Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 May 6;78(Pt 6):545–549. doi: 10.1107/S2056989022004443

Isolation and structural comparison of RuII-dnp complexes [dnp = 2,6-bis­(1,8-naphthyridin-2-yl)pyridine] with axially or equatorially coordinating NCS ligands

Tsugiko Takase a,*, Takashi Yamanaka b, Chihiro Tamura b, Dai Oyama a
Editor: M Weilc
PMCID: PMC9431777  PMID: 36072152

The crystal structures of two RuII complexes bearing a tridentate polypyridine ligand and N-coordinating thio­cyanato ligands at the axial or equatorial position are compared.

Keywords: crystal structure, ruthenium complex, polypyridine, tridentate ligand, thio­cyanato ligand

Abstract

The mol­ecular and crystal structures of two ruthenium(II) complexes, viz. cis-aqua­[2,6-bis­(1,8-naphthyridin-2-yl)pyridine-κ3 N,N′,N′′](thio­cyanato-κN)(tri­phen­yl­phosphine-κP)ruthenium(II) hexa­fluorido­phosphate–acetone–water (1/0.5/1), [Ru(NCS)(C21H13N5)(C18H15P)(H2O)]PF6·0.5C3H6O·H2O (I) and trans-[2,6-bis­(1,8-naphthyridin-2-yl)pyridine-κ3N,N′,N′′]bis­(pyridine-κN)(thiocyanato-κN)ruthenium(II) thio­cyanate, [Ru(NCS)(C21H13N5)(C5H5N)2]NCS (II), with an N-coordinating thio­cyanato group and a tridentate polypyridyl supporting ligand, are reported. The RuII atom in each of the cationic complexes adopts a distorted octa­hedral coordination sphere, defined by an N atom of the thio­cyanato ligand, three N atoms from the tridentate polypyridyl ligand, and an O and P atom in (I) or two pyridine-N atoms in (II) derived from monodentate ligands. The thio­cyanato ligand in (I) coordinates in an axial manner to the {Ru-dnp} unit [dnp = 2,6-bis­(1,8-naphthyridin-2-yl)pyridine], whereas it coordinates in an equatorial manner in (II). In the crystal structure of compound (I), intra­molecular C—H⋯O, C—H⋯N and O—H⋯N hydrogen bonds as well as π–π contacts are present, in addition to inter­molecular C—H⋯F, C—H⋯O and O—H⋯O hydrogen bonds. In the crystal structure of compound (II), intra­molecular C—H⋯N hydrogen bonds are observed along with inter­molecular C—H⋯N and C—H⋯S hydrogen bonds as well as a π–π inter­action.

1. Chemical context

Polypyridyl­ruthenium(II) complexes play essential roles in key technologies, such as solar energy conversion (Lewis, 2007). In particular, RuII complexes with thio­cyanate ion(s) are inter­esting as dye mol­ecules for dye-sensitized solar cells (Hagfeldt et al., 2010). As a ligand, the thio­cyanate group can bond to metals through the terminal nitro­gen or sulfur atoms since it is ambidentate. Linkage isomeric pairs can be distinguished using spectroscopic techniques when they exist as a mixture (Brewster et al., 2011; Vandenburgh et al., 2008). However, identifying the coordinating atom (N or S) by structural analysis is more reliable when only one isomer exists.

A series of RuII complexes containing a supporting ligand, dnp [dnp = 2,6-bis­(1,8-naphthyridin-2-yl)pyridine], were synthesized to extend the π-conjugated system of the terpyridine framework (which is a typical tridentate polypyridyl ligand) and their properties and reactivities reported (Oyama et al., 2013, 2017). In particular, some reactivities such as ligand substitutions are significantly different in an identical coordination framework when the axial ligands are tri­phenyl­phosphine (PPh3) or pyridine (py) (Oyama et al., 2013, 2017). 1.

During the current study, the reaction of precursors with different axially bound ligands with the NCS ion resulted in the formation of the cationic complexes cis(PPh3,H2O)[Ru(dnp)(PPh3)(NCS-κN)(H2O)+ [(I) as the water/acetone (1/0.5) solvated PF6 salt] with an axially bound NCS ligand and trans(py)-[Ru(dnp)(py)2(NCS-κN)]+ [(II) as the NCS salt] with an equatorially bound NCS ligand. Their crystal structures are reported and compared in this communication.

2. Structural commentary

Figs. 1 and 2 present the mol­ecular structures of compounds (I) and (II), respectively. The RuII atoms in (I) and (II) exhibit distorted octa­hedral coordination environments, similar to those reported in other structurally related complexes containing the tridentate dnp ligand (Koizumi & Tanaka, 2005; Oyama et al., 2013, 2017). As listed in Tables 1 and 2, compounds (I) and (II) exhibit intra­molecular hydrogen bonds between aromatic C—H groups of PPh3 or pyridine and the non-coordinating N atoms in dnp or the monodentate ligands [OH2 in (I) or NCS in (II)]. In (I), the inter­atomic distances between O1 and N1 [2.678 (4) Å] and O1 and N5 [2.983 (4) Å] are considerably short. Although the H atoms of the coordinating water mol­ecule (O1) have not been localized, these short distances indicate that intra­molecular hydrogen bonds of medium strength are present between the aqua ligand and the N atoms of the dnp ligand. Furthermore, in (I) intra­molecular π–π inter­actions [Cg1⋯Cg2 = 3.640 (4) Å and Cg3⋯Cg4 = 3.749 (3) Å where Cg1, Cg2, Cg3, and Cg4 are the centroids of the N1/C1–C5, C29–C34, N3/C9–C13, and C35–C40 rings, respectively] are present, with a slippage of 1.2 Å for Cg1⋯Cg2. It is inferred from these results that both π–π inter­actions are not exactly cofacial. The slippage angle β is 19.2° for Cg1⋯Cg2 and 16.2° for Cg3⋯Cg4.

Figure 1.

Figure 1

Mol­ecular structure of the complex cation in (I), with atom labels and displacement ellipsoids for non-H atoms drawn at the 50% probability level.

Figure 2.

Figure 2

Mol­ecular structure of the complex cation in (II), with atom labels and displacement ellipsoids for non-H atoms drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H6⋯F5i 0.93 2.45 3.369 (6) 170
C15—H9⋯F2 0.93 2.45 3.345 (6) 162
C21—H13⋯O2 0.93 2.59 3.213 (14) 124
C24—H14⋯O1 0.93 2.43 3.210 (5) 141
C24—H14⋯N5 0.93 2.43 3.144 (6) 134
C25—H15⋯F4ii 0.93 2.54 3.347 (7) 145
C41—H30⋯F1ii 0.96 2.40 3.26 (3) 150

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H8⋯N9i 0.95 2.43 3.305 (5) 152
C20—H12⋯S2ii 0.95 2.73 3.629 (3) 159
C22—H14⋯N1 0.95 2.51 3.391 (3) 154
C27—H19⋯S2 0.95 2.76 3.479 (3) 133

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

As mentioned above, it is important to distinguish the coordination atom of the thio­cyanato ligand because of its ambidentate coordination mode. Both S- and N-coordinated RuII complexes containing polypyridines have been determined structurally, but the N-atom coordination is overwhelmingly dominant. These complexes can be distinguished crystallographically by the Ru—X—C bond angle (X = N or S) through the coordinating atom. For example, the Ru—S—C bond angles (for S-ligating examples) are 104–106° (Brewster et al., 2011; Homanen et al., 1996; Vandenburgh et al., 2008), whereas the Ru—N—C bond angles (for N-ligating examples) are in the range 159–179° (Brewster et al., 2011; Cadranel et al., 2012; Shklover et al., 2002; Vandenburgh et al., 2008; Zakeeruddin et al., 1997). In the present cases, the Ru—X—C bond angles of compounds (I) and (II) are 175.6 (3) and 166.03 (19)°, respectively, indicating that the RuII atoms in both compounds exhibit an N-coordination.

