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Abstract

Purpose: Cerebrovascular vessel segmentation is a key step in the detection of vessel pathology.
Brain time-of-flight magnetic resonance angiography (TOF-MRA) is a main method used clin-
ically for imaging of blood vessels using magnetic resonance imaging. This method is primarily
used to detect narrowing, blockage of the arteries, and aneurysms. Despite its importance, TOF-
MRA interpretation relies mostly on visual, subjective assessment performed by a neuroradi-
ologist and is mostly based on maximum intensity projections reconstruction of the three-
dimensional (3D) scan, thus reducing the acquired spatial resolution. Works tackling the central
problem of automatically segmenting brain blood vessels typically suffer from memory and
imbalance related issues. To address these issues, the spatial context of the segmentation con-
sider by neural networks is typically restricted (e.g., by resolution reduction or analysis of envi-
ronments of lower dimensions). Although efficient, such solutions hinder the ability of the neural
networks to understand the complex 3D structures typical of the cerebrovascular system and
to leverage this understanding for decision making.

Approach: We propose a brain-vessels generative-adversarial-network (BV-GAN) segmenta-
tion model, that better considers connectivity and structural integrity, using prior based attention
and adversarial learning techniques.

Results: For evaluations, fivefold cross-validation experiments were performed on two datasets.
BV-GAN demonstrates consistent improvement of up to 10% in vessel Dice score with each
additive designed component to the baseline state-of-the-art models.

Conclusions: Potentially, this automated 3D-approach could shorten analysis time, allow for
quantitative characterization of vascular structures, and reduce the need to decrease resolution,
overall improving diagnosis cerebrovascular vessel disorders.
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1 Introduction

Stroke is the second leading cause of death as of 2016 and a major cause of disability
worldwide.1 Detection of aneurysms is also of major clinical importance because hemorrhage
can be fatal. An important method for detection and analysis of these pathologies is
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time-of-flight magnetic resonance angiography (TOF-MRA).2 The basic principle behind TOF-
MRA imaging is flow-related-enhancement; stationary tissues in the imaged volume become
magnetically saturated as a result of multiple repetitive radio frequency-saturation pulses.
“Fresh” blood flowing into the imaged volume has not experienced these pulses and thus has
a high initial magnetization, causing the signal from in-flowing blood to appear brighter than the
background tissue.3 This imaging method is insensitive to in-plane flow and is susceptible to
saturation effects, causing low sensitivity to slow flow vessels. Typically, analysis of the TOF-
MRA relies on subjective visual interpretation by a neuroradiologist. Thus, accurate diagnosis is
subjective, qualitative, and highly depends on the radiologist’s expertise. Common analysis
methods include maximum intensity projections reconstruction of the three-dimensional
(3D) scan. Such reconstruction techniques are typically combined with leveling, filtering, and
surface display for proper visualization of the data. These projection-based processes reduce the
acquired spatial resolution, increase sensitivity to noise, and vicariously may cause the conceal-
ment/deformation of small vasculature, damaging analysis sensitivity.4 Furthermore, angiogram
outcome is highly biased by the projection axis, subjecting it to errors in the reconstruction of
nonplanar vessels. Automatic segmentation methods of the cerebrovascular system based on
TOF-MRA face significant challenges as blood vessels are complex and thin structures, con-
stituting <5% of the entire scan volume and thus leading to a highly imbalanced task. This
renders supervised learning methodologies harder as imbalanced data are known to cause
significant bias and performance reduction.5

To address these drawbacks, we propose the brain-vessels generative-adversarial-network
(BV-GAN) segmentation model that encourages connectivity and structural integrity using atten-
tion and adversarial learning techniques. First, we observe that blood vessels are highly non-
planar; hence segmenting them without sufficient volumetric context (e.g., on a single slice or in
a 2.5D settings) is difficult (see Sec. 2 for more detail). For this reason, our model utilizes 3D
TOF-MRA scan patches as input and produces a 3D cerebrovascular vessel segmentation map.
To detect scarce vessel-containing voxels, addressing the aforementioned imbalance setting, we
employ attention techniques. Our generator boosts attention to voxels more likely to contain
vessels using latent space features extracted from a vessel segmentation map prior. Finally, a
discriminator targets the preservation of vessel connectivity and structure because the statistics
of vessel regions are likely to be similar across patches. This is one of the core advantages of
our full 3D setting—the structure of a vessel is recognized and encouraged during training.
This encouragement is optimized in multiscale, over the similarity between latent space
features. Intuitively, such an approach aims to implicitly force preservation of long-short scale
connections.

