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Clinicians frequently must decide whether a patient’s measurement ref lects that of a healthy “normal” individual.
Thus, the reference range is defined as the interval in which some proportion (frequently 95%) of measurements
from a healthy population is expected to fall. One can estimate it from a single study or preferably from a meta-
analysis of multiple studies to increase generalizability. This range differs from the confidence interval for the
pooled mean and the prediction interval for a new study mean in a meta-analysis, which do not capture natural
variation across healthy individuals.Methods for estimating the reference range from a meta-analysis of aggregate
data that incorporates both within- and between-study variations were recently proposed. In this guide, we present
3 approaches for estimating the reference range: one frequentist, one Bayesian, and one empirical. Each method
can be applied to either aggregate or individual-participant data meta-analysis, with the latter being the gold
standard when available. We illustrate the application of these approaches to data from a previously published
individual-participant data meta-analysis of studies measuring liver stiffness by transient elastography in healthy
individuals between 2006 and 2016.

meta-analysis; normative data; prediction interval; random effects; reference range

Abbreviations: CI, confidence interval; IPD, individual participant data; kPa, kilopascal.

CLINICAL SCENARIO

A 50-year-old apparently healthy man presents for a
preventive health examination. He is concerned because
his sister was diagnosed with “liver fibrosis.” A liver biopsy,
the gold standard diagnostic tool, is too invasive and costly
to perform on an asymptomatic individual. A noninvasive
ultrasound-based test called transient elastography was
introduced in 2003. The test measures stiffness of the liver,
which is a surrogate of liver scarring (fibrosis). However, the
normal range for this test is not known and has only been
reported in studies with heterogeneous populations in terms
of clinical and demographic characteristics. Bazerbachi
et al. (1) conducted an individual participant data (IPD)
meta-analysis and estimated the mean stiffness in healthy
nonobese individuals with a confidence interval (CI). This
CI only reflects uncertainty in the pooled mean rather
than the variation across individuals; thus, it is not a

reference range. We have revisited this analysis to construct
a reference range that incorporates natural variability across
healthy individuals.

INTRODUCTION

Often clinicians would like to know whether a patient’s
measurement falls within some “normal” range for healthy
individuals. While meta-analysis most frequently involves
summarizing 1 or more treatment effects on an outcome,
many examples exist of meta-analyses of normative data
(1–13). Normative data are assumed to be drawn from a
predefined healthy population (e.g., with certain inclusion
and exclusion criteria) that serves as a reference for future
comparison (14). These data may be drawn from norma-
tive studies of healthy individuals, cohort studies, the con-
trol arms of case-control studies, or baseline values from
randomized-controlled trials in healthy populations (1, 9,
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11). A reference range, or an interval in which we would
expect the measurements of a specified proportion of a
healthy population (e.g., 95%) to fall (15, 16), provides
important information in determining whether a patient’s
measurement is “normal.” This can also be defined as a
prediction interval for the value of a new healthy individual
conditional on the normative data from existing evidence
(15). While several studies in the biomedical literature have
used ad-hoc methods to report reference ranges estimated
from meta-analyses (6, 7, 10, 11), Siegel et al. (17) recently
proposed 3 methods for estimating the reference range from
a meta-analysis with aggregated data. To provide some prac-
tical guidance, we describe how to calculate the reference
range from a meta-analysis and outline how it differs from
the CI for the pooled mean and the prediction interval for the
mean of a new study (18, 19). We applied these methods to
a systematic review and meta-analysis of studies measuring
normative liver stiffness in adults. We considered using
aggregate data from publications but also extended these
methods to IPD.

WHAT AGGREGATE DATA ARE TYPICALLY NEEDED?

Often, when conducting a meta-analysis of multiple stud-
ies to estimate the reference range, only aggregate data are
available from published studies. The required aggregate
data typically include the observed means, standard devia-
tions, and sample sizes from each study. Studies may also
report demographic information, such as the proportion of
males and females or the mean age of participants in the
study.

DEFINING THE POPULATION OF INTEREST

To determine whether the studies included in a meta-
analysis have enrolled participants who belong to the pre-
specified target population, we suggest evaluating 2 sources
of information. First, the inclusion and exclusion criteria
of the meta-analysis. Second, the observed demographic
information provided in the manuscripts of included stud-
ies. Based on these 2 sources of data, a judgment needs
to be made about whether the studies include representa-
tive participants from the target population for the refer-
ence range. One should also consider whether some studies
have enrolled participants with occult disease and exclude
such studies. For example, healthy volunteers with occult
fatty liver disease enrolling in hepatology studies is a well-
recognized phenomenon (20).