The bond length between the RuII atom and the nitro­gen atom in (I) [2.105 (3) Å] is slightly longer than that of (II) [2.069 (2) Å]. In contrast, the N≡C bond length in (I) [1.116 (5) Å] is shorter than that of (II) [1.160 (3) Å]. The terminal C—S distance [(I): 1.637 (4) Å, (II): 1.647 (2) Å] and the N—C—S bond angle [(I): 178.2 (4)°, (II): 179.0 (2)°] are similar. These data are in agreement with those of the related polypyridyl complexes containing N-bound {RuII–NCS}+ moieties (Brewster et al., 2011; Cadranel et al., 2012; Shklover et al., 2002; Vandenburgh et al., 2008; Zakeeruddin et al., 1997).

3. Supra­molecular features

Additional solvent mol­ecules are incorporated in the crystal structure of (I), i.e., a water mol­ecule and a disordered acetone mol­ecule (occupancy 0.5) per formula unit. Apart from Coulombic forces, there are weak C—H⋯F hydrogen bonds between the complex cation and the PF6 anion (Table 1) and the acetone mol­ecule [O1⋯O2 = 2.87 (1) Å]. These inter­actions contribute to the stabilization of the packing and formation of a three-dimensional supra­molecular structure (Fig. 3).

Figure 3.

Figure 3

The crystal packing of compound (I) with hydrogen bonds (blue; for numerical details, see Table 1) and π–π contacts (green) shown as dashed lines. Ring centroids are shown as red spheres.

In the crystal structure of (II), weak C—H⋯X (X = N or S) hydrogen-bonding inter­actions exist between the complex cation and the NCS anion (Table 2) along with the intra­molecular hydrogen bonds. Additional π–π inter­actions [Cg5⋯Cg5i = 4.0093 (15) Å; Cg5 is the centroid of the N5/C17–C21 ring; symmetry code: (i) 1 − x, 1 − y, 1 − z] with a centroid slippage of 1.263 Å for Cg5⋯Cg5i are present. The slippage angle β is 18.4° for Cg5⋯Cg5i. These inter­actions lead to the formation of a three-dimensional network structure (Fig. 4).

Figure 4.

Figure 4

The crystal packing of compound (II) with hydrogen bonds (blue; for numerical details, see Table 2) and π–π contacts (green) shown as dashed lines. Ring centroids are shown as red spheres.

4. Database survey

Some crystal structures of RuII complexes with both N-coordinating thio­cyanato and tridentate terpyridine derivative ligands (tpyR) of the form [Ru(tpyR)(NCS)L 2] n (R = various substituents, L = pyridyl or NCS ligands) have been reported, as revealed by a search of the Cambridge Crystal Structure Database (CSD, version 5.42, update September 2021; Groom et al., 2016), including refcodes NAMCEL (Brewster et al., 2011), CAQRAP (Cadranel et al., 2012), MIXGOP01 (Shklover et al., 2002), and NUMBOM (Zakeeruddin et al., 1997). In contrast, for NAMCIP (Brewster et al., 2011), TORMIW (Homanen et al., 1996) and EGAYUH (Vandenburgh et al., 2008) S-coordinating thio­cyanato ligands in polypyridyl­ruthenium(II) complexes were reported.

5. Synthesis and crystallization

A methano­lic solution (40 ml) containing [Ru(dnp)(PPh3)2(H2O)](PF6)2 (50 mg, 0.039 mmol) (Oyama et al., 2013) and 1.1 eq. of NaSCN (10 mg) was heated under reflux for 30 min. The volume was reduced to 5 ml, and a saturated solution of KPF6 was added. The resulting solid was filtered and washed sequentially with water and diethyl ether. The yield was 32 mg (69%). Crystals suitable for use in X-ray diffraction (XRD) studies were grown by vapor diffusion of diethyl ether into an acetone solution of (I). Fourier transform infrared (FTIR) spectroscopy using a KBr pellet showed νCN at 2130 cm−1.

For the synthesis of compound (II), a methano­lic solution (20 ml) containing [Ru(dnp)(py)2(H2O)](PF6)2 (25 mg, 0.028 mmol) (Oyama et al., 2013) and 2.2 eq. of NaSCN (5 mg) was heated under reflux for 30 min. The reaction mixture was reduced to 3 ml. The addition of diethyl ether (5 ml) to the solution resulted in the formation of a precipitate of (II). The crude product was purified by column chromatography on Al2O3 (eluent: acetone). The yield was 9 mg (40%). Single crystals suitable for XRD studies were obtained by recrystallization from acetone. FTIR using a KBr pellet showed νCN at 2121 (ligand) and 2055 cm−1 (counter-ion).

6. Refinement

Table 3 lists the crystal data, data collection, and structure refinement details. All hydrogen atoms were placed at calculated positions [C—H = 0.93 or 0.96 Å in (I), C—H = 0.95 Å in (II)] and refined using a riding model with U iso(H) = 1.2U eq(C). The acetone solvent mol­ecule in (I) (C41–C43, O2) is disordered over an inversion center and was refined with an occupancy of 0.5. The oxygen atom of the solvent water mol­ecule (O3) was refined with an isotropic displacement parameter. H atoms of the coordinating and the solvate water mol­ecules could not be localized from difference-Fourier maps. Therefore, they are not part of the model but part of the formula.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula [Ru(NCS)(C21H13N5)(C18H15P)(H2O)]PF6·0.5C3H6O·H2O [Ru(NCS)(C21H13N5)(C5H5N)2]NCS
M r 966.84 710.79
Crystal system, space group Triclinic, P Inline graphic Monoclinic, P21/c
Temperature (K) 296 93
a, b, c (Å) 9.3699 (2), 15.3897 (4), 16.0267 (4) 12.6556 (10), 14.0986 (7), 17.4421 (14)
α, β, γ (°) 92.6869 (9), 105.1544 (8), 100.0149 (7) 90, 108.535 (3), 90
V3) 2186.29 (10) 2950.7 (4)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.55 0.72
Crystal size (mm) 0.20 × 0.15 × 0.10 0.25 × 0.15 × 0.05
 
Data collection
Diffractometer Rigaku R-AXIS RAPID Rigaku Saturn724
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995) Multi-scan (REQAB; Rigaku, 1998)
T min, T max 0.750, 0.947 0.927, 0.965
No. of measured, independent and observed [F 2 > 2.0σ(F 2)] reflections 34567, 9994, 8406 30135, 6758, 6058
R int 0.025 0.029
(sin θ/λ)max−1) 0.649 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.050, 0.169, 1.08 0.036, 0.091, 1.10
No. of reflections 9994 6758
No. of parameters 554 406
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.93, −0.64 1.13, −0.81

Computer programs: RAPID-AUTO (Rigaku, 2006), CrystalClear (Rigaku, 2015), SIR97 (Altomare et al., 1999), SIR92 (Altomare et al., 1993), SHELXL2018/3 (Sheldrick, 2015), Mercury (Macrae et al., 2020), ORTEP-3 for Windows (Farrugia, 2012), CrystalStructure (Rigaku, 2019), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989022004443/wm5641sup1.cif

e-78-00545-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022004443/wm5641Isup2.hkl

e-78-00545-Isup2.hkl (792.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989022004443/wm5641IIsup3.hkl

e-78-00545-IIsup3.hkl (537.1KB, hkl)

CCDC references: 2168839, 2168838

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank Mr Yuki Watanabe at Fukushima University for his technical assistance.

supplementary crystallographic information

cis-Aqua[2,6-bis(1,8-naphthyridin-2-yl)pyridine-κ3N,N',N''](thiocyanato-κN)(triphenylphosphine-κP)ruthenium(II) hexafluoridophosphate–acetone–water (1/0.5/1) (I) . Crystal data

