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ABSTRACT With looming resistance to fluoroquinolones in Mycoplasma genitalium,
public health control strategies require effective antimicrobial resistance (AMR) diagnos-
tic methods for clinical and phenotypic AMR surveillance. We developed a novel AMR
detection method, MGparC-AsyHRM, based on the combination of asymmetric high-
resolution melting (HRM) technology and unlabeled probes, which simultaneously per-
forms M. genitalium identification and genotypes eight mutations in the parC gene that
are responsible for most cases of fluoroquinolone resistance. These enhancements
expand the traditional HRM from the conventional detection of single-position muta-
tions to a method capable of detecting short fragments with closely located AMR posi-
tions with a high diversity of mutations. Based on the results of clinical sample testing,
this method produces an accordance of 98.7% with the Sanger sequencing method.
Furthermore, the specificity for detecting S83l, S83N, S83R, and D87Y variants, the most
frequently detected mutations in fluoroquinolone resistance, was 100%. This method
maintained a stable and accurate performance for genomic copies at rates of =20 cop-
ies per reaction, demonstrating high sensitivity. Additionally, no specific cross-reactions
were observed when testing eight common sexually transmitted infection (STl)-related
agents. Notably, this work highlights the significant potential of our method in the field
of AMR testing, with the results suggesting that our method can be applied in a range
of scenarios and to additional pathogens. In summary, our method enables high
throughput, provides excellent specificity and sensitivity, and is cost-effective, suggesting
that this method can be used to rapidly monitor the molecular AMR status and comple-
ment current AMR surveillance.

IMPORTANCE Mycoplasma genitalium was recently added to the antimicrobial-resistant
(AMR) threats “watch list” of the U.S. Centers for Disease Control and Prevention because
this pathogen has become extremely difficult to treat as a result of increased resistance.
M. genitalium is also difficult to culture, and therefore, molecule detection is the only
method available for AMR testing. In this work, we developed a novel AMR detection
method, MGparC-AsyHRM, based on the combination of asymmetrical HRM technology
and unlabeled probes, and it simultaneously performs M. genitalium identification and
genotypes eight mutations in the parC gene that are responsible for most cases of fluoro-
quinolone resistance. The MGparC-AsyHRM method is a high-throughput, low-cost, simple,
and culture-free procedure that can enhance public health and management of M. genita-
lium infections and AMR control, providing a strong complement to phenotypic AMR sur-
veillance to address the spread of fluoroquinolone resistance.
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ycoplasma genitalium is an important sexually transmitted bacterium responsible

for 10% to 35% of cases of nongonococcal urethritis in men and has been associ-
ated with cervicitis and pelvic inflammatory disease in women (1, 2). International guide-
lines recommend macrolide (azithromycin) and fluoroquinolone (moxifloxacin) antibiotics
as the first- and second-line treatments, respectively (3, 4). In many countries, more than
50% of cases are macrolide resistant but are successfully treated with fluoroquinolones
(5). However, over the past decade, there has been an increase in resistance to both
classes of drugs when treating M. genitalium infections, to the extent that it is becoming
a global public health concern (6-8). The prevalence of fluoroquinolone resistance in
M. genitalium samples is rapidly increasing in the World Health Organization Western Pacific
Region (6). As there are few alternative treatments available for M. genitalium, any strategy
that prolongs the effectiveness of existing treatments, especially fluoroquinolones, should
be considered. Therefore, rapid and sensitive detection of fluoroquinolone resistance in
M. genitalium is needed to monitor antimicrobial susceptibility and maintain the effectiveness
of current treatment regimens.

Antimicrobial susceptibility testing is generally performed using culture-based meth-
ods, which are highly specific but challenging to implement due to the difficulty in cultur-
ing M. genitalium (9). Large-scale screening studies and surveillance programs can identify
many underlying mutations associated with antimicrobial resistance (AMR) (6-8), which
has made it possible to develop molecular methods for screening genetic markers of AMR
in M. genitalium. The primary mutations associated with fluoroquinolone resistance in M.
genitalium are amino acid changes at positions 83 and 87 (including S83C, S83l, S83N,
S83R, D87G, D87H, D87N, and D87Y) of the parC gene, and they are associated with treat-
ment failure and elevated MIC in vitro test results for fluoroquinolones (7, 10). Accordingly,
a molecular assay capable of exhaustively detecting amino acid changes in parC could pre-
dict fluoroquinolone resistance with high sensitivity and specificity and could facilitate
efforts to control the spread of resistant isolates and ensure pathogen eradication. In par-
ticular, a rapid molecular test to distinguish the wild-type and S83| mutation could be
extremely useful in clinical practice because the S83I mutation is considered a potential
predictive marker in patient management across many parts of the world (11).