Through extensive evaluation on two datasets, we demonstrate how providing the model with
multiscale attention feature maps and employing an adversarial training methodology boosts
vessel precision and Dice-score and decreases the Hausdorff distance measure. These indicate
improvements in vessel shape detection and integrity preservation. We further show that these
concepts form the specially tailored system, which addresses the core challenges inherent to this
task, yielding a satisfying improvement of 8% to 10% in vessel Dice score compared with the
state-of-the-art (SOTA) 3D baselines (3D U-Net6 and Uception7). In addition, we also demon-
strate how manual corrections of the ground truth (GT) annotations decrease data-driven errors,
especially for our structure-aware approach. Following correction of about 30% of the data
(which will be openly published), we show that this tedious slice level process yields a signifi-
cant improvement in almost all measured metrics contributing to our system’s ability to target the
cerebrovascular vessels (see Sec. 5.5). The BV-GANmodel obtains a 0.76 Dice score with a 0.71
sensitivity, 0.86 precision, and 0.65 mm Hausdorff distance on the MIDAS dataset. In compari-
son, our baseline6 displays scores of 0.68, 0.73, 0.78, and 1.52, respectively. Furthermore, apply-
ing this automated segmentation technique gives neuroradiologists access to a nonaveraging-
dependent 3D segmentation, thus enabling the analysis of vessels without resolution reduction.
Such analysis could open the way for the detection of small vasculature and enable higher sen-
sitivity-based segmentation. In addition, the 3D-based approach allows for the full TOF-MRA
scan segmentation in nearly 20 s. This accurate and quick approach is a key first step in creating
a fully automated system for the detection of various vascular malformations.
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2 Related Work

Vessel segmentation poses a medical imaging challenge in various modalities and anatomical
structures in general and in 3D TOF-MRA cerebrovascular vessels in particular. Early solutions
include active contours, centerline-based, scale-space filtering, and statistical or hybrid models.8

These methods achieved notable results; however, some require assumptions regarding vessel
gray-level distributions,9,10 which may differ between data sources. In addition, when facing
large-scale dense 3D TOF-MRA data, computational time of these methods can extend up
to several minutes per scan.11 Recent solutions incorporate supervised deep-learning (DL)-based
models, leading to decreased runtime and improved segmentation results when compared with
classical approaches. DL methods have been used in blood vessels segmentation for different
human organs in various imaging modalities.12–14 An additional approach that targets computa-
tional efficiency and reduction in model parameters was proposed by Zhang et al.15 This work
showed improved results on several 3D model benchmarks using a dilated model. This approach,
however efficient, combined uniform dilation on a nonuniformly scattered network of vessels;
hence it is incompatible with this problem. To exploit this nonuniform scatter of vessels, one may
attempt to use 3D deformable convolutional networks (DCN)16 or spatial transformer-based
sampling.17 These were experimented in the past with small input patches for retinal vessel
segmentation18 and 3D multiorgan segmentation.19 These, however, differ greatly from our prob-
lem setup, including an extremely imbalanced larger search space. By contrast, our method effi-
ciently traverses through the vessel search space by combining multiscale prior dependent latent
features and an adversarial training methodology. These concepts yield superior performance
when compared with Uception by Sanches et al. or vanilla 3D U-Net (see Sec. 5).

GANs have been used in the context of neuroimaging in the past for many applications,
spanning from image reconstruction through disease progression models and brain decoding
to the discussed goal of segmentation.20 However, most of these approaches do not tackle the
3D domain, probably due to the computational issues that it encumbers. In addition, GAN
models are typically used for image-to-image translation (or cross-modality synthesis), image
synthesis, and data augmentation. In concurrent work, Subramaniam et al.21 proposed a 3D
GAN-based model for cerebrovascular segmentation. This work is orthogonal to ours as
Subramaniam et al. proposed using GAN-based dataset augmentations (i.e., generating a large
volume of examples using the GAN model, with self-generated supervision) to improve down-
stream training of an U-NET-based segmentation network. By contrast, we propose improving
the U-NET-based segmentation itself using the GAN approach, which regardless could benefit
from the additional data that Subramaniam et al. offer.

3 Materials

During this study the following two datasetes were used.