[Ru(NCS)(C21H13N5)(C18H15P)(H2O)]PF6·0.5C3H6O·H2O Z = 2
Mr = 966.84 F(000) = 980.00
Triclinic, P1 Dx = 1.469 Mg m3
a = 9.3699 (2) Å Mo Kα radiation, λ = 0.71075 Å
b = 15.3897 (4) Å Cell parameters from 29007 reflections
c = 16.0267 (4) Å θ = 3.0–27.5°
α = 92.6869 (9)° µ = 0.55 mm1
β = 105.1544 (8)° T = 296 K
γ = 100.0149 (7)° Block, purple
V = 2186.29 (10) Å3 0.20 × 0.15 × 0.10 mm

cis-Aqua[2,6-bis(1,8-naphthyridin-2-yl)pyridine-κ3N,N',N''](thiocyanato-κN)(triphenylphosphine-κP)ruthenium(II) hexafluoridophosphate–acetone–water (1/0.5/1) (I) . Data collection

Rigaku R-AXIS RAPID diffractometer 8406 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1 Rint = 0.025
ω scans θmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) h = −11→12
Tmin = 0.750, Tmax = 0.947 k = −19→19
34567 measured reflections l = −20→20
9994 independent reflections

cis-Aqua[2,6-bis(1,8-naphthyridin-2-yl)pyridine-κ3N,N',N''](thiocyanato-κN)(triphenylphosphine-κP)ruthenium(II) hexafluoridophosphate–acetone–water (1/0.5/1) (I) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1102P)2 + 1.1681P] where P = (Fo2 + 2Fc2)/3
9994 reflections (Δ/σ)max = 0.001
554 parameters Δρmax = 1.93 e Å3
0 restraints Δρmin = −0.64 e Å3
Primary atom site location: structure-invariant direct methods

cis-Aqua[2,6-bis(1,8-naphthyridin-2-yl)pyridine-κ3N,N',N''](thiocyanato-κN)(triphenylphosphine-κP)ruthenium(II) hexafluoridophosphate–acetone–water (1/0.5/1) (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

cis-Aqua[2,6-bis(1,8-naphthyridin-2-yl)pyridine-κ3N,N',N''](thiocyanato-κN)(triphenylphosphine-κP)ruthenium(II) hexafluoridophosphate–acetone–water (1/0.5/1) (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ru1 0.20144 (3) 0.23092 (2) 0.71810 (2) 0.03823 (11)
S1 0.54439 (14) 0.03779 (10) 0.68390 (13) 0.0978 (5)
P1 0.02612 (10) 0.31990 (6) 0.72697 (6) 0.0440 (2)
P2 0.28893 (14) 0.24126 (7) 1.22614 (7) 0.0588 (3)
F1 0.3298 (6) 0.3196 (2) 1.3006 (2) 0.1247 (15)
F2 0.2484 (4) 0.16220 (19) 1.15150 (19) 0.0894 (9)
F3 0.2730 (5) 0.3108 (2) 1.1558 (2) 0.1043 (11)
F4 0.4608 (4) 0.2498 (3) 1.2296 (3) 0.1163 (13)
F5 0.3020 (4) 0.1719 (2) 1.2970 (2) 0.0948 (10)
F6 0.1186 (4) 0.2322 (3) 1.2222 (3) 0.1110 (12)
O1 0.2872 (3) 0.31914 (19) 0.63264 (18) 0.0589 (7)
O3 −0.4347 (17) 0.0497 (10) 0.1027 (10) 0.344 (7)*
N1 0.0916 (4) 0.2097 (2) 0.5019 (2) 0.0575 (8)
N2 0.0397 (3) 0.14350 (19) 0.62044 (18) 0.0410 (6)
N3 0.1213 (3) 0.14515 (18) 0.78696 (18) 0.0415 (6)
N4 0.3425 (3) 0.27857 (19) 0.84298 (19) 0.0435 (6)
N5 0.4997 (4) 0.3928 (2) 0.8046 (2) 0.0578 (8)
N6 0.3590 (3) 0.1529 (2) 0.7042 (2) 0.0508 (7)
C1 0.0597 (6) 0.2151 (3) 0.4174 (3) 0.0699 (13)
H1 0.119932 0.258875 0.396905 0.084*
C2 −0.0596 (6) 0.1587 (3) 0.3564 (3) 0.0666 (11)
H2 −0.078108 0.165630 0.297422 0.080*
C3 −0.1474 (5) 0.0940 (3) 0.3851 (3) 0.0626 (10)
H3 −0.227518 0.055966 0.346082 0.075*
C4 −0.1156 (4) 0.0850 (3) 0.4755 (2) 0.0504 (8)
C5 0.0039 (4) 0.1462 (2) 0.5316 (2) 0.0462 (7)
C6 −0.1963 (4) 0.0176 (3) 0.5117 (3) 0.0562 (9)
H4 −0.275944 −0.023686 0.476010 0.067*
C7 −0.1565 (4) 0.0136 (2) 0.5989 (3) 0.0505 (8)
H5 −0.207602 −0.031113 0.623294 0.061*
C8 −0.0377 (4) 0.0773 (2) 0.6521 (2) 0.0428 (7)
C9 0.0081 (4) 0.0765 (2) 0.7467 (2) 0.0459 (7)
C10 −0.0498 (5) 0.0139 (3) 0.7941 (3) 0.0644 (11)
H6 −0.128217 −0.032599 0.766539 0.077*
C11 0.0111 (6) 0.0216 (3) 0.8841 (3) 0.0817 (16)
H7 −0.026723 −0.019790 0.917268 0.098*
C12 0.1283 (6) 0.0913 (3) 0.9237 (3) 0.0760 (14)
H8 0.170109 0.096773 0.983515 0.091*
C13 0.1822 (4) 0.1523 (3) 0.8740 (2) 0.0516 (8)
C14 0.3075 (4) 0.2288 (3) 0.9051 (2) 0.0511 (8)
C15 0.3825 (5) 0.2494 (3) 0.9935 (3) 0.0679 (12)
H9 0.354640 0.213987 1.034253 0.081*
C16 0.4958 (6) 0.3212 (3) 1.0194 (3) 0.0720 (13)
H10 0.543541 0.336458 1.078127 0.086*
C17 0.5405 (5) 0.3718 (3) 0.9579 (3) 0.0579 (10)
C18 0.4624 (4) 0.3486 (2) 0.8687 (2) 0.0467 (7)
C19 0.6592 (6) 0.4471 (3) 0.9779 (3) 0.0787 (14)
H11 0.713260 0.465186 1.035344 0.094*
C20 0.6933 (6) 0.4921 (3) 0.9140 (4) 0.0817 (15)
H12 0.769460 0.542262 0.926604 0.098*
C21 0.6114 (5) 0.4620 (3) 0.8266 (4) 0.0720 (13)
H13 0.637933 0.492736 0.782642 0.086*
C22 0.4359 (4) 0.1070 (3) 0.6970 (3) 0.0542 (9)
C23 0.0862 (5) 0.4408 (2) 0.7478 (3) 0.0543 (9)
C24 0.2210 (5) 0.4838 (3) 0.7372 (3) 0.0607 (10)
H14 0.286908 0.451352 0.722033 0.073*
C25 0.2587 (7) 0.5761 (3) 0.7493 (4) 0.0816 (15)
H15 0.350439 0.604667 0.742700 0.098*
C26 0.1643 (9) 0.6245 (3) 0.7705 (4) 0.099 (2)
H16 0.189677 0.686032 0.777275 0.119*
C27 0.0335 (10) 0.5829 (4) 0.7817 (5) 0.115 (2)
H17 −0.031213 0.616375 0.796792 0.137*
C28 −0.0074 (8) 0.4916 (4) 0.7713 (5) 0.0931 (18)
H18 −0.098155 0.464252 0.780230 0.112*
C29 −0.1240 (5) 0.3099 (3) 0.6248 (3) 0.0638 (11)
C30 −0.2398 (7) 0.2426 (5) 0.5962 (5) 0.105 (2)
H19 −0.253912 0.198479 0.632581 0.126*
C31 −0.3409 (10) 0.2352 (6) 0.5141 (6) 0.139 (3)
H20 −0.425729 0.190055 0.499432 0.167*
C32 −0.3191 (12) 0.2902 (7) 0.4576 (5) 0.151 (4)
H21 −0.387200 0.285053 0.402952 0.181*
C33 −0.1974 (12) 0.3538 (9) 0.4799 (5) 0.174 (5)
H22 −0.177257 0.392207 0.439500 0.209*
C34 −0.0982 (8) 0.3640 (7) 0.5639 (4) 0.135 (3)
H23 −0.012944 0.408900 0.577956 0.162*
C35 −0.0579 (4) 0.2952 (3) 0.8167 (2) 0.0499 (8)
C36 0.0264 (6) 0.3277 (4) 0.8996 (3) 0.0752 (13)
H24 0.118188 0.366055 0.907513 0.090*
C37 −0.0212 (7) 0.3050 (5) 0.9710 (3) 0.0932 (18)
H25 0.038846 0.328108 1.026088 0.112*
C38 −0.1535 (7) 0.2498 (4) 0.9626 (4) 0.0909 (17)
H26 −0.184622 0.233571 1.011189 0.109*
C39 −0.2415 (8) 0.2180 (6) 0.8801 (5) 0.131 (3)
H27 −0.334539 0.181065 0.872839 0.158*
C40 −0.1934 (7) 0.2401 (5) 0.8078 (4) 0.111 (3)
H28 −0.253921 0.217311 0.752646 0.133*
O2 0.5573 (15) 0.4320 (11) 0.6201 (8) 0.162 (6) 0.5
C41 0.688 (3) 0.5339 (16) 0.5506 (16) 0.156 (8) 0.5
H29 0.663565 0.561416 0.497545 0.187* 0.5
H30 0.723079 0.578661 0.598965 0.187* 0.5
H31 0.765916 0.500822 0.549928 0.187* 0.5
C42 0.554 (2) 0.4738 (11) 0.5589 (12) 0.124 (5) 0.5
C43 0.414 (4) 0.454 (3) 0.480 (2) 0.28 (3) 0.5
H32 0.429253 0.493342 0.436933 0.335* 0.5
H33 0.399037 0.393942 0.456380 0.335* 0.5
H34 0.327501 0.463494 0.498052 0.335* 0.5