M. genitalium is extremely difficult to culture, and therefore, nucleic acid amplifica-
tion testing (NAAT) is the only method available for AMR testing of clinical specimens
of M. genitalium. Several molecular methods have recently been developed to improve
laboratory diagnostics of M. genitalium infection, as well as to address the need for re-
sistance detection (12-16). Unfortunately, the high diversity and close proximity of
mutations (see Fig. S1 in the supplemental material) pose a significant challenge for
developing a comprehensive M. genitalium AMR diagnostic method. Conventional PCR
and sequencing provide high sensitivity and specificity but require the PCR product to
be evaluated using gel electrophoresis (17). Real-time PCR (RT-PCR) is the most popular
method for detecting AMR-conferring mutations in M. genitalium. However, in order
to detect multiple mutations within short sequences, multiple labeled probes are
required for a single diagnostic assay. This inherent limitation of RT-PCR increases the
cost and time required for each assay, challenges instrument capabilities, and requires
more complex reaction conditions (13-16). Ideally, molecular diagnostics for the AMR
of M. genitalium would use whole-genome sequencing (WGS) to effectively identify all
known and potentially new genes and mutations that can predict both the AMRs and
the MICs of antimicrobials (18) against M. genitalium. However, WGS still has consider-
able costs and is technically demanding. In addition, M. genitalium is often a low-load
infection; thus, achieving a good depth of coverage in WGS approaches is also very
challenging, which limits their implementation in clinical practice.

Here, we propose a culture-free method (MGparC-AsyHRM) that can rapidly and con-
sistently identify M. genitalium and mutations associated with fluoroquinolone resistance
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TABLE 1 Optimal reaction conditions and primers used in this study

Microbiology Spectrum

Assay Target gene Primer sequence Concn (uM) Significance
1 mgpa MGpa_F, CTTGAGCCTTTCTAACCGCTGCACT 0.25 Species identification
MGpa_R, CAAGTCCAAGGGGTTAAGGTTTCAT 0.25 Species identification
HBB HBB_F, AGTGCTCGGTGCCTTTAGTGAT 0.2 Quality control of nucleic acid extraction
HBB_R, TGGCAAAGGTGCCCTTGA 0.2 Quality control of nucleic acid extraction
parC ParC_D87_F, CCCATGGTGATAGTTCCATTTAT 0.5 Supplementary test for distinguishing
mutation S83N from D87N
ParC_D87_R, AGCTTTGGGACATTCTGATAATTG 0.5 Supplementary test for distinguishing
mutation S83N from D87N
2 parC ParC_S8_F, GGGAGATCATGGGGAAATACC 0.0375 Prediction of fluoroquinolone resistance
ParC_S83_R, CAGCTTTGGGACATTCTGATA 0.025 Prediction of fluoroquinolone resistance

ParC_S83_P, CCCCCATGGTGATATTTCCATTTATDRTGCAA? 1

Prediction of fluoroquinolone resistance

a3'-blocked oligonucleotide probe.

with no sequencing analysis step, thereby reducing the cost and time requirements
associated with the method. This novel method is based on a high-resolution melting
(HRM) analysis with unlabeled probes and complements current M. genitalium detection
using RT-PCR and WGS. HRM is a convenient, closed-tube, and cost-efficient method
that is widely used in several research fields, including variant scanning, species identifi-
cation, and molecular typing (19-22). Although HRM is superior to RT-PCR for identifying
many small insertions or deletions and complex mutations, differentiating between two
or more possible single nucleotide polymorphisms at a site can be problematic when
probes are not used (23, 24). Therefore, our assay integrates an unlabeled probe and
multiplex asymmetric PCR with HRM analysis to rapidly detect bacteria and simultane-
ously identify eight types of mutations in parC, facilitating a comprehensive diagnosis of
M. genitalium in a single-tube reaction. This method uses a small probe to address the
challenge of detecting complex mutations. A smaller probe produces larger temperature
differences from relatively few base mismatches within a short sequence (25). To pro-
duce the desired HRM products, the 3’ end of the unlabeled probe was blocked to pre-
vent extension, and asymmetric PCR was used to produce excess complementary
strands for the unlabeled probe. The probes for complex sequences with various muta-
tions in multiple positions in parC were designed as degenerate codons for all mutation
positions, except the most important variants, in order to improve matching despite the
multiple variants. In addition, we further explored the feasibility of MGparC-AsyHRM by
using different scenarios to provide foundational data for its application in AMR detec-
tion of other pathogens.