3.1 MIDAS Dataset

The MIDAS public dataset22 is comprised of brain scans of 100 healthy subjects. Images were
acquired on a 3T magnetic resonance imaging (MRI) under standardized protocols. In this paper,
we use a subset of TOF-MRA scans acquired at a 0.5 × 0.5 × 0.5 mm3 resolution and shaped as
448 × 448 × 128 voxels in the “RAI” axis orientation. This subset of 42 scans also includes
intracranial vasculature (centerline + radius) annotations, extracted from the TOF-MRA
scans.23 The annotated scans were used for training, validation, and test sets in a fivefold
cross-validation evaluation process. To render the 3D dense annotation maps, each centerline
coordinate is modeled as a 3D isotropic sphere with the given radius (because no vessel
directions were given). The primary maps then undergo smoothing and elliptic kernel erosion
to achieve tubular morphology (see Fig. 1). These dense segmentation maps are used as
ground-truth (GT). A subset of the MIDAS dataset annotations, containing 13 of the 42 maps,
was manually corrected by junior raters and approved by an expert neuroradiologist (OA)
from the Tel-Aviv Sourasky Medical Center (TASMC). The correction process targeted the
removal of peripheral veins, accurate vessel edge segmentation, and connectivity improvement.
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Due to limited resources, this process was executed on only a subset. However, this initial inves-
tigation already demonstrates how sensitive this task is to noisy labels, hopefully motivating the
future improvement of all annotated data. As is further discussed in Sec. 5.5, the correction
process is even more meaningful when an adversarial loss is employed. This is attributed to
the loss term’s explicit consideration of the local structure of the vessels, making discontinuities
especially harmful.

3.2 Tel Aviv Sourasky Medical Center Dataset

This dataset is comprised of brain TOF-MRA scans of four healthy subjects. Scans were
acquired at the TASMC on a 3T MRI under standardized TOF-MRA protocols. Scans were
acquired at a 0.3125 × 0.3125 × 0.7 mm3 resolution and shaped as 624 × 768 × 200 voxels

in oblique “RAI” orientation. Resampling was applied to match the 448 × 448 × 128 voxels

shape of the MIDAS dataset to use an identically shaped prior, as mentioned in Sec. 4.1.2.
Initial annotations were prepared using the pretrained segmentation model (see Sec. 5.2) and
then manually corrected by two junior raters and revised by an expert neuroradiologist to
produce GT vessel segmentation maps. The annotated scans are used as an additional test set,
effectively examining generalization capabilities.

4 Methods

We introduce an adversarial DL-based model for automatic cerebrovascular vessel segmentation
from brain TOF-MRA scans. As shown in Fig. 2, our pipeline begins with an offline brain extrac-
tion (BET) and an affine registration step. Following these steps, during the training phase,
we prepare the probabilistic vessel map anatomical prior. This is later leveraged as an attention
map to mitigate the problems caused by the acutely imbalanced setting of the task. To
properly segment cross-sectional vessels and preserve vessel connectivity, we introduce two
additional concepts: (a) 3D patch-based training and (b) multiscale latent feature extraction.

Fig. 1 Input centerline data (left, ROI magnified in top right) are rendered into a tubular structure
(bottom right) to generate the volumetric segmentation map.
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The 3D patch-based training balances memory limitations with spatial context. The intricate
nonplanar structures of blood vessels imply that the network should consider the full 3D sur-
rounding of a point to make an informed decision. Feeding 3D information, however, is very
memory intensive, and hence lower resolution is typically used. Instead, we feed high resolution
patches to the network, but they are of smaller spatial coverage. For global orientation, we rely
on the prior map. The multiscale latent feature extraction is incorporated into the discriminator in
an adversarial training methodology. This encourages structural similarity between the GT and
predicted vessel latent features extracted by the segmentation model, encouraging the predicted
vessel to be of plausible geometry, both in the large-scale general shape, and in the small-scale
details. These principles target the preservation of long-short scale connections throughout the
winding cerebrovascular vessels. At test time, we load the aforementioned vessel anatomical
prior, align it to the target, and predict the segmentation map of the full scan on a per patch
level. Using fivefold cross-validation and two separate source datasets (see Sec. 5), we demon-
strate the robustness and generalization of our design to unseen data. These steps are surveyed in
greater detail in the following sections.

4.1 Offline Steps and Prior Preparation

4.1.1 BET and registration

The cerebrovascular vessels are scattered throughout the brain tissue. Hence, a brain extraction
phase (BET) is necessary to remove nonrelevant tissues (bone, skin, fat, and air) and anatomy
(neck, upper spinal cord, eyes, and mouth). The BET phase is performed in MATLAB R2019b
using statistical parametric mapping (SPM)-based brain segmentation with the SPM12 tool.24

The BET process duration requires 3.5 min per scan on average. Following the BET phase, a
broad-view single scan, aligned to the axis, is chosen from the MIDAS dataset (subject “Normal-
071”), to which all scans and annotation maps are affinely registered; this is performed using
SimpleElastix.25 The registration targets variability reduction in vessel locations, increasing
coherence with the anatomical prior-based attention. The registration process takes 12.71 s per
scan on average.