cis-Aqua[2,6-bis(1,8-naphthyridin-2-yl)pyridine-κ3N,N',N''](thiocyanato-κN)(triphenylphosphine-κP)ruthenium(II) hexafluoridophosphate–acetone–water (1/0.5/1) (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru1 0.03849 (16) 0.04036 (16) 0.03340 (15) −0.00234 (10) 0.01317 (10) −0.00263 (10)
S1 0.0506 (6) 0.0878 (9) 0.1451 (14) 0.0143 (6) 0.0182 (8) −0.0414 (9)
P1 0.0419 (5) 0.0462 (5) 0.0400 (4) 0.0036 (3) 0.0091 (3) −0.0047 (3)
P2 0.0728 (7) 0.0505 (5) 0.0496 (5) −0.0018 (5) 0.0197 (5) 0.0032 (4)
F1 0.203 (5) 0.074 (2) 0.084 (2) −0.002 (2) 0.041 (3) −0.0228 (17)
F2 0.124 (3) 0.0687 (17) 0.0681 (17) −0.0153 (16) 0.0381 (17) −0.0117 (14)
F3 0.154 (3) 0.077 (2) 0.084 (2) 0.015 (2) 0.038 (2) 0.0341 (17)
F4 0.070 (2) 0.112 (3) 0.161 (4) −0.0060 (18) 0.036 (2) 0.012 (3)
F5 0.131 (3) 0.0773 (19) 0.0681 (18) 0.0050 (18) 0.0212 (18) 0.0231 (15)
F6 0.085 (2) 0.138 (3) 0.128 (3) 0.028 (2) 0.052 (2) 0.033 (3)
O1 0.0666 (17) 0.0576 (16) 0.0482 (15) −0.0099 (13) 0.0226 (13) 0.0040 (12)
N1 0.072 (2) 0.0569 (19) 0.0380 (15) −0.0108 (15) 0.0213 (15) −0.0055 (13)
N2 0.0405 (14) 0.0444 (14) 0.0352 (13) −0.0002 (11) 0.0125 (11) −0.0058 (11)
N3 0.0465 (15) 0.0401 (14) 0.0353 (13) 0.0000 (11) 0.0129 (11) −0.0014 (11)
N4 0.0427 (15) 0.0453 (15) 0.0388 (14) 0.0008 (11) 0.0108 (11) −0.0025 (11)
N5 0.0460 (17) 0.0592 (19) 0.059 (2) −0.0063 (14) 0.0095 (14) 0.0053 (15)
N6 0.0459 (16) 0.0557 (17) 0.0500 (17) 0.0058 (13) 0.0163 (13) −0.0058 (14)
C1 0.089 (3) 0.073 (3) 0.040 (2) −0.013 (2) 0.024 (2) −0.0009 (18)
C2 0.081 (3) 0.076 (3) 0.0365 (19) 0.002 (2) 0.0151 (19) −0.0025 (18)
C3 0.061 (2) 0.076 (3) 0.0411 (19) −0.001 (2) 0.0089 (17) −0.0093 (18)
C4 0.0473 (19) 0.060 (2) 0.0391 (17) 0.0008 (16) 0.0126 (15) −0.0078 (15)
C5 0.0494 (19) 0.0501 (18) 0.0373 (16) 0.0006 (14) 0.0166 (14) −0.0062 (14)
C6 0.049 (2) 0.059 (2) 0.051 (2) −0.0070 (16) 0.0116 (16) −0.0128 (17)
C7 0.0495 (19) 0.0469 (18) 0.051 (2) −0.0047 (15) 0.0185 (16) −0.0067 (15)
C8 0.0438 (17) 0.0411 (16) 0.0413 (17) −0.0008 (13) 0.0151 (14) −0.0034 (13)
C9 0.0486 (18) 0.0439 (17) 0.0422 (17) −0.0035 (14) 0.0165 (14) −0.0022 (14)
C10 0.075 (3) 0.057 (2) 0.051 (2) −0.0184 (19) 0.0198 (19) 0.0019 (18)
C11 0.100 (4) 0.079 (3) 0.050 (2) −0.032 (3) 0.023 (2) 0.012 (2)
C12 0.095 (3) 0.079 (3) 0.039 (2) −0.024 (3) 0.017 (2) 0.0074 (19)
C13 0.059 (2) 0.055 (2) 0.0360 (17) −0.0048 (16) 0.0148 (15) 0.0002 (14)
C14 0.059 (2) 0.055 (2) 0.0346 (16) −0.0044 (16) 0.0138 (15) −0.0005 (14)
C15 0.072 (3) 0.079 (3) 0.0388 (19) −0.012 (2) 0.0099 (18) 0.0017 (19)
C16 0.078 (3) 0.080 (3) 0.039 (2) −0.007 (2) 0.0000 (19) −0.0096 (19)
C17 0.051 (2) 0.059 (2) 0.051 (2) −0.0018 (17) 0.0020 (16) −0.0105 (17)
C18 0.0393 (17) 0.0478 (18) 0.0475 (19) 0.0015 (13) 0.0085 (14) −0.0042 (14)
C19 0.073 (3) 0.070 (3) 0.067 (3) −0.014 (2) −0.006 (2) −0.010 (2)
C20 0.064 (3) 0.068 (3) 0.086 (4) −0.023 (2) −0.001 (2) 0.002 (3)
C21 0.056 (2) 0.064 (3) 0.083 (3) −0.0117 (19) 0.011 (2) 0.011 (2)
C22 0.0392 (18) 0.060 (2) 0.057 (2) −0.0043 (16) 0.0135 (16) −0.0141 (17)
C23 0.067 (2) 0.0447 (19) 0.049 (2) 0.0117 (17) 0.0121 (17) 0.0022 (15)
C24 0.062 (2) 0.050 (2) 0.059 (2) 0.0021 (17) 0.0035 (19) 0.0030 (17)
C25 0.093 (4) 0.053 (3) 0.076 (3) −0.009 (2) −0.001 (3) 0.008 (2)
C26 0.156 (6) 0.043 (2) 0.083 (4) 0.019 (3) 0.006 (4) 0.004 (2)
C27 0.155 (7) 0.066 (4) 0.138 (6) 0.049 (4) 0.050 (6) −0.001 (4)
C28 0.104 (4) 0.066 (3) 0.128 (5) 0.029 (3) 0.058 (4) 0.004 (3)
C29 0.060 (2) 0.075 (3) 0.048 (2) 0.018 (2) −0.0011 (18) −0.0085 (19)
C30 0.086 (4) 0.104 (5) 0.091 (4) −0.004 (3) −0.019 (3) −0.006 (3)
C31 0.107 (6) 0.145 (7) 0.109 (6) −0.002 (5) −0.044 (5) −0.021 (5)
C32 0.164 (9) 0.178 (9) 0.077 (5) 0.075 (7) −0.047 (5) −0.031 (5)
C33 0.148 (8) 0.297 (15) 0.056 (4) 0.035 (9) −0.007 (5) 0.036 (6)
C34 0.092 (5) 0.244 (10) 0.055 (3) 0.015 (5) 0.003 (3) 0.036 (5)
C35 0.0435 (18) 0.055 (2) 0.0495 (19) 0.0011 (14) 0.0166 (15) −0.0077 (15)
C36 0.068 (3) 0.095 (3) 0.050 (2) −0.015 (2) 0.017 (2) −0.008 (2)
C37 0.089 (4) 0.129 (5) 0.048 (3) −0.010 (3) 0.018 (2) −0.010 (3)
C38 0.099 (4) 0.107 (4) 0.074 (3) −0.005 (3) 0.053 (3) 0.001 (3)
C39 0.113 (5) 0.165 (7) 0.101 (5) −0.066 (5) 0.071 (4) −0.037 (5)
C40 0.088 (4) 0.151 (6) 0.067 (3) −0.060 (4) 0.034 (3) −0.032 (3)
O2 0.146 (10) 0.222 (15) 0.095 (8) −0.035 (10) 0.035 (7) 0.026 (9)
C41 0.21 (3) 0.121 (15) 0.144 (19) 0.027 (17) 0.064 (18) 0.014 (14)
C42 0.158 (16) 0.094 (10) 0.107 (12) −0.008 (10) 0.040 (11) −0.005 (9)
C43 0.26 (5) 0.30 (5) 0.18 (3) −0.06 (3) −0.07 (3) 0.11 (3)