RESULTS

Description of the MGparC-AsyHRM method. The MGparC-AsyHRM method accu-
rately distinguished eight types of mutations from the wild type using a combined
melting temperature (T,,) value from two amplicons. All primers were evaluated for
uniqueness using the Basic Local Alignment Search Tool (BLAST) (https://www.ncbi
.nIm.nih.gov/tools/primer-blast/) and further tested for accuracy by testing the known
sequence plasmids (ParC wild type [WT], S83I, S83R, S83N, S83C, D87Y, D87N, D87G,
and D87H). The optimal reaction conditions and primers are listed in Table 1. Because
both the forward primer and probe were competitively binding to the reverse strand,
the concentration difference between the probe and forward primer increased 26-fold.
The method was divided into three major steps, as shown in Fig. 1. In the first step, all
of the samples were tested to confirm that they were M. genitalium-positive and that
the nucleic acids were successfully extracted by assay 1. In the second step, the main
product type was determined through the parC-amplicon peak using assay 2. In the
third step, the parC allele genotyping was performed by melting the probe-amplicon
(Fig. 1). Notably, because the probe perfectly complemented the S83I sequence, the
S83I variant showed a unique peak shape with the highest probe T, indicating that
the S83I variant could be detected quickly and directly.
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FIG 1 Workflow of the MGparC-AsyHRM method. WT, wild type.

Performance of the MGparC-AsyHRM method. The known sequence plasmids
(ParC WT, S83I, S83R, S83N, S83C, D87Y, D87N, D87G, and D87H) were accurately geno-
typed by the MGparC-AsyHRM method (Fig. 2). Furthermore, 9 plasmids containing vari-
ous parC alleles were tested repeatedly at least 12 times to obtain stable T,, ranges. The
T, value of all variants is shown in Table 2. Based on these results, each variant was
assigned a unique peak combination representing peaks for one parC-amplicon and one
probe-amplicon.
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FIG 2 Results of assays 1 and 2 of the MGparC-AsyHRM method.
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TABLE 2 T,, values for all variants

Microbiology Spectrum

T,, of:
PCR-amplicon Probe-amplicon
Assay Target PCR-amplicon type Change Range Mean * SD Range Mean *= SD
1 HBB Quality control of nucleic 80.82-80.90 80.85 = 0.024
acid extraction
mgpa Species identification 75.44-75.67 75.60 * 0.061
parC D87WT 70.85-70.83 70.77 = 0.068
D87MT 71.20-71.29 71.25 + 0.027
2 parC Type 1 5831 (G248T) 75.05-75.20 75.10 = 0.042 64.57-64.66 64.61 = 0.027
S83N (G248A) 75.03-75.13 75.10 = 0.032 61.20-61.40 61.25 = 0.008
D87N (G259A) 75.01-75.13 75.17 = 0.039 60.88-61.16 61.04 + 0.067
D87Y (G259T) 75.15-75.20 75.18 = 0.022 60.24-60.39 60.32 = 0.067
Type 2 WT 75.57-75.71 75.60 = 0.035 60.92-61.12 61.04 = 0.056
S83C (A247T) 75.65-75.76 75.70 = 0.034 59.32-59.55 59.41 = 0.073
D87H (G259C) 75.53-75.65 75.60 = 0.035 58.41-58.49 58.47 = 0.037
Type 3 S83R (A247Q) 76.19-76.29 76.25 = 0.030 59.36-59.52 59.42 + 0.060
D87G (A260G) 76.16-76.26 76.23 = 0.024 62.14-62.41 62.25 = 0.067