4.1.2 Vessel anatomical prior preparation

As mentioned, we harness a probabilistic vessel map anatomical prior-based guidance to provide
our model with soft attention. The imbalanced setup of our vessel detection problem requires
such instruction to limit the possible search-space and enable easier convergence to the scarce
areas of interest throughout the scan. Such guidance should be given without compromising the
uniform 3D structure and context, so it is vital to the task. The vessel anatomical prior is prepared
at the beginning of each training fold out of the training set of 3D TOF-MRAvessel annotations.
To create the prior, we sum for each voxel the number of times it is occupied in our training
samples (36 patients in our case), according to the GT labels. To reduce noise, we remove
(nullify) from the map voxels that are occupied by a blood vessel in <5% of the cases (i.e.,
in our case, we did not include any voxels that were occupied in only one patient). An example
is shown in Fig. 3. The same prior is used throughout a specific training fold to perform the

Fig. 2 Proposed system diagram, offline/online steps depicted in gray/blue blocks, respectively.
Each step index matches the relevant paper section.
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attention-based guidance (see Sec. 4.4). This includes both the validation process and during
test time.

4.2 Random 3D-Patch-Based Training and Inference

Training data input scans are of 448 × 448 × 128 in volumetric resolution. Even if tightly bound
around the actual brain area, this is an impractical size that exceeds memory limitations of preva-
lent GPUs. The straightforward solution would be to resize the scan such that it fits the used
hardware at the expense of spatial resolution. However, the diameter of cerebrovascular vessels
ranges from <1 mm up to a few mms at most.26 Therefore, it is crucial that the scan’s inner slice
spacing and thickness is not be grossly damaged to preserve delicate high-resolution spatial
information. Our proposed solution is to use random 3D-patch-based training. Using random
80 × 80 × 80 3D sampled patches from the brain’s tight bounding box, we ensure both the pres-
ervation of original scan resolution and the existence of anatomical context needed for the proper
operation of our segmentation model. Examples of such patches are shown in Fig. 4. During test
time, the whole brain cerebrovascular vessel segmentation is performed using a 3D sliding
window of 80 × 80 × 80 patches with no overlap.

Fig. 3 Attention prior heatmap displayed onMIDAS subject “Normal-071” from several viewpoints,
from left to right: axial, sagittal, coronal views, and a 3D visualization of the whole map, from an
axial point of view. The color bar depicts the number of times a voxel is occupied, from 0 to 36
(the training set size).

Fig. 4 One patch (of 80 × 80 × 80 voxels) extracted from the brain. Top: axial (left), sagittal
(middle), and coronal (right) cross-sections of a point in the patch. Bottom: 3D visualization of
the vessels in the patch according to our segmentation (left) and the location of the patch within
the brain (right).
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4.3 Preprocessing

The scan patch preprocessing step is composed from input data clipping and normalization to
[0, 1]. Clipping is performed between [0,350] to remove noise. To enhance contrast, normalization
is performed using linear rescaling between the 10th and 99th intensity percentile per scan, divided
by the maximum intensity value. Both GT segmentation and prior maps are one-hot encoded into
the 80 × 80 × 80 × 2 shape in which the first and second channels encode background and vessel
maps, respectively. During training, both morphological (rotation, LR flips, and zoom with
[0.9, 1.1] factor) and intensity (gamma noise) augmentations are applied, each with a different,
empirically set probability. We did not notice high sensitivity of the system to these values.
All morphological operations are applied identically on scan, GT, and prior data simultaneously
to maintain voxel level consistency, whereas intensity augmentations are applied on scans alone.