cis-Aqua[2,6-bis(1,8-naphthyridin-2-yl)pyridine-κ3N,N',N''](thiocyanato-κN)(triphenylphosphine-κP)ruthenium(II) hexafluoridophosphate–acetone–water (1/0.5/1) (I) . Geometric parameters (Å, º)

Ru1—N3 1.936 (3) C16—C17 1.388 (7)
Ru1—N2 2.100 (3) C16—H10 0.9300
Ru1—N4 2.105 (3) C17—C19 1.419 (6)
Ru1—N6 2.105 (3) C17—C18 1.421 (5)
Ru1—O1 2.176 (3) C19—C20 1.338 (8)
Ru1—P1 2.3409 (9) C19—H11 0.9300
S1—C22 1.637 (4) C20—C21 1.421 (7)
P1—C35 1.836 (4) C20—H12 0.9300
P1—C23 1.836 (4) C21—H13 0.9300
P1—C29 1.839 (4) C23—C24 1.377 (6)
P2—F6 1.562 (4) C23—C28 1.380 (7)
P2—F1 1.577 (3) C24—C25 1.393 (6)
P2—F4 1.579 (4) C24—H14 0.9300
P2—F2 1.588 (3) C25—C26 1.346 (9)
P2—F3 1.588 (3) C25—H15 0.9300
P2—F5 1.590 (3) C26—C27 1.340 (10)
N1—C1 1.319 (5) C26—H16 0.9300
N1—C5 1.350 (5) C27—C28 1.381 (8)
N2—C8 1.345 (4) C27—H17 0.9300
N2—C5 1.379 (4) C28—H18 0.9300
N3—C13 1.353 (4) C29—C30 1.328 (7)
N3—C9 1.359 (4) C29—C34 1.355 (9)
N4—C14 1.356 (5) C30—C31 1.392 (9)
N4—C18 1.374 (4) C30—H19 0.9300
N5—C21 1.318 (5) C31—C32 1.298 (13)
N5—C18 1.346 (5) C31—H20 0.9300
N6—C22 1.116 (5) C32—C33 1.324 (15)
C1—C2 1.403 (6) C32—H21 0.9300
C1—H1 0.9300 C33—C34 1.406 (9)
C2—C3 1.355 (6) C33—H22 0.9300
C2—H2 0.9300 C34—H23 0.9300
C3—C4 1.419 (5) C35—C40 1.368 (6)
C3—H3 0.9300 C35—C36 1.376 (6)
C4—C5 1.407 (5) C36—C37 1.370 (7)
C4—C6 1.413 (6) C36—H24 0.9300
C6—C7 1.356 (6) C37—C38 1.346 (8)
C6—H4 0.9300 C37—H25 0.9300
C7—C8 1.404 (5) C38—C39 1.377 (9)
C7—H5 0.9300 C38—H26 0.9300
C8—C9 1.465 (5) C39—C40 1.385 (8)
C9—C10 1.379 (5) C39—H27 0.9300
C10—C11 1.397 (6) C40—H28 0.9300
C10—H6 0.9300 O2—C42 1.19 (2)
C11—C12 1.386 (6) C41—C42 1.47 (3)
C11—H7 0.9300 C41—H29 0.9600
C12—C13 1.374 (5) C41—H30 0.9600
C12—H8 0.9300 C41—H31 0.9600
C13—C14 1.474 (5) C42—C43 1.53 (3)
C14—C15 1.400 (5) C43—H32 0.9600
C15—C16 1.356 (6) C43—H33 0.9600
C15—H9 0.9300 C43—H34 0.9600
N3—Ru1—N2 79.15 (11) C16—C15—H9 120.2
N3—Ru1—N4 79.47 (11) C14—C15—H9 120.2
N2—Ru1—N4 158.24 (12) C15—C16—C17 119.8 (4)
N3—Ru1—N6 90.12 (13) C15—C16—H10 120.1
N2—Ru1—N6 87.81 (11) C17—C16—H10 120.1
N4—Ru1—N6 88.21 (12) C16—C17—C19 124.3 (4)
N3—Ru1—O1 175.58 (11) C16—C17—C18 118.8 (4)
N2—Ru1—O1 96.97 (11) C19—C17—C18 116.8 (4)
N4—Ru1—O1 104.23 (11) N5—C18—N4 115.9 (3)
N6—Ru1—O1 87.59 (13) N5—C18—C17 122.9 (3)
N3—Ru1—P1 92.21 (9) N4—C18—C17 121.2 (3)
N2—Ru1—P1 91.23 (8) C20—C19—C17 119.9 (4)
N4—Ru1—P1 93.61 (8) C20—C19—H11 120.0
N6—Ru1—P1 177.27 (9) C17—C19—H11 120.0
O1—Ru1—P1 89.98 (9) C19—C20—C21 119.0 (4)
C35—P1—C23 100.93 (18) C19—C20—H12 120.5
C35—P1—C29 109.5 (2) C21—C20—H12 120.5
C23—P1—C29 101.0 (2) N5—C21—C20 123.5 (5)
C35—P1—Ru1 112.05 (13) N5—C21—H13 118.3
C23—P1—Ru1 120.14 (14) C20—C21—H13 118.3
C29—P1—Ru1 112.01 (15) N6—C22—S1 178.2 (4)
F6—P2—F1 89.9 (3) C24—C23—C28 118.1 (4)
F6—P2—F4 179.6 (3) C24—C23—P1 121.8 (3)
F1—P2—F4 90.6 (3) C28—C23—P1 120.1 (4)
F6—P2—F2 90.3 (2) C23—C24—C25 119.9 (5)
F1—P2—F2 179.7 (3) C23—C24—H14 120.0
F4—P2—F2 89.3 (2) C25—C24—H14 120.0
F6—P2—F3 90.5 (2) C26—C25—C24 121.1 (6)
F1—P2—F3 89.7 (2) C26—C25—H15 119.5
F4—P2—F3 89.5 (2) C24—C25—H15 119.5
F2—P2—F3 90.49 (19) C27—C26—C25 119.3 (5)
F6—P2—F5 88.4 (2) C27—C26—H16 120.4
F1—P2—F5 89.9 (2) C25—C26—H16 120.4
F4—P2—F5 91.5 (2) C26—C27—C28 121.5 (6)
F2—P2—F5 89.90 (18) C26—C27—H17 119.2
F3—P2—F5 178.9 (2) C28—C27—H17 119.2
C1—N1—C5 118.0 (3) C23—C28—C27 120.1 (6)
C8—N2—C5 118.0 (3) C23—C28—H18 119.9
C8—N2—Ru1 112.9 (2) C27—C28—H18 119.9
C5—N2—Ru1 129.1 (2) C30—C29—C34 114.8 (6)
C13—N3—C9 120.8 (3) C30—C29—P1 126.1 (5)
C13—N3—Ru1 119.8 (2) C34—C29—P1 117.3 (4)
C9—N3—Ru1 119.4 (2) C29—C30—C31 122.9 (7)
C14—N4—C18 117.6 (3) C29—C30—H19 118.6
C14—N4—Ru1 112.3 (2) C31—C30—H19 118.6
C18—N4—Ru1 130.1 (2) C32—C31—C30 121.3 (8)
C21—N5—C18 117.8 (4) C32—C31—H20 119.4
C22—N6—Ru1 175.6 (3) C30—C31—H20 119.4
N1—C1—C2 123.9 (4) C31—C32—C33 118.3 (7)
N1—C1—H1 118.0 C31—C32—H21 120.9
C2—C1—H1 118.0 C33—C32—H21 120.9
C3—C2—C1 118.7 (4) C32—C33—C34 120.8 (10)
C3—C2—H2 120.6 C32—C33—H22 119.6
C1—C2—H2 120.6 C34—C33—H22 119.6
C2—C3—C4 119.2 (4) C29—C34—C33 121.4 (9)