In the evaluation phase with the plasmid, assay 1 showed perfect sensitivity at 10 cop-
ies per reaction. Similarly, the parC-amplicon target showed the same limit of detection
(LOD); however, the LOD of the probe-amplicon target was slightly higher but was still
maintained at 20 copies per reaction (Table S3). The LOD of the probe-amplicon targets
for common mutations was maintained at 10 copies per reaction (WT, S83N, S83I, S83R,
D87Y, and D87N) (Table S3) (7). Considering the application scenario of this method, we
performed a preliminary evaluation of the sensitivity of clinical samples, with the results
shown in Table 3. Both assays showed a low success rate (assay 1, 74.1%; assay 2, 70%) at
less than 20 genomic copies per reaction, which indicates that this method is not suitable
for low-LOD clinical samples. In contrast, all other samples at various concentrations (=20
copies per reaction) showed a high success rate (77/78, 98.7%). In general, the MGparC-
AsyHRM assay showed stable performance when there were >20 genomic copies per
reaction, and the fluorescent peak decreased slightly according to M. genitalium load.
Based on the published results for infection loads of M. genitalium in clinical samples, our
method can serve as an ideal tool for clinical antimicrobial stewardship among sympto-
matic populations (26).

All 105 control samples were confirmed as being M. genitalium positive by using
RT-PCR. The distribution of the genomic copy number and the genotype of all samples
are listed in Table 3. All samples were also shown to be human B-globin (HBB) positive,
indicating that nucleic acid extraction was successful. Upon further testing, 12 samples
(12/105, 11.4%) failed to provide comprehensive data (at least one assay failed to pro-
vide effective data), of which 11 samples (11/12, 91.7%) were due to low genomic cop-
ies (<20 copies per reaction). In addition, all failed samples were swab clinical samples.
Among the remaining samples that provided valid AMR profiles (n = 93), the MGparC-
AsyHRM method showed high agreement with the Sanger sequencing method (91/93,

TABLE 3 Performance of the MGparC-AsyHRM method with 105 fully characterized M. genitalium clinical samples

Consistency  No. of samples that

No. of samples successfully producing valid data for different genomic copy ranges/total no. of samples (%) with:

AMR position  with Sanger  failed to provide >2,000 copies/reaction 200-2,000 copies/reaction ~ 20-200 copies/reaction <20 copies/reaction
(no. of sequence valid data/total no.

samples) method (%)  of samples (%) Assay 1 Assay 2 Assay 1 Assay 2 Assay 1 Assay 2 Assay 1 Assay 2
WT (31) 28/29 (96.6) 2/31 (6.5) 3/3(100) 3/3(100) 5/5(100) 5/5(100) 18/18 (100) 17/18 (94.4)  5/5(100) 4/5 (80)
S831(50) 43/43 (100) 7/50 (14) 6/6 (100) 6/6 (100) 11/11(100)  11/11(100)  20/20(100)  20/20(100)  9/13 (69.2) 9/13(69.2)
S83N (11) 10/10 (100) 1/11(9.1) 1/1 (100) 1/1 (100) 1/1 (100) 1/1(100) 4/4(100) 4/4 (100) 4/5 (80) 4/5 (80)
S83R (1) 1/1 (100) 0/1(0) 0/0 (100) 0/0 (100) 0/0 (100) 0/0 (100) 1/1 (100) 1/1 (100) 0/0 (100) 0/0 (100)
D87N (7) 5/6 (83.3) 1/7 (14.3) 0/0 (100) 0/0 (100) 0/0 (100) 0/0 (100) 3/3(100) 3/3(100) 2/3 (66.7) 2/3 (66.7)
D87Y (4) 3/3 (100) 1/4 (25) 0/0 (100) 0/0 (100) 1/1 (100) 1/1 (100) 2/2(100) 2/2(100) 0/1(0) 0/1(0)
Rare type (1) 1/1 (100) 0/1(0) 0/0 (100) 0/0 (100) 1/1 (100) 1/1 (100) 0/0 (100) 0/0 (100) 0/0 (100) 0/0 (100)
Total (n=105) 91/93(97.8) 12/105 (11.4) 11/11(100)  11/11(100)  19/19(100)  19/19(100)  48/48 (100)  47/48(97.9) 20/27 (74.1)  19/27 (70)
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97.9%). In clinical samples with =20 genomic copies per reaction, this method pro-
duced 98.7% (77/78) agreement with the Sanger sequencing method. The consistency
with the Sanger sequencing method for S83l, S83N, S83R, and D87Y variants was
100%. The mgpa gene, used for species identification, produced a 91.42% (96/105) ac-
cordance based on RT-PCR. Of the samples that failed this test, 66.67% (6/9) failed due
to a low LOD (<20 copies per reaction).