Each of the proposed methods for estimating the reference
range allows the underlying means of each study included in
the meta-analysis to differ (a “random effects” assumption).
In other words, variation in the observed means across stud-
ies can be attributed to both actual differences and sampling
variability (19). We assume that the studies included in
the meta-analysis form a representative or random sample
from a greater “superpopulation” of potential studies and
are interested in the marginal (overall) distribution of indi-
viduals across these studies (Figure 1). Determining whether
this sample is representative requires investigating possible
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Figure 1. Marginal (overall) distribution and a selection of hypothet-
ical study distributions according to a random-effects model where
μ = 4, σ = 1, τ = 0.5. The distributions of study means and indi-
viduals within each study are all normal. The vertical lines represent
the 2.5th and 97.5th quantiles of the marginal distribution. Each of
the meta-analysis methods presented allows for true differences
between subpopulations, and the target population is the overall
distribution that captures each of these.

heterogeneity sources, as described in the next section. We
focus on the overall distribution, rather than conditioning on
a specific study, since it may be unclear which theoretical
study population a patient would belong to in practice.

In the clinical scenario described previously, the target
population consists of healthy nonobese individuals without
evidence of liver steatosis or fibrosis across all potential
studies, as we aim to characterize liver stiffness measure-
ments that would be extreme for patients with healthy livers
while incorporating the total variability found across differ-
ent populations of healthy patients.

INVESTIGATING SOURCES OF HETEROGENEITY

The random-effects assumption described earlier to account
for between-study heterogeneity assumes many possible
studies whose underlying study means follow a distribution,
typically a normal distribution. This assumption is consistent
with small variations across studies such as those due to
slightly different but overlapping study populations, similar
but not identical equipment, or different personnel collecting
measurements. If it is believed that the overall population
can be partitioned into several distinct subpopulations with
different measurements, separate reference ranges corre-
sponding to each population would be more informative.
Hypothesized sources of heterogeneity could be investigated
using subgroup analyses or meta-regression methods (21),
although this often lacks precision or power (with meta-
regression) due to a small number of studies. This empha-
sizes the importance of clear and well-defined inclusion
criteria, so that studies in the meta-analysis are applicable
to the population of interest.

Because the overall mean and variance across individual
participants are of equal interest when estimating the ref-
erence range, heterogeneity in the within-study variances
should be carefully explored. Differences in the within-study
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variances can be investigated visually using a forest plot of
the observed study standard deviations and their correspond-
ing CIs.

META-ANALYSIS METHODS FOR ESTIMATING THE
REFERENCE RANGE

We previously proposed 3 methods for estimating the
reference range using aggregate data (17); these methods are
described in detail in Web Appendix 1 (available at https://
doi.org/10.1093/aje/kwac013) and summarized in Web
Tables 1 and 2. The first 2 methods, the frequentist method
and the Bayesian posterior predictive interval, assume that
1) values of the variable of interest follow a normal distri-
bution for each study population; 2) the variances of individ-
ual measurements within each study are equal across
studies; and 3) that the true study means are also normally
distributed. These assumptions then imply that the overall
distribution across studies is also normal.

The frequentist approach involves estimating the shared
within-study variance, fitting a random-effects model on the
aggregate data, and then using the estimated pooled mean
and within- and between-study variances to approximate
the overall distribution of individuals. The bounds of the
estimated 95% reference range are then given the 2.5th and
97.5th quantiles of this overall normal distribution, assuming
the estimated parameters are fixed quantities (i.e., ignoring
their uncertainty).

The Bayesian method requires fitting a random-effects
model on the aggregate data where the shared within-study
variance is estimated using the sampling distribution of the
sample variance. The bounds of the 95% reference range are
then given by the 2.5th and 97.5th quantiles of the posterior
predictive distribution for a new individual. This differs from
the other 2 methods in that the reference range becomes
wider with greater uncertainty by considering the variation
of parameters, consistent with the definition of the reference
range as a prediction interval. While it may be possible to
introduce this behavior with the frequentist approach using a
t-distribution, the appropriate degrees of freedom are unclear
and likely require approximation. Furthermore, the degrees
of freedom will depend on both the estimated within- and
between-study variances and will be high when the number
of studies is large or when the between-study variance is
small relative to the total variance. Under those conditions,
the t-distribution will strongly resemble that of a normal
distribution.