C2—C3—H3 120.4 C29—C34—H23 119.3
C4—C3—H3 120.4 C33—C34—H23 119.3
C5—C4—C6 118.6 (3) C40—C35—C36 117.2 (4)
C5—C4—C3 117.8 (4) C40—C35—P1 124.4 (3)
C6—C4—C3 123.6 (4) C36—C35—P1 118.0 (3)
N1—C5—N2 116.2 (3) C37—C36—C35 121.8 (4)
N1—C5—C4 122.3 (3) C37—C36—H24 119.1
N2—C5—C4 121.5 (3) C35—C36—H24 119.1
C7—C6—C4 119.4 (3) C38—C37—C36 121.1 (5)
C7—C6—H4 120.3 C38—C37—H25 119.4
C4—C6—H4 120.3 C36—C37—H25 119.4
C6—C7—C8 119.7 (3) C37—C38—C39 118.1 (5)
C6—C7—H5 120.1 C37—C38—H26 120.9
C8—C7—H5 120.1 C39—C38—H26 120.9
N2—C8—C7 122.7 (3) C38—C39—C40 121.0 (5)
N2—C8—C9 115.5 (3) C38—C39—H27 119.5
C7—C8—C9 121.8 (3) C40—C39—H27 119.5
N3—C9—C10 120.6 (3) C35—C40—C39 120.6 (5)
N3—C9—C8 113.0 (3) C35—C40—H28 119.7
C10—C9—C8 126.4 (3) C39—C40—H28 119.7
C9—C10—C11 118.9 (4) C42—C41—H29 109.5
C9—C10—H6 120.5 C42—C41—H30 109.5
C11—C10—H6 120.5 H29—C41—H30 109.5
C12—C11—C10 119.5 (4) C42—C41—H31 109.5
C12—C11—H7 120.2 H29—C41—H31 109.5
C10—C11—H7 120.2 H30—C41—H31 109.5
C13—C12—C11 119.6 (4) O2—C42—C41 121 (2)
C13—C12—H8 120.2 O2—C42—C43 120 (2)
C11—C12—H8 120.2 C41—C42—C43 118 (2)
N3—C13—C12 120.6 (3) C42—C43—H32 109.5
N3—C13—C14 112.9 (3) C42—C43—H33 109.5
C12—C13—C14 126.6 (3) H32—C43—H33 109.5
N4—C14—C15 122.6 (3) C42—C43—H34 109.5
N4—C14—C13 115.7 (3) H32—C43—H34 109.5
C15—C14—C13 121.7 (3) H33—C43—H34 109.5
C16—C15—C14 119.7 (4)
C5—N1—C1—C2 −0.1 (8) C21—N5—C18—C17 −1.8 (6)
N1—C1—C2—C3 −0.7 (8) C14—N4—C18—N5 175.8 (3)
C1—C2—C3—C4 −0.3 (7) Ru1—N4—C18—N5 −2.1 (5)
C2—C3—C4—C5 2.0 (7) C14—N4—C18—C17 −4.3 (5)
C2—C3—C4—C6 −177.3 (4) Ru1—N4—C18—C17 177.8 (3)
C1—N1—C5—N2 −179.2 (4) C16—C17—C18—N5 −178.7 (4)
C1—N1—C5—C4 1.9 (6) C19—C17—C18—N5 2.1 (6)
C8—N2—C5—N1 −175.2 (3) C16—C17—C18—N4 1.5 (6)
Ru1—N2—C5—N1 5.5 (5) C19—C17—C18—N4 −177.8 (4)
C8—N2—C5—C4 3.6 (5) C16—C17—C19—C20 −179.6 (5)
Ru1—N2—C5—C4 −175.6 (3) C18—C17—C19—C20 −0.4 (8)
C6—C4—C5—N1 176.5 (4) C17—C19—C20—C21 −1.4 (9)
C3—C4—C5—N1 −2.9 (6) C18—N5—C21—C20 −0.2 (8)
C6—C4—C5—N2 −2.3 (6) C19—C20—C21—N5 1.8 (9)
C3—C4—C5—N2 178.3 (4) C35—P1—C23—C24 140.2 (4)
C5—C4—C6—C7 −0.2 (6) C29—P1—C23—C24 −107.1 (4)
C3—C4—C6—C7 179.2 (4) Ru1—P1—C23—C24 16.6 (4)
C4—C6—C7—C8 1.2 (6) C35—P1—C23—C28 −42.5 (5)
C5—N2—C8—C7 −2.6 (5) C29—P1—C23—C28 70.1 (5)
Ru1—N2—C8—C7 176.8 (3) Ru1—P1—C23—C28 −166.2 (4)
C5—N2—C8—C9 178.4 (3) C28—C23—C24—C25 −0.7 (7)
Ru1—N2—C8—C9 −2.2 (4) P1—C23—C24—C25 176.6 (4)
C6—C7—C8—N2 0.2 (6) C23—C24—C25—C26 −0.7 (7)
C6—C7—C8—C9 179.2 (4) C24—C25—C26—C27 1.3 (9)
C13—N3—C9—C10 1.8 (6) C25—C26—C27—C28 −0.5 (12)
Ru1—N3—C9—C10 179.3 (3) C24—C23—C28—C27 1.4 (9)
C13—N3—C9—C8 −176.9 (3) P1—C23—C28—C27 −175.9 (6)
Ru1—N3—C9—C8 0.5 (4) C26—C27—C28—C23 −0.9 (12)
N2—C8—C9—N3 1.2 (5) C35—P1—C29—C30 −48.5 (6)
C7—C8—C9—N3 −177.8 (3) C23—P1—C29—C30 −154.4 (6)
N2—C8—C9—C10 −177.4 (4) Ru1—P1—C29—C30 76.5 (6)
C7—C8—C9—C10 3.6 (6) C35—P1—C29—C34 147.9 (5)
N3—C9—C10—C11 −0.9 (7) C23—P1—C29—C34 42.0 (6)
C8—C9—C10—C11 177.7 (5) Ru1—P1—C29—C34 −87.1 (6)
C9—C10—C11—C12 −0.3 (9) C34—C29—C30—C31 −9.3 (11)
C10—C11—C12—C13 0.5 (9) P1—C29—C30—C31 −173.3 (7)
C9—N3—C13—C12 −1.6 (6) C29—C30—C31—C32 6.4 (15)
Ru1—N3—C13—C12 −179.0 (4) C30—C31—C32—C33 0.2 (17)
C9—N3—C13—C14 177.5 (3) C31—C32—C33—C34 −2.9 (18)
Ru1—N3—C13—C14 0.1 (5) C30—C29—C34—C33 6.4 (12)
C11—C12—C13—N3 0.4 (8) P1—C29—C34—C33 171.9 (8)
C11—C12—C13—C14 −178.6 (5) C32—C33—C34—C29 −0.5 (17)
C18—N4—C14—C15 4.0 (6) C23—P1—C35—C40 134.2 (5)
Ru1—N4—C14—C15 −177.8 (4) C29—P1—C35—C40 28.2 (6)
C18—N4—C14—C13 −177.5 (3) Ru1—P1—C35—C40 −96.7 (5)
Ru1—N4—C14—C13 0.7 (4) C23—P1—C35—C36 −51.9 (4)
N3—C13—C14—N4 −0.6 (5) C29—P1—C35—C36 −157.9 (4)
C12—C13—C14—N4 178.5 (5) Ru1—P1—C35—C36 77.2 (4)
N3—C13—C14—C15 177.9 (4) C40—C35—C36—C37 1.1 (9)
C12—C13—C14—C15 −3.0 (8) P1—C35—C36—C37 −173.2 (5)
N4—C14—C15—C16 −0.6 (8) C35—C36—C37—C38 −0.1 (10)
C13—C14—C15—C16 −179.1 (5) C36—C37—C38—C39 −1.3 (11)
C14—C15—C16—C17 −2.4 (8) C37—C38—C39—C40 1.8 (13)
C15—C16—C17—C19 −178.9 (5) C36—C35—C40—C39 −0.6 (11)
C15—C16—C17—C18 2.0 (8) P1—C35—C40—C39 173.4 (7)
C21—N5—C18—N4 178.1 (4) C38—C39—C40—C35 −0.9 (14)