4.4 Generator; Attention Prior-Based Segmentation

The cerebrovascular vessels anatomy is distributed nonuniformly throughout the human brain.
Such distribution requires a location-specific attention to highlight areas that are more likely to
hold vessels. This form of distributed attention facilitates focusing computational resources on
areas of higher relevance to the segmentation task at hand, without compromising the uniform
3D structure of the data. Therefore, we employ an anatomical attention subnetwork, i.e., a four-
level 3D-Unet containing anatomical attention gates,27 in a multiscale fashion as described in
Fig. 5. The prior features, which are extracted by a parallel 3D U-Net model, emphasize the
importance of specific locations or areas in the scan features. This is done by applying a series
of placewise additions/multiplications, channel concatenation, and joint 1 × 1 × 1 convolutions
amplifying feature values in a location specific manner, as proposed by Sun et al.27 Attention
gates were previously shown to incorporate anatomical prior during model training and to guide
the segmentation process. Of course, other soft attention-based solutions are possible. These are,
for example, as mentioned in Sec. 2, 3D DCN and spatial transformer-based sampling. However,
we found that neither approach, when applied on large-scale 3D volumes for the scattered
cerebrovascular vessels segmentation, obtains satisfactory results. These methods either create

Fig. 5 BV-GAN model architecture, surveyed thoroughly in Appendix 7.2. X is the scan patch
input and Rv and Pv are the GT and predicted patch vessel masks, respectively.
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a significantly larger deformation field search space and cause model instability during training
or maintain the regular grid-based sampling (see Appendix 7.1).

4.5 Discriminator; Multiscale Latent Feature Extractor

To enforce connectivity and to capture long- and short-range spatial relationships between vox-
els, we incorporate an additional hierarchical CNN model.28 This model targets the improvement
of latent features similarity between masked GT scans and predicted vessel areas. This CNN
serves as a discriminator in our adversarial training methodology as shown in Fig. 5. During
training, the segmentation model generator aims to minimize both the segmentation loss and
the adversarial loss, whereas the feature extractor discriminator aims to maximize the latter (loss
terms are described in detail in the following section) in an alternating min-max counterplay. The
feature extractor compares the latent features extracted from scan voxels proposed by the seg-
mentation step with those in the GT that are annotated as containing vessels. Note that this
configuration differs from feeding the entire scan patch and segmentation mask to the discrimi-
nator. The proposed configuration gives more emphasis to inspecting the visual distribution of
vessel containing regions than to the segmentation structure. It turns out that this configuration
demonstrated superior results, when compared with the former, providing spatial anatomical
context in addition to the mask morphological structure. Being a learning aid for the segmen-
tation model output, this part of the BV-GAN model is used only during training. Once
convergence is achieved, the model performance is evaluated based on the output of the
generator alone.

4.6 Loss Functions

The task of cerebrovascular vessel segmentation in TOF-MRA scans is highly imbalanced, as
<5% of scan voxels contain blood vessels on average. To address this extreme imbalance and
emphasize the importance of vessel containing voxels, a combination of weight dependent loss
functions is used. During the segmentation model generator training, a loss function combined
from the following two terms is employed:

1. Generalized Dice loss (GDL):29

EQ-TARGET;temp:intralink-;e001;116;354lgdl ¼ 1 − 2

P
2
l¼1 wl

P
N
n¼1 RlnPlnP

2
l¼1 wl

P
N
n¼1 Rln þ Pln

; (1)

where R is the reference vessel segmentation, P is the predicted probabilistic vessel mask,
l is the class index ∈ fbackground; vesselg, and n is the voxel index out of the totalN scan
voxels. wl is the weight coefficient calculated by wl ¼ 1∕ðPN

n¼1 RlnÞ2. One can notice that
wl is inversely proportional to the class prevalence, thus emphasizing uncommon labels
(vessels) and underrating others (background).

2. Centerline Dice (CLD):30 a connectivity preserving metric seeking to maintain cerebro-
vascular vessels centerlines and bifurcations. The metric utilizes the vessel skeletons,
calculated softly over predictions (and sharply over the GT).30 The skeletons SR; SP of
reference and predicted vessel maps are extracted from Rv and Pv, respectively. Using
the skeletons, we calculate Topology precision and Topology sensitivity as

EQ-TARGET;temp:intralink-;e002;116;186TprecðSPv
; RvÞ ¼

jSPv
∩ Rvj

jSPv
j ; TsensðSRv

; PvÞ ¼
jSRv

∩ Pvj
jSRv

j : (2)

To maximize both precision and sensitivity, Shit et al.30 constructed CLD as

EQ-TARGET;temp:intralink-;e003;116;133lcld ¼ 2
TprecðSPv

; RvÞ × TsensðSRv
; PvÞ

TprecðSPv
; RvÞ þ TsensðSRv

; PvÞ
: (3)

Both terms have an equal contribution to the combined additive loss term used to train the
soft attention prior-based segmentation model.
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3. Feature loss: As discussed in Sec. 4.5, we employ a multiscale feature loss between the
predicted and GT vessel containing adjacent areas at multiple layers of the discriminator
model. The adversarial model loss component is defined as

EQ-TARGET;temp:intralink-;e004;116;700min
θG

max
θD

lmae ¼
1

L

XL

i¼1

kfiDðx ∘ PvÞ − fiDðx ∘ RvÞk1; (4)

where L is the total number of layers (i.e., scales) in the discriminator network (five in the
case of our architecture), x is a single input scan patch in the current batch, and fiD
represents the hierarchical features extracted from image patch x in layer i by the
discriminator model.