The frequentist and Bayesian methods also make the usual
random-effects assumption that the study means (random
effects) follow a normal distribution (18). It is often incor-
rectly assumed that the central limit theorem (CLT) guar-
antees this (22). The CLT only guarantees normality of the
sampling distribution of the mean from a single study, not the
overall collection of study means. Instead, this assumption
should also be visually assessed. Methods have also been
developed for estimating prediction intervals for a new study
effect that do not require this normality assumption, such
as those based on bootstrap sampling methods (22, 23).
Future work could expand these methods to prediction on
the individual level.

The third aggregate data approach, the empirical approach,
does not require the data within each study to be normally
distributed or assume equal within-study variances, only that
the overall distribution across all studies is normal. Instead,
the pooled mean is estimated as a weighted average of the
study means, and the total variance is estimated as the sum of
a weighted average of the sample variances and the sample
variance of the study means. This empirical method could
also likely be used when the overall distribution is assumed
to be any other distribution that is entirely determined
by its mean and variance. The different interpretations of
the reference ranges, the CI for the pooled mean, and the
prediction interval for a new study are summarized in Web
Table 2. Furthermore, while the methods mentioned thus
far assume that the overall distribution is normal, we also
describe in Web Appendix 2 how to handle aggregate data
that are believed to follow a lognormal distribution.

Simulation results suggest that each of the proposed
aggregate data approaches perform similarly when the
between-study heterogeneity is relatively small and the
number of studies in the meta-analysis is large (at least
20) (17). However, some caution should be used in cases
of large between-study heterogeneity or very few studies.
In particular, if unexplained between-study heterogeneity
comprises approximately 30%–50% or more of the total
estimated variance, one should carefully consider the
interpretability of the estimated reference range. While
the equal within-study variation assumption made by the
frequentist and Bayesian methods is arguably strong, Siegel
et al. (17) demonstrated through simulations that these
methods might be robust to small differences in the true
variances across studies. However, if the within-study
variances plausibly differ according to some characteristic
of the studies, separate reference ranges for these groups
may be more clinically meaningful regardless of the
distributional assumptions of the method used.

APPLIED EXAMPLE

We reanalyzed the data used in the clinical scenario (1)
to construct a reference range that reflects natural variability
across healthy individuals.

Defining the population of interest

Individuals were included in the original analysis if they
had a body mass index less than 30 and did not have
hypertension, dyslipidemia, hepatic steatosis on ultrasound,
or diabetes mellitus. The authors of 1 study withheld per-
mission for use of the data in further analyses, leaving 3,652
individuals across 20 studies. Because one of these studies
contained only 4 individuals meeting the inclusion criteria,
we further excluded these 4 patients. This resulted in a final
data set containing 3,648 individuals across 19 studies.

Derivation of aggregate data

To replicate the scenario where only aggregate data were
available, we summarized the data within each study by the
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Figure 2. Estimated mean and 95% confidence interval (CI) for each transient elastography liver-stiffness measurement study and estimated
pooled mean (95% CI) based on aggregate data from a previously published meta-analysis of liver stiffness measurements collected between
2006–2016 (1). kPa, kilopascal.

mean, standard deviation, and sample size. These data are
shown in Web Table 3; the R code (R Foundation for Statis-
tical Computing, Vienna, Austria) used in the aggregate data
analysis is presented in Web Appendixes 3–5.

Application of methods

We present a forest plot for the study-specific means and
pooled mean in Figure 2. The pooled mean was estimated
using the aggregate data and a frequentist random-effects
model (using restricted maximum likelihood estimation)
implemented in the R package “meta” (24).

We next applied each of the proposed methods for estimat-
ing the 95% reference range (Table 1) using the aggregate
data. Because liver stiffness measurements must be positive,
and the observed distribution of measurements was slightly
right-skewed, we first log-transformed the liver stiffness
measurements and then exponentiated the results for the
estimated 95% reference ranges. With only aggregate data
available, this log-transformation required using the approx-
imation described in Web Appendix 2.