cis-Aqua[2,6-bis(1,8-naphthyridin-2-yl)pyridine-κ3N,N',N''](thiocyanato-κN)(triphenylphosphine-κP)ruthenium(II) hexafluoridophosphate–acetone–water (1/0.5/1) (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C10—H6···F5i 0.93 2.45 3.369 (6) 170
C15—H9···F2 0.93 2.45 3.345 (6) 162
C21—H13···O2 0.93 2.59 3.213 (14) 124
C24—H14···O1 0.93 2.43 3.210 (5) 141
C24—H14···N5 0.93 2.43 3.144 (6) 134
C25—H15···F4ii 0.93 2.54 3.347 (7) 145
C41—H30···F1ii 0.96 2.40 3.26 (3) 150

Symmetry codes: (i) −x, −y, −z+2; (ii) −x+1, −y+1, −z+2.

trans-[2,6-Bis(1,8-naphthyridin-2-yl)pyridine-κ3'N,N',N'']bis(pyridine-κN)(thiocyanato-κN)ruthenium(II) thiocyanate (II) . Crystal data

[Ru(NCS)(C21H13N5)(C5H5N)2]NCS F(000) = 1440.00
Mr = 710.79 Dx = 1.600 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71075 Å
a = 12.6556 (10) Å Cell parameters from 7649 reflections
b = 14.0986 (7) Å θ = 3.1–27.6°
c = 17.4421 (14) Å µ = 0.72 mm1
β = 108.535 (3)° T = 93 K
V = 2950.7 (4) Å3 Platelet, purple
Z = 4 0.25 × 0.15 × 0.05 mm

trans-[2,6-Bis(1,8-naphthyridin-2-yl)pyridine-κ3'N,N',N'']bis(pyridine-κN)(thiocyanato-κN)ruthenium(II) thiocyanate (II) . Data collection

Rigaku Saturn724 diffractometer 6058 reflections with F2 > 2.0σ(F2)
Detector resolution: 28.626 pixels mm-1 Rint = 0.029
ω scans θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (REQAB; Rigaku, 1998) h = −16→16
Tmin = 0.927, Tmax = 0.965 k = −18→18
30135 measured reflections l = −22→21
6758 independent reflections

trans-[2,6-Bis(1,8-naphthyridin-2-yl)pyridine-κ3'N,N',N'']bis(pyridine-κN)(thiocyanato-κN)ruthenium(II) thiocyanate (II) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0451P)2 + 2.9803P] where P = (Fo2 + 2Fc2)/3
6758 reflections (Δ/σ)max = 0.001
406 parameters Δρmax = 1.13 e Å3
0 restraints Δρmin = −0.81 e Å3
Primary atom site location: structure-invariant direct methods

trans-[2,6-Bis(1,8-naphthyridin-2-yl)pyridine-κ3'N,N',N'']bis(pyridine-κN)(thiocyanato-κN)ruthenium(II) thiocyanate (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

trans-[2,6-Bis(1,8-naphthyridin-2-yl)pyridine-κ3'N,N',N'']bis(pyridine-κN)(thiocyanato-κN)ruthenium(II) thiocyanate (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ru1 0.73332 (2) 0.38197 (2) 0.79490 (2) 0.01220 (7)
S1 0.39862 (5) 0.39265 (5) 0.87218 (4) 0.02286 (14)
S2 1.08750 (7) 0.12965 (7) 0.89031 (6) 0.0466 (2)
N1 0.70294 (18) 0.38857 (15) 0.98054 (13) 0.0213 (4)
N2 0.83872 (16) 0.38102 (13) 0.91797 (12) 0.0155 (4)
N3 0.88229 (16) 0.37934 (13) 0.78244 (13) 0.0161 (4)
N4 0.69378 (17) 0.37739 (13) 0.66605 (12) 0.0155 (4)
N5 0.50056 (17) 0.38259 (15) 0.62868 (13) 0.0195 (4)
N6 0.73064 (15) 0.52961 (14) 0.79703 (11) 0.0144 (4)
N7 0.71689 (16) 0.23463 (14) 0.79725 (11) 0.0148 (4)
N8 0.57797 (16) 0.38875 (13) 0.81029 (12) 0.0150 (4)
N9 1.1118 (3) 0.1261 (2) 1.0511 (3) 0.0605 (10)
C1 0.6735 (2) 0.38898 (19) 1.04670 (16) 0.0250 (6)
H1 0.596645 0.395157 1.040937 0.030*
C2 0.7502 (2) 0.38073 (18) 1.12584 (16) 0.0257 (6)
H2 0.725046 0.381745 1.171672 0.031*
C3 0.8603 (2) 0.37134 (19) 1.13490 (16) 0.0263 (6)
H3 0.913218 0.365204 1.187311 0.032*
C4 0.8955 (2) 0.37077 (18) 1.06568 (16) 0.0222 (5)
C5 0.8121 (2) 0.37965 (16) 0.98896 (15) 0.0170 (5)
C6 1.0075 (2) 0.3633 (2) 1.06873 (17) 0.0302 (6)
H4 1.064516 0.355198 1.119123 0.036*
C7 1.0338 (2) 0.3677 (2) 0.99887 (17) 0.0287 (6)
H5 1.109374 0.363961 1.000289 0.034*
C8 0.9484 (2) 0.37788 (17) 0.92474 (16) 0.0192 (5)
C9 0.9741 (2) 0.38180 (16) 0.84863 (16) 0.0189 (5)
C10 1.0804 (2) 0.38683 (18) 0.84086 (17) 0.0236 (5)
H6 1.144589 0.388480 0.887533 0.028*
C11 1.0912 (2) 0.38939 (18) 0.76456 (18) 0.0257 (6)
H7 1.162986 0.394404 0.758536 0.031*
C12 0.9974 (2) 0.38464 (18) 0.69684 (17) 0.0236 (5)
H8 1.004151 0.385025 0.644116 0.028*
C13 0.8932 (2) 0.37929 (16) 0.70748 (15) 0.0181 (5)
C14 0.7866 (2) 0.37476 (16) 0.64229 (16) 0.0192 (5)
C15 0.7840 (2) 0.3661 (2) 0.56132 (16) 0.0258 (6)
H9 0.851351 0.365671 0.548224 0.031*
C16 0.6846 (2) 0.3583 (2) 0.50232 (16) 0.0284 (6)
H10 0.681492 0.349725 0.447630 0.034*
C17 0.5856 (2) 0.36317 (19) 0.52286 (15) 0.0228 (5)
C18 0.5922 (2) 0.37458 (16) 0.60530 (15) 0.0176 (5)
C19 0.4790 (2) 0.3594 (2) 0.46440 (16) 0.0307 (6)
H11 0.471574 0.350438 0.408944 0.037*
C20 0.3871 (2) 0.3686 (2) 0.48793 (16) 0.0288 (6)
H12 0.314452 0.367060 0.449543 0.035*
C21 0.4027 (2) 0.38040 (18) 0.57117 (16) 0.0225 (5)
H13 0.338013 0.387331 0.587133 0.027*
C22 0.69873 (19) 0.57334 (17) 0.85510 (15) 0.0179 (5)
H14 0.684341 0.535624 0.895819 0.022*
C23 0.6862 (2) 0.67017 (18) 0.85773 (16) 0.0228 (5)
H15 0.664358 0.698350 0.899817 0.027*
C24 0.7058 (2) 0.72600 (18) 0.79841 (16) 0.0254 (6)
H16 0.696320 0.792839 0.798536 0.030*
C25 0.7396 (2) 0.68249 (18) 0.73875 (16) 0.0239 (5)
H17 0.754158 0.719108 0.697497 0.029*
C26 0.7518 (2) 0.58469 (18) 0.74030 (15) 0.0189 (5)
H18 0.775997 0.555269 0.699798 0.023*
C27 0.8032 (2) 0.17690 (17) 0.83344 (14) 0.0174 (5)
H19 0.875293 0.203965 0.855670 0.021*
C28 0.7914 (2) 0.07944 (18) 0.83963 (15) 0.0206 (5)
H20 0.854209 0.040994 0.865668 0.025*
C29 0.6872 (2) 0.03930 (18) 0.80747 (16) 0.0236 (5)
H21 0.677155 −0.027208 0.810502 0.028*
C30 0.5974 (2) 0.09807 (18) 0.77057 (16) 0.0215 (5)
H22 0.524601 0.072233 0.748726 0.026*
C31 0.6145 (2) 0.19431 (17) 0.76586 (15) 0.0183 (5)
H23 0.552640 0.233747 0.739781 0.022*
C32 0.50337 (19) 0.38985 (16) 0.83534 (14) 0.0156 (4)
C33 1.1013 (3) 0.1275 (2) 0.9913 (3) 0.0385 (8)