While training the soft attention prior-based segmentation model and discriminator network
simultaneously, the following combined loss function is employed:

EQ-TARGET;temp:intralink-;e005;116;573lBV-GAN ¼ lgdl þ lcld þ lmae: (5)

It is of note that all loss functions are averaged over the batch size.

4.7 Implementation Details

The generator’s segmentation task of predicting vessel locations is considerably more complex
than that of the discriminator for distinguishing between GTand prediction-based latent features;
therefore, the following steps are taken:

(a) The segmentation model is pretrained separately for up to 100 epochs and stopped early
preconvergence.

(b) During adversarial training, the discriminator is iterated every three generator iterations.

Training (validation) data is iterated twice at the end of each epoch with different random crops to
stabilize average loss and metrics due to the small number of available MIDAS dataset scans.
During both segmentation pretraining and adversarial training, the vessel Dice coefficient (VDSC)
is monitored, and the learning rate decay is used during metric plateau. Adversarial training is
stopped early after up to 150 epochs, after which the monitored metric shows no significant
improvement. The initial learning rate during segmentation model pretraining is 5e–3, and the
decayed learning rate at the end of this step is used for generator initialization in the adversarial
step. The discriminator’s initial learning rate is 1e–4. A batch size of six patches is used. Adam
optimizer is used for all models with 0.9 momentum. All models are trained with three Nvidia
GeForce RTX 2080 Ti GPUs. The environment is built in Pyhton 3.6 using the Keras library.

5 Experiments and Results

In all subsequent experiments, results were obtained using a fivefold subjects cross-validation
to ensure that results are indifferent to data division and are of low variability. In each fold,
MIDAS dataset scans were divided into train (36), validation (3), and test (3). The metrics used
to evaluate vessel segmentation performance during training/validation/test are vessel sensitivity,
precision and Dice score, as follows:

EQ-TARGET;temp:intralink-;e006;116;186

VSens ¼
TP

P
¼ Rv ∩ Pv

Rv

VDSC ¼ 2
TP

2TPþ FPþ FN
¼ 2

Rv ∩ Pv

Rv ∪ Pv

VPrec ¼
TP

TPþ FP
¼ Rv ∩ Pv

Rv ∩ Pv þ Rv ∩ Pv
; (6)

where TP, FP, and FN are the vessel segmentation true-positives, false-positives, and false-
negatives, respectively. The validation set VDSC score averaged across 3D patch batches is
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monitored in the end of each training epoch. Once convergence (determined when reaching a
VDSC plateau) is achieved, training is terminated, and the above metrics are calculated and aver-
aged on full size test scans as shown in Sec. 4.2. In addition, we employ another metric—vessel
maps Hausdorff distance:

EQ-TARGET;temp:intralink-;e007;116;687VDHaus
¼ maxfsup

x∈Rv

inf
y∈Pv

dðx; yÞ; sup
y∈Pv

inf
x∈Rv

dðx; yÞg; (7)

where dðx; yÞ is the Euclidean distance between voxels x and y. Test metrics are also evaluated
separately on the TASMC dataset described in Sec. 3.2. The following five depicted experiments
target the contribution evaluation of each of the BV-GANmodel design choices: starting with the
evaluation of 3D SOTA models as baseline and followed by the introduction of the soft attention
and adversarial training concepts.

5.1 Baseline 3D U-Net

In this experiment, a vanilla 3D U-Net is used, identical to the segmentation model described in
Fig. 5 and excluding the anatomical prior network and gates. Model hyperparameters are opti-
mized using a combined lgdl þ lcld loss function, and the test sets performance evaluation is
displayed in row 1 in Table 1. Similar results are obtained when implementing Uception (Table
row 2), designed by Sanches et al.7,31 These experiments validate our claim that vanilla 3D model
performance is limited, and significant improvement warrants model guidance during training. As
is seen, these models do not generalize well on unseen data, such as TASMC TOF-MRA scans.

5.2 Attention Gated 3D U-NET

As stated in Sec. 4.4, attention-based guidance aides model learning, leading to performance
improvement. To demonstrate this claim, we perform two experiments using the following
models:

(a) 3D U-Net + prior: a segmentation model combining the baseline 3D U-Net and the prior
attention model. The model is trained using the same combined loss terms described
in Sec. 5.1.