Additionally, one sample appeared to have a unique peak that did not belong to any
known variant. According to the sequencing data, this sample was assigned as a rare
mutation (G81C amino acid mutation), which indicates that our method can capture
emerging mutations that are not involved in our assay in resistant transmission. In a
two-way blind assessment, all 184 samples were assigned as M. genitalium positive or M.
genitalium negative (4/184 positive, 180/184 negative), which was consistent with the
results of the mgpa testing performed in assay 1. All samples were HBB positive. In addi-
tion, the four M. genitalium-positive samples showed 100% consistency between the
AMR profiles and the Sanger sequencing method.

Finally, 33/33 (100%) sexually transmitted infection (STl)-related pathogens were
tested individually and jointly. None of these tests showed any cross-reaction with the
mgpa gene and parC probe, which suggests that this method could also be a useful
pretest tool for clinical samples from patients with a coinfection.

Flexibility of the MGparC-AsyHRM method. We further investigated the flexibility
of this method to provide foundational data for the application of the MGparC-AsyHRM
method to other pathogens. Using the S83lI variant, we conducted preliminary exploration
in five directions (Fig. 3). The results shown in Fig. 3a and 3b indicate that the probe can
be applied to different mutations; however, the shape of the melting curve of each variant
becomes smooth with additional mutations in the probe design. Therefore, it is necessary
to select the most important mutation for designing the probe sequence to ensure the
optimal performance of the method. As shown in Fig. 3¢, the probe remained stable when
coexisting with the mgpa gene, which indicates the possibility of single assay detection.
For culturable pathogens, this method can be transformed into a single assay, which is
particularly suitable for low-resource settings due to the low cost and high resolution of
this method. To exclude gene preference, we performed additional testing using the gyrA
gene, which may also lead to fluoroquinolone resistance in M. genitalium. The results
shown in Fig. 3d demonstrate the generalizability of the MGparC-AsyHRM model with dif-
ferent AMR genes, using the gyrA gene as an example. Additionally, the T,,, value can be
adjusted by adding Mg?* to the reaction, which provides the possibility of adjusting the
T,, values of different amplicons to form multiple probe combinations (Fig. 3e). The opti-
mal ion still needs to be further explored, as the ion concentration will affect both the tem-
perature and the height of the peak.

DISCUSSION

The spread of M. genitalium showing resistance to recommended antimicrobials
remains a global concern, making it a potential “superbug” (27, 28). Because of increas-
ing macrolide resistance, fluoroquinolones, as the second-line recommended therapy
for M. genitalium infections, play a key role in many settings (3, 5). Thus, routinely avail-
able AMR detection for fluoroquinolone resistance is urgently needed. The aim of this
study was to combine unlabeled oligonucleotide probes with HRM technology for
identifying AMR mutations in clinical samples, including complex mutations, and to
further establish a novel NAAT diagnostic method for identifying fluoroquinolone re-
sistance in M. genitalium. There are two main reasons for choosing M. genitalium as the
model pathogen in the process of establishing this new method. First, the isolation of
M. genitalium from clinical specimens is exceedingly difficult, and NAATs are the only
useful methods for species identification and AMR determination in M. genitalium (29).
Consequently, M. genitalium is a high priority for the development of novel AMR diag-
nosis methods. Second, the mutations in the parC gene are closely linked to fluoroqui-
nolone resistance, especially at amino acid positions S83 and D87 (8, 11). Notably, the
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sequence from S83 to D87 shows high diversity, with eight mutations across the two
positions, which poses significant challenges for method design (see Fig. S1 in the sup-
plemental material). These complicated sequences also allowed us to deeply explore
the feasibility of this method.

