH-1 on tumors 
have been extensively investigated in various preclinical 
animal models and clinical trials [198]. It was found that 
ADH-1 treatment significantly enhanced the anti-tumor 
effects of chemotherapy in melanoma [199]. In addition 
to anti-tumorigenic drugs, anti-fibrosis drugs also have 
potential EMT targeting effects. Notably, the anti-fibrosis 
drugs pirfenidone and nintedanib, which are approved 
for the treatment of idiopathic pulmonary fibrosis (IPF), 
appear to work by inhibiting the TGF-β pathway [200, 
201]. Pirfenidone has been reported to inhibit EMT in 
pulmonary fibrosis by regulating the Wnt/GSK-3β/β-
catenin and TGF-β1/SMad2/3 signaling pathways [202]. 
Furthermore, nintedanib inhibited EMT by mediating 
the TGF-β/Smad pathway in A549 alveolar epithelial cells 
[203]. Collectively, all of these EMT-targeted therapies 
hold great promise in terms of translating into inhibit-
ing the development of COPD and lung cancer. However, 
further preclinical experiments and clinical trials are 
required to validate the clinical benefits of EMT-targeted 
therapies in COPD.

Conclusions
In recent years, EMT has become one of the research 
hotspots in the pathogenetic mechanism research of 
COPD. EMT is considered to be part of the pathophysi-
ology of COPD-related fibrosis, remodeling, and malig-
nant consequences. In this review, we summarized the 
effects of cigarette smoke on the pathogenesis of COPD, 
and focus on the cigarette smoke-induced EMT in COPD 
that occurs in the development of the latest clinical evi-
dence. We reviewed the current research and treat-
ment approaches for EMT in COPD. Therapies such as 
Inhaled corticosteroids (ICS) may offer EMT-targeting 
treatments that suppress airway inflammation, epithe-
lial activation, EMT, and related fibrotic, and malignant 
consequences, offering a new idea for the use of ICS. 
Novel approaches to suppressing EMT formation or the 
associated inflammation are in development and rep-
resent an important therapeutic target. In conclusion, 
this review highlights the importance of understanding 

the molecular mechanisms of EMT in smoke-induced 
COPD, which is critical for identifying innovative thera-
pies targeting EMT in COPD.
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