trans-[2,6-Bis(1,8-naphthyridin-2-yl)pyridine-κ3'N,N',N'']bis(pyridine-κN)(thiocyanato-κN)ruthenium(II) thiocyanate (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru1 0.01117 (10) 0.01297 (10) 0.01255 (10) 0.00016 (6) 0.00390 (7) 0.00024 (7)
S1 0.0170 (3) 0.0297 (3) 0.0251 (3) −0.0005 (2) 0.0111 (2) −0.0020 (3)
S2 0.0280 (4) 0.0616 (6) 0.0502 (5) 0.0079 (4) 0.0122 (4) 0.0023 (4)
N1 0.0198 (10) 0.0278 (11) 0.0160 (10) 0.0031 (8) 0.0055 (8) 0.0019 (8)
N2 0.0145 (9) 0.0156 (9) 0.0144 (10) −0.0001 (7) 0.0020 (8) 0.0011 (7)
N3 0.0155 (9) 0.0147 (9) 0.0196 (10) −0.0002 (7) 0.0076 (8) 0.0009 (8)
N4 0.0182 (9) 0.0157 (9) 0.0139 (9) 0.0003 (7) 0.0069 (8) 0.0010 (7)
N5 0.0183 (10) 0.0246 (11) 0.0153 (10) 0.0000 (8) 0.0049 (8) −0.0010 (8)
N6 0.0131 (9) 0.0137 (9) 0.0141 (9) 0.0001 (7) 0.0012 (7) 0.0013 (7)
N7 0.0168 (9) 0.0139 (9) 0.0149 (9) −0.0010 (7) 0.0069 (8) −0.0012 (7)
N8 0.0143 (9) 0.0163 (9) 0.0138 (9) 0.0001 (7) 0.0036 (7) −0.0001 (7)
N9 0.074 (2) 0.0450 (19) 0.092 (3) −0.0064 (16) 0.068 (2) −0.0125 (19)
C1 0.0267 (13) 0.0310 (14) 0.0201 (13) 0.0053 (11) 0.0112 (11) 0.0029 (10)
C2 0.0354 (15) 0.0266 (14) 0.0170 (12) 0.0003 (11) 0.0107 (11) 0.0011 (10)
C3 0.0320 (14) 0.0269 (14) 0.0150 (12) −0.0016 (11) 0.0005 (11) 0.0023 (10)
C4 0.0236 (12) 0.0209 (12) 0.0176 (12) −0.0002 (10) 0.0003 (10) 0.0013 (10)
C5 0.0189 (11) 0.0148 (11) 0.0163 (11) 0.0001 (9) 0.0042 (9) 0.0007 (9)
C6 0.0203 (13) 0.0416 (16) 0.0218 (13) −0.0003 (11) −0.0031 (11) 0.0040 (12)
C7 0.0169 (12) 0.0390 (16) 0.0260 (14) 0.0010 (11) 0.0009 (11) 0.0041 (12)
C8 0.0144 (11) 0.0178 (11) 0.0236 (13) −0.0003 (9) 0.0036 (10) 0.0015 (9)
C9 0.0152 (11) 0.0172 (11) 0.0236 (13) 0.0000 (9) 0.0054 (10) 0.0011 (9)
C10 0.0158 (11) 0.0237 (13) 0.0310 (14) 0.0001 (9) 0.0070 (10) 0.0003 (11)
C11 0.0168 (12) 0.0256 (13) 0.0387 (16) −0.0012 (10) 0.0145 (11) 0.0020 (11)
C12 0.0221 (12) 0.0245 (13) 0.0297 (14) 0.0003 (10) 0.0163 (11) 0.0012 (11)
C13 0.0197 (12) 0.0174 (11) 0.0202 (12) 0.0012 (9) 0.0105 (10) 0.0010 (9)
C14 0.0197 (12) 0.0167 (11) 0.0231 (13) 0.0015 (9) 0.0094 (10) 0.0000 (9)
C15 0.0268 (13) 0.0329 (15) 0.0223 (13) 0.0019 (11) 0.0142 (11) 0.0023 (11)
C16 0.0318 (14) 0.0399 (16) 0.0173 (13) 0.0023 (12) 0.0128 (11) 0.0005 (11)
C17 0.0263 (13) 0.0281 (13) 0.0145 (12) 0.0015 (10) 0.0073 (10) 0.0023 (10)
C18 0.0200 (11) 0.0161 (11) 0.0168 (12) −0.0008 (9) 0.0058 (9) −0.0011 (9)
C19 0.0356 (15) 0.0422 (16) 0.0135 (12) 0.0007 (13) 0.0068 (11) −0.0013 (11)
C20 0.0231 (13) 0.0411 (16) 0.0178 (13) −0.0005 (11) 0.0001 (10) −0.0006 (11)
C21 0.0206 (12) 0.0281 (14) 0.0183 (12) −0.0006 (10) 0.0053 (10) −0.0018 (10)
C22 0.0174 (11) 0.0193 (12) 0.0165 (11) 0.0009 (9) 0.0045 (9) 0.0009 (9)
C23 0.0239 (12) 0.0205 (12) 0.0221 (13) 0.0037 (10) 0.0048 (10) −0.0024 (10)
C24 0.0323 (14) 0.0141 (12) 0.0264 (14) 0.0032 (10) 0.0045 (11) 0.0