Based on considerable preliminary evaluation, we have formed important recom-
mendations for applying the MGparC-AsyHRM method. For AMR genes with mutations
concentrated in a single amino acid site, such as the cephalosporin-related resistance
mutation in the penA gene of Neisseria gonorrhoeae (P551S/L/T) (30), the recom-
mended length of the probe is the same as the length commonly used in RT-PCR. The
probe should be perfectly matched to the most important mutation without any
degenerate codons, and the concentration difference of asymmetric amplification was
referenced from a previous report (31). For short sequences containing multiple muta-
tions in closely spaced AMR positions (such as rifampicin-related resistance mutations
in the rpoB gene in Mycobacterium tuberculosis at positions 516, 526, and 531) (32), we
suggest that the optimal length of the probe is in excess of 30 bp, whereas a probe
that is too long or too short will affect the peak shape and diminish the resolution of
this method. In addition, the probe should be perfectly matched to the most important
mutation to maximize the advantages of this method, and the position of the mutation
should be in the middle of the probe sequence. In the case of multiple mutation posi-
tions in the probe sequence, we suggest that all positions are designed as degenerate
codons, except for the position corresponding to the most important mutation.
However, each probe should have no more than two degenerate codons because the
degenerate codons can weaken the mismatch of the probe and alter the shape of the
melting peak. Additionally, to manage the dilution of probes caused by degenerate co-
dons, we recommend increasing the concentration difference between the forward
primer and probe up to 26-fold, with the concentration of the probe up to 1 uM
instead of the routine 0.5 uM (31).

In recent decades, because of the complex environment of clinical samples, the
nested PCR method has been widely used for clinical diagnosis and phenotypic AMR
surveillance in M. genitalium instead of the standard PCR method (10, 33). However,
less expensive, more effective, and easier-to-implement AMR diagnostic methods are
needed to prevent M. genitalium infections and for epidemiological surveillance.
Unlike macrolide resistance, there are few diagnostic methods available to test for fluo-
roquinolone resistance in M. genitalium (13, 34, 35). Previously, Tickner et al. utilized
dual-hybridization probe assays to enable the detection of WT parC sequences that are
strongly related to fluoroquinolone susceptibility. The introduction of fluorescent label-
ing further improves the flexibility of the method. Although both articles are based on
the melting curve of the probe, our probes do not require a fluorescent label, which
greatly reduces the detection cost. Compared to the dual-hybridization probe method,
our method not only significantly improves sensitivity but also covers a more compre-
hensive mutation detection range (36). Thus, the development of our method fills this
gap and provides a model for the diagnosis of AMR in other pathogens. Compared to
previous methods, to the best of our knowledge, our method is the first to identify all
mutations associated with fluoroquinolone resistance (10). This method can quickly
and accurately genotype nine variants of the parC gene using unlabeled probes, as
well as being high throughput, simple, and low cost. As the probe in this method does
not contain a fluorescent label, the cost is as low as $3 per sample, which is far lower
than that of other RT-PCR methods (10, 37). Additionally, the MGparC-AsyHRM method
can detect the S83I variant quickly and directly and does not require routine interpre-
tation (step 1 to step 3), which is particularly useful for the individualized treatment of
M. genitalium. In previous research, 97% (166 of 171) of M. genitalium infections with-
out an S83I mutation were cured, demonstrating the predictive value of S83l in clinical
care (11). The high accuracy (98.7%) of our method in clinical samples (genomic
copies = 20 copies per reaction) meets the diagnostic needs of public health and clini-
cal settings. Additionally, the sensitivity of common mutations (WT, S83N, S83I, S83R,
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D87Y, and D87N) was as low as 10 copies per reaction in the evaluation with a plasmid.
We expect the method to maintain stable and accurate performance when there are
=20 genomic copies per reaction in the clinical samples, which is significantly less
than the infection load of clinical specimens of M. genitalium (5.50 x 10®> genomes/mL)
(26). Notably, assay 1 can be used independently for routine identification of M. genita-
lium. M. genitalium diagnostics are insufficient in many settings, which underlies the
need for the development of commercial kits (38). If the local AMR testing only
requires the detection of specific mutations instead of a comprehensive screen, the
mgpa target in assay 1 can be added directly in assay 2 to produce a local diagnostic
method. The clinical specimens of M. genitalium infection are often coinfected with
other STl-related pathogens, most commonly with Ureaplasma urealyticum, N. gonor-
rhoeae, and Chlamydia trachomatis. The results of cross-reactions show that our
method works as intended, even with complex coinfections.