We implemented the Bayesian models in JAGS (https://
mcmc-jags.sourceforge.io/) using the R packages “rjags”
and “coda” (25, 26). For the Bayesian models, we ran 2
chains with 100,000 iterations each and a burn-in period
of 5,000 iterations and assessed convergence based on trace

Table 1. Estimated 95% Reference Ranges for Liver Stiffness
Measurement Using Each of the Methods Presented With Aggre-
gate Data From a Previously Published Meta-Analysis of Liver
Stiffness Measurements Collected Between 2006–2016a

Method Estimated 95% Reference Range, kPab

Frequentist 2.55, 7.90

Bayesian 2.52, 7.94

Empirical 2.57, 7.86

Abbreviation: kPa, kilopascal.
a Bazerbachi et al. (1).
b The reference ranges were estimated on the log-scale, and the

resulting intervals were exponentiated.
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Study and Interval Type
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Figure 3. Estimated mean, 95% confidence interval (CI), and 95% frequentist prediction interval (PI) for a new individual’s transient
elastography liver stiffness measurement by study, 95% CI for the pooled mean, 95% PI for a new study mean, and estimated 95% reference
ranges (RRs) using the 3 methods presented, based on aggregate data (AD) from a previously published meta-analysis of liver stiffness
measurements collected between 2006–2016 (1). Each reference range was estimated on the log-scale and the resulting bounds were
exponentiated. kPa, kilopascal.

plots, the Markov chain Monte Carlo error, and the potential
scale reduction factor. All analyses were conducted using R,
version 3.6.3.

The estimated reference ranges were similar across each
of the methods used (Table 1, Figure 3). The Bayesian pos-

terior predictive interval was slightly wider, followed by the
frequentist method, then the empirical approach. We would
expect the Bayesian method to give a wider reference range
as it incorporates uncertainty in the parameter estimates.
Web Appendix 5, which includes Web Figure 1, shows
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a normal quantile-quantile (Q-Q) plot of the study means
on the log-scale; this shows no clear deviations from the
assumption in the frequentist and Bayesian methods that
these follow a normal distribution. Web Figure 2 displays
the observed standard deviations of the log of liver stiffness
within each study and their respective 95% CIs. We use
this to assess the equal within-study variance assumption
imposed by the frequentist and Bayesian methods. Most of
the observed study standard deviations are similar, with a
high degree of overlap in their respective CIs, with the pos-
sible exceptions of studies 9 and 16. We therefore performed
a sensitivity analysis where we removed studies 9 and 16,
which gave estimated reference ranges similar to the original
results (Web Table 4).

Each of the estimated reference ranges can be interpreted
as the predicted interval in which we would expect 95% of
liver stiffness measurements of healthy individuals to fall.
For example, based on the Bayesian reference range, we
would expect 95% of healthy patients to have liver stiffness
measurements between 2.52 kilopascals (kPa) and 7.94 kPa.
If our hypothetical patient has a liver stiffness measurement
of 9.00 kPa, this may necessitate further investigation, as this
degree of liver stiffness is atypical of a healthy individual.

The 95% CI for the pooled mean (4.46 kPa, 4.87 kPa), is
much narrower than any of the estimated reference ranges
(Figure 3). This demonstrates the difference that incorpo-
rating natural variability across all individuals makes when
constructing the reference range. This is also true when
comparing the estimated reference ranges with the frequen-
tist 95% prediction interval for the mean of a new study,
(3.76 kPa, 5.58 kPa), instead of the measurement of an
individual (19, 22). We can also compare the results with
the 2.5th and 97.5th quantiles of the individual measure-
ments, ignoring study assignment: (2.70 kPa, 7.49 kPa). The
estimated reference ranges that incorporate study assign-
ment are slightly wider than this because they allow for
between-study variation and the possibility of more extreme
measurements in a future study. The CI for the pooled
mean and the prediction interval for a new study mean are
far narrower and do not capture healthy individuals’ full
variation.

INDIVIDUAL PARTICIPANT DATA

All 3 approaches are designed for the meta-analysis of
aggregate data, where only the study means, standard devi-
ations, and sample sizes are known. Because of this, we
also include how the reference range could be calculated
using IPD without first aggregating the data (i.e., a 1-step
approach) (Web Table 1). These approaches are 1-step ana-
logues of each of the 3 approaches described previously; the
estimated reference ranges based on IPD ultimately serve as
a “gold standard.”