(b) BV-GANW/O (without) prior: the model received by ablating the prior 3D U-Net model
and all anatomical gates from the architecture described in Fig. 5. This is trained using
the same combined loss described (Sec. 5).

The performance evaluation of models (a) and (b) is displayed in Table 1 rows 3 and 5, respec-
tively. Improvement is observed in almost all performance metrics, compared with 3D U-Net
baseline (Table row 1). Furthermore, a decrease in said measurements is detected in the ablated
model compared with the full BV-GAN model (Table row 4). Both trends indicate the added
value in using the vessel map prior. Further justification to our claim regarding the amplification
of significance of vessel containing voxels using the anatomical gates is shown in Fig. 6. This
demonstrates the high weight values provided in vessel adjacent areas in the anatomical gates.

5.3 BV-GAN

This experiment incorporates all components described in Fig. 5. As depicted in Sec. 4.7, the
training is composed of the following steps:

1. Pretraining of the soft attention gated 3D U-Net for 100 epochs and early stopping pre-
convergence. This is done to both warm start the generator and to avoid local minima often
found by the optimizer that damage training initialization. The pretraining phase targets
the minimization of the same combined loss described in Sec. 5.1.

2. Joint model adversarial training, iterating between soft attention gated 3D U-Net
(generator) and multiscale-based latent feature extractor (discriminator) for 150 epochs,
while minimizing the loss function in Eq. (5).
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As shown in Table 1 row 4, BV-GAN demonstrated superiority over all other models in
almost all metrics, specifically when compared with the 3D U-Net + prior, emphasizing the
adversarial training contribution during model training to the final segmentation model perfor-
mance. A qualitative comparison of the adversarial training contribution to the final performance
is shown in Fig. 7, demonstrating improvement in vessel connectivity and integrity and fewer
missed vessels.

5.4 Loss Functions Ablation Study

To determine the added value of using our lgdl;lcld combined segmentation loss function, we
ablated each of the separate function components. Rows 6 and 7 of Table 1 contain the single
(gdl/cld) loss function training results. These demonstrate a deterioration in all measured param-
eters on both datasets, indicating that the combination of the imbalance weighting gdl term and
vessel morphology preservation cld loss synergize well. The sensitivity drop on the unseen
TASMC data indicates that vessel segmentation generalization is highly dependent on both loss
components. In addition, a Hausdorff distance increase was measured when each of the loss
functions was ablated. Such trends provide further support for the increasing difference in vessel
morphology between GT and the predicted vessel segmentation maps.

5.5 Corrected Subset Effect

During the MIDAS dataset dense segmentation maps preparation process, we noticed that the
segmentation maps contain several error types: (a) dilated/eroded vessel segmentation—
resulting from the sphere shape-based estimation, contributing either FN or FP vessel voxels
accordingly. (b) Nonconnected vessels and false connections between adjacent vessels—also
resulting from the above-mentioned rendering technique. (c) Undesired veins—the original
centerline annotations include some veins, mostly in the periphery, as part of the cerebrovascular
arteries annotation. Our MC (manual-correction) process tackled the above errors on a 30%
subsample of the MIDAS dataset. When comparing between Table 1 rows 8 and 4, we notice
that the correction process induces an improvement in most measured metrics. This indicates the
dependency on accurate and reliable training data. We further notice that our method boosts
performance more substantially when operating on the semicorrected data (comparing improve-
ment between rows 1 → 4 and 9 → 8). This result implies that our models indeed leverage the
geometry typical to the annotated data and hence the gains from reconnected vessels and other
defect corrections more than a method that is less context-aware.

Fig. 6 GT segmentation masks and anatomical AG (attention gates) 1 to 5 weighted sum
of feature maps (columns) displayed as heatmaps on two different subject input slices
(rows).
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6 Discussion and Conclusion