In addition, for species identification, the result of the two-way blind assessment of 184
samples showed 100% agreement between our method and the mass spectrum method
(39). For AMR identification, the data demonstrated 100% consistency with Sanger
sequencing. Importantly, 97/184 (52.7%) samples harbored coinfection (>2 STl-related
agents), which further showed that this method can accurately detect M. genitalium in
complex coinfection situations while also maintaining good performance. It is worth men-
tioning that all clinical samples underwent DNA purification using a common nucleic acid
extraction kit instead of the special nucleic acid extraction kit for Mycoplasma. Additionally,
nucleic acids of genitourinary normal flora were also included in the sample, and all 180
M. genitalium-negative samples (demonstrated by the mass spectrum method) showed no
cross-reaction with the MGparC-AsyHRM assay.

This study highlights the great potential of the MGparC-AsyHRM method in the field
of AMR testing; specifically, the type of approach taken in the MGparC-AsyHRM assay
could be applied to different mutations and genes (Fig. 3). The target sequence in this
study represents one of the most complex scenarios in AMR detection. Importantly, the
application of an unlabeled probe coupled with HRM analysis produced an effective tool
for AMR detection in genes with closely located AMR positions and a high diversity of
mutations. This provides solutions for many existing problems of AMR detection, such as
the closely located mutations on the Mycoplasma pneumonia 23S RNA gene (A2058G/C/
T, A2059G, A2062G, and C2611A/G) (40). For culturable pathogens, the gene for species
identification and the AMR gene can be directly combined into one assay, which can fur-
ther improve the throughput of the method and lower costs. Another advantage of this
method is the temperature adjustability, which provides the possibility for multiple
detection and also for double probe detection. The diagnostic needs of public health
and clinical settings are different, and the most common variant of the original probe
can be easily changed to meet different detection needs.

One limitation in our method assessment is that clinical samples harboring rare
mutations (S83C, D87G, D87H) were unavailable for our testing. However, all three of
these variants are rarely reported, and a relation to fluoroquinolone resistance has not
yet been proven (7, 33). According to the pairwise comparison of plasmids and clinical
samples with other variants (such as S831 and S83R), we believe that the performance
of the MGparC-AsyHRM method would not be affected by these rare variants.

In conclusion, this method can simultaneously distinguish eight variants related to
fluoroquinolone resistance in the wild-type sequence and can detect M. genitalium.
The MgparC-AsyHRM method provides the advantages of high throughput, simple pro-
cedures, and low cost, demonstrating that our method can serve to enhance public
health and the management of M. genitalium infections and AMR, providing a strong
complement to phenotypic AMR surveillance to address the spread of fluoroquinolone
resistance.

MATERIALS AND METHODS

Sample selection. A total of 105 clinical samples, including 100 urethral swabs and 5 urine samples
(male, 27; female, 78), were sourced from the Shenzhen Center for Chronic Disease Control. RT-PCR was
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used for species identification and to generate genomic copies of all samples (primers and probes are
listed in Table S1 in the supplemental material, with details concerning the construction of the standard
curve provided in the footnote). The parC locus was characterized using Sanger sequencing prior to per-
forming the MgparC-AsyHRM analysis (primers are listed in Table S2).

In addition, 184 clinical samples (urethral swabs) were collected from the Shenzhen Center for Chronic
Disease Control for a two-way blind assessment of the MgparC-AsyHRM method. All samples were proc-
essed using PCR coupled with a mass spectrum method previously reported for species identification (39).

An additional 33 samples were used to investigate the cross-reaction of the MgparC-AsyHRM method
with eight common STl-related pathogens, namely, Ureaplasma urealyticum (n = 5), Trichomonas vaginalis
(n = 3), Chlamydia trachomatis (n = 5), Ureaplasma parvum (n = 5), Mycoplasma hominis (n = 5), Neisseria
gonorrhoeae (n = 5), herpes simplex virus 1 (n = 2), and herpes simplex virus 2 (n = 3).