IPD allows for a more detailed exploration of the model-
ing assumptions. Each of the methods previously discussed
assumes that the individuals across all studies follow an
overall normal distribution. Both the Bayesian and frequen-
tist approaches also assume that the data within each study
are normally distributed and the within-study variances are

Table 2. Estimated 95% Reference Ranges for Liver Stiffness Mea-
surement Using IPD From a Previously Published Meta-Analysis of
Liver Stiffness Measurements Collected Between 2006–2016a

Method Estimated 95% Reference Range, kPab

Frequentist AD 2.62, 7.74

Bayesian AD 2.61, 7.79

Empirical AD 2.64, 7.69

Frequentist IPD 2.63, 7.72

Bayesian IPD 2.52, 7.94

Empirical IPD 2.64, 7.69

Abbreviations: AD, aggregate data; kPa, kilopascal; IPD, individ-
ual participant data.

a Bazerbachi et al. (1).
b The reference ranges were estimated on the log-scale and the

resulting intervals were exponentiated.

equal across studies. If IPD are available, these normality
assumptions can be visually assessed using methods such as
histograms and normal Q-Q plots. Because of this, access to
IPD even for 1 or 2 studies could be valuable in investigating
these distributional assumptions before using an aggregate
data method to estimate the reference range. Similarly, with
aggregate data, we cannot directly log-transform the individ-
ual measurements. Instead, the approximation given in Web
Appendix 2 must be used.

We present the results for the clinical scenario using both
the aggregate (2-step) approaches and the 1-step approaches
using IPD in Table 2. The code for the IPD analysis is pre-
sented in Web Appendixes 6 and 7. In all cases, the data are
first log-transformed (before aggregating), and the resulting
ranges are exponentiated. As expected, the frequentist and
empirical IPD methods gave slightly narrower estimated
reference ranges than the Bayesian IPD method (Table 2,
Web Figure 3). With IPD available, we directly obtained the
mean and standard deviation on the log scale for each study
rather than estimating these using the methods presented
in Web Appendix 2. Because the log-transformation dif-
fered between this analysis and the aggregate data analysis
presented previously in Table 1, we would expect slightly
different results even among the aggregate data approaches.
However, the results using the aggregate data are comparable
to those based on the IPD (Table 2). This supports the
validity of the aggregate data approaches in this case, an
important point since IPD are rarely available for all stud-
ies included in a meta-analysis. Web Appendix 6 includes
histograms of the liver stiffness measurements both by study
and pooled across studies on both the original and log-scales
(Web Figures 4–7). These were used to assess the within-
study and overall normality assumptions imposed by the
frequentist and Bayesian methods. We also plotted the study
standard deviations and their CIs on the log-scale based on
the IPD (Web Figure 8) and repeated the sensitivity analy-
sis described in the previous section; we observed similar
results with and without studies 9 and 16, as shown in Web
Table 5.
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    Interval Type
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   N  = 10, n = 30
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   N  = 10, n = 30
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   N  = 50, n = 500
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      1.98, 6.02
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      1.98, 6.02

2.0 3.0 4.0 5.0 6.0
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Estimated Interval

Figure 4. 95% confidence interval for the pooled mean, 95% prediction interval for the mean of a new study, and estimated 95% reference
range for hypothetical data where μ̂ = 4, σ̂ = 1, τ̂ = 0.5 and for different within-study sample size (n) and number of studies (N).

INTERPRETATION OF RESULTS

Because there has been little guidance in the literature
on estimating reference ranges from a meta-analysis, many
meta-analytical studies have reported the pooled mean as
a “reference value” (8, 9, 12). While the pooled mean can
establish a point of reference, it does not capture natural
variation across healthy individuals. As a result, some stud-
ies have also reported the 95% CI for the pooled mean as a
“reference range” (1, 3, 5), although this better reflects the
uncertainty in the estimated pooled mean, not the range of
predicted values for a new individual. For example, as the
number of studies included in the meta-analysis increases,
we would expect the CI for the pooled mean to narrow,
reflecting increased precision in the estimate. However, we
would not expect the width of the estimated reference range
to approach zero as the total sample size increases.

Similarly, some have recently advocated for the reporting
of a prediction interval for the mean or effect size of a
new study when conducting meta-analyses in order to better
describe between-study heterogeneity (19, 22, 27, 28). Riley
et al. (19) describe a random-effects meta-analysis example
with a statistically significant pooled treatment effect but
with a prediction interval for the treatment effect in a new
study of (−0.79, 0.09). They explain that the small amount
of the interval falling above zero indicates that the treatment
may not be effective in some situations (19). This example
clearly illustrates how the CI for the pooled mean does not
necessarily represent the variation across study populations.
However, the prediction interval for the mean of a new study
still does not reflect the total variation on the individual
participant level and would therefore not be suitable as a
reference range either.