Our research targets the accurate and efficient segmentation of the cerebrovascular vessels from
3D brain TOF-MRA scans. Inspired by soft attention-based DL and GANs, we proposed our
BV-GAN model. Designed to handle the extremely imbalanced nature of the brain vessels seg-
mentation problem, our model utilizes both guidance and multiscale long-short spatial context.
Through extensive cross-validation on two separate datasets, we have examined the contribution
of each of our design choices. The use of a 3D patch-based method enabled the full scan seg-
mentation in about 20 s (12.71 s for registration and 8.17 s for all other pipeline steps combined),
excluding the offline BET process (3.5 min). This approach saved run-time (in comparison with
a slice-based sliding window approach), alleviated the need for scan resolution reduction, and
assisted cross-sectional vessel segmentation with spatial context. The affine-registered input
enabled the use of the vessel prior map. When used, such a map provides soft attention to voxels
that are in highly occupied regions, boosting performance on both datasets. Our loss function
weighs the scarce vessel-containing voxels heavily while aiming for structural integrity. The
incorporation of an adversarial training methodology requiring multilevel latent space similarity
provides additional supervision and generalization capabilities. In addition, we have produced
openly accessible manually corrected scans through a tedious slice level inspection by both a
junior rater and an expert neuroradiologist. As can be seen in our reported experiments, the
corrected data annotations boost the performance of our GAN-based system much more than
for the baseline counterparts. This nicely demonstrates how our discriminators learn the local
behavior of a typical blood vessel. To further improve the segmentation performance for cases in
which vessels are enlarged or in atypical locations (e.g., Moya-Moya), better priors should be
harnessed. These include age- or pathology-grouped vessel priors, with corresponding additional
training data.

Our proposed segmentation approach is a first step in developing an automated vessel path-
ology detection system, providing quantitative measurements for such pathological conditions.

Fig. 7 Qualitative comparison of segmentation outputs for two slices (rows) and various
approaches (columns). Zoomed-in areas highlight major differences. Note how our method prefers
the connected components (green arrows).
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In the future, this tool could be extended to also provide accurate vessel width and specific vessel
identification and eventually to develop a better tool for identifying different pathologies and
diseases.

7 Appendix

7.1 Appendix A

During our exploration of possible approaches to alleviating the DL model’s search for the
scarce vessel voxels and limit the search space, two of the main ideas were to use spatial trans-
formers and deformable convolution layers. The two concepts aim to incorporate layers into the
model in which both filter coefficients and spatial filter offsets (from the uniform sampling
method) are learned during training to target the high relevance areas in the input. Hence,
we attempted to employ the intuitive notion of letting these learned deformations give emphasis
to the interesting regions in the input, in light of the great spatial imbalance in the data. The
spatial transformers were tested using OBELISK-Net.19 While training the OBELISK-Net model
on our cerebrovascular vessel segmentation task using the same size patches as input, we visu-
alized the sampling frequencies of each patch voxel as received from the model’s two existing
samplers (spatial transformers), both in primary and advanced time points during model training.
This was done to identify whether the sampling frequency of vessels containing voxels increases
during training. As shown in Fig. 8, this convergence did not occur, and a uniform grid sampling
persistently emerged from the training.

In our attempt to integrate deformable convolution16 layers into our basic 3D U-Net model,
we exchanged the regular 3D convolution layers with their deformable counterparts. Our initial
experiment included the exchange of all convolution layers in the first encoder–decoder scale
(operating on the original shape volume), which we denote as deformable scale 0 3D U-Net (DS
0 3D U-Net). In this experiment, we increased the permitted offset from the regular grid-based
sampling up to an offset of 40 voxels in each axis (a half of the input size). Results are displayed

Fig. 8 OBELISK-Net model samplers 1 and 2 (columns) sampling frequencies displayed as a
heatmap on vessel GT masks, as received in early and late steps during model training (rows).
Blue color indicates the low sampling frequency.
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in Table 2. They demonstrate that, as the search space limitation is lifted (i.e., offset is larger),
performance decreases, indicating that learning large 3D offsets causes model performance
instability.

7.2 Appendix B

The full BV-GANmodel architecture, displaying all incorporated subnetworks with compositing
layers is depicted in detail in Fig. 9. The BV-GAN model anatomical gates enable the integration

Table 2 Best validation set vessel Dice obtained during training of DS
0 3D U-Net. The maximal deformable layers offset (in voxels) is
increased throughout experiments.

N Maximal offset Validation set vessel Dice

1 5 0.67

2 10 0.60

3 15 0.53

4 20 0.51

5 25 0.48

6 30 0.45

7 35 0.38

8 40 0.23

Fig. 9 BV-GAN full model architecture. Depicting the 3D model scan and corresponding prior
patches as inputs to both the generator’s segmentation and anatomical attention subnetworks
accordingly. Followed by the multiscale discriminator used during adversarial training. Loss
functions are specified in rectangles.
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of multiscale anatomical prior-based soft attention into the segmentation network through a
series of layers, depicted in detail in Fig. 10. Each gate produces a weighted sum of both prior
and scan extracted features through a set of separate and joint convolution, multiplication, and
addition operations.
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