Design of the MgparC-AsyHRM method. Fluoroquinolone resistance is closely associated with
mutations of S83 and D87 in the parC allele. Mutations at both sites show high diversity, which poses dif-
ficulties for developing an AMR diagnostic method for M. genitalium. To combat this challenge, the
MgparC-AsyHRM method consists of two separate assays, assay 1 for species identification and nucleic
acid quality control and assay 2 for M. genitalium AMR characterization. Assay 1 can also perform as an
aid test for assay 2 to ensure the accuracy of the test results. For direct application on clinical samples,
assay 1 was developed as a control test. The human B-globin (HBB) and mgpa allele were used as inter-
nal quality controls to ensure the performance of nucleic acid extraction and species identification,
respectively. The HBB gene is widely recognized as an internal control gene in human samples that often
coexists with target genes in clinical samples (41, 42). Because there are only slight differences in the T,,
value (<0.3°C) between mutations S83N and D87N in the combined products, using assay 2, it is difficult
to quickly distinguish between these mutations on samples with poor quality (such as in cases with
redundant salt ions and proteins in the sample). Therefore, paired primers in assay 1 flanking the muta-
tion at the D87 site (G259) were used to correctly identify the S83N and D87N mutations according to
the presence or absence of a mutation at D87. Assay 2 used one specific paired primer set and a 3'-
blocked oligonucleotide probe. An 80-bp amplicon containing the S83 and D87 sites of parC allele was
produced using the specific primer pair. However, due to inherent limitations of HRM, the method can-
not distinguish between the same base mutation located at different sites, such as between S83I
(G248T) and G87Y (G259T) or between S83N (G248A) and D87N (G259A). Consequently, the 32-bp oligo-
nucleotide probe was designed to produce a short probe-amplicon. Because of the difference in
sequence length, the T, of the probe-amplicon was significantly lower than that of the parC-amplicon.
Furthermore, the short probe-amplicon sequences amplify the subtle differences between homogene-
ous mutations so that each mutation can be correctly distinguished. In this method, the probe is
matched to the S83I variant, which is the most frequently detected mutation in the fluoroquinolone re-
sistance-determining region (43). For all amplicons, the predicted T,, value was evaluated using the
online calculator OligoCalc (http://biotools.nubic.northwestern.edu/OligoCalc.html).

Detection limit of the MGparC-AsyHRM method. Nine plasmids containing various parC alleles
(ParC WT, S83I, S83R, S83N, S83C, D87Y, D87N, D87G, and D87H) and one harboring the mgpa and HBB
allele were used to determine the limit of detection (LOD) of the MGparC-AsyHRM method. All plasmids
were serially diluted to 1000, 500, 200, 100, 50, 20, 10, and 2 copies/reaction. Each plasmid was tested at
least 10 times to obtain a stable LOD value. The parC sequence of the plasmid (including wild type and
mutant type) was in reference to the M. genitalium G37 isolate (GenBank accession number NC_000908).

Flexibility of the MGparC-AsyHRM method. We have designed five simple experiments to explore
the flexibility of the MGparC-AsyHRM model by evaluating the following: (i) the effects of different
probes, (ii) the performance of a probe harboring a double mutation (5831 plus D87Y), (iii) the compati-
bility of the probe with other genes, (iv) the generalizability of the MGparC-AsyHRM model, and (v) the
adjustability of the MGparC-AsyHRM model.

HRM procedures. The RT-PCR assay was performed with a QuantStudio 6 Flex real-time PCR plat-
form (Applied Biosciences, Foster City, CA, USA). Each sample contained 10 ulL of EvaGreen master mix,
2 uL of DNA template, and the optimal concentration of primer as listed in Table 1, with double-distilled
water (ddH,0) added to a final volume of 20 L. The cycling conditions consisted of an initial hold for
10 min at 95°C, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. For the HRM analysis, the tem-
perature was maintained at 40°C for 1 min and then slowly increased from 40°C to 95°C (0.025°C/s) for
fluorescence collection (19).

DNA extraction. DNA purification of all clinical samples was performed on a MagNA Pure LC 2.0
instrument using the MagNA Pure LC nucleic acid isolation kit (Roche Diagnostics, USA) according to the
manufacturer’s instructions. For urine, 1.5 mL of sample was extracted and eluted in 200 L. The clinical
samples were directly stored at —80°C before DNA extraction.

Statistical analysis. The T, values were calculated using SPSS software (v.21; SPSS Inc., Chicago, IL,
USA) with 12 test replicates.

Ethics statement This study was approved by the Medical Ethics Committee at the Shenzhen
Center for Chronic Disease Control (20180301). In accordance with the Helsinki Declaration, all partici-
pants’ personal data were anonymized in this study, and we obtained written informed consent for sam-
ple collection. The patents related to this article are pending (44).
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