The differences in these intervals are illustrated in
Figure 4, which shows the 95% CI for the pooled mean,
95% prediction interval for a new study, and the estimated
95% reference range based on the same estimates of the
pooled mean and within- and between-study variances, but
varying the numbers of studies included in the meta-analysis
(N) and the number of individuals within each study (n).
As the number of studies or number of participants within
each study increases, the CI for the pooled mean narrows.
The prediction interval for a new study mean also narrows
slightly, but this is due to greater perceived precision in the
estimated parameters. Figure 4 also shows the estimated
95% reference ranges for each of these meta-analyses
when using the frequentist method proposed by Siegel et
al. (17). This method does not incorporate uncertainty in
the estimated parameters, so the width of the reference
range remains fixed for different sample sizes. However,
the Bayesian posterior predictive reference range interval,
also proposed by Siegel et al. (17), can naturally incorporate
the uncertainty in the estimated parameters. Despite this
difference, the estimated reference ranges in Figure 4
are still wider than other intervals. This is because they
reflect both the estimated within-study and between-study
variances, rather than only the between-study variance, as
does the prediction interval for the mean of a new study, or
neither as does the CI for the pooled mean (Web Table 2).

CERTAINTY ABOUT THE ESTIMATED REFERENCE
RANGE

To apply research evidence to patient care properly, evi-
dence users (clinicians, patients, and guideline developers)
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need to know how certain or trustworthy the evidence is.
Therefore, when a reference range is estimated, we need
to consider applicability, risk of bias, heterogeneity, and
precision (29). If possible, studies at high risk of bias (e.g.,
due to poor ascertainment of the measured laboratory test or
because of a large proportion of patients lost to follow up)
(30) could be excluded from the reference range estimation.
If excluding these studies is not feasible, and we are left
with a reference range estimated from studies at high risk
of bias, certainty in this range will be low. If heterogeneity
between the studies used to estimate the range was high and
not explained by subgroup analyses, certainty will also be
low. If the total sample size of included studies was small, the
estimation of this range will also be imprecise and warrants
lower certainty.

The Bayesian method for estimating the reference range
incorporates the estimation uncertainty of parameters into
the width of the interval. However, depending on the applica-
tion, it may be more prudent to flag a truly healthy individual
as abnormal, thus necessitating further investigation, rather
than fail to discern pathology in a sick patient. In such a sce-
nario, it may be preferable to omit the estimation uncertainty
of parameters from the width of the interval, because, under
the Bayesian approach, the estimated interval may contain
greater than 95% of measurements in the case of large
estimation uncertainty (e.g., when the number of studies is
small, the between-study variance may be estimated with
greater uncertainty). Conversely, if avoiding overdiagno-
sis is of greater concern, the estimated interval from the
Bayesian approach may be preferred. If overdiagnosis is
of paramount concern, a tolerance interval (31–33), which
limits the probability that the interval will cover less than the
prespecified proportion (e.g., 95%) of the distribution, may
be appropriate. Further work is needed to estimate tolerance
intervals for individual measurements from a meta-analysis.

DISCUSSION

This empirical application introduces the aggregate data
approaches to estimating reference ranges proposed by
Siegel et al. (17) and their IPD analogues. Each of the
proposed methods is relatively easy to use, and R code is
provided in Web Appendix 3 (aggregate data) and Web
Appendix 6 (IPD). The Bayesian methods (both 1- and
2-step) differ from the other methods in that the width of
the estimated ranges increases with greater uncertainty. The
frequentist and empirical approaches also do not require
setting prior distributions for the model parameters and
may be easier to implement in practice than the Bayesian
methods. The frequentist methods can be implemented
using existing software packages, while the empirical
approaches use only simple formulas. When implementing
these methods, one should consider the target population
and possible subgroup heterogeneity, using methods such as
stratified analyses or meta-regression, to ensure applicability
of the estimated range.

The modeling assumptions used by each of the proposed
methods should also be considered when estimating the
reference range, preferably by investigating distributional
assumptions using IPD from at least 1–2 data sets, and

further work is needed to address situations where the nor-
mality or equal within-study variance assumptions are not
met. However, our applied example using liver stiffness
measurements illustrates how each method more accurately
describes variation across healthy individuals than the CI for
the pooled mean or the prediction interval for the mean of a
new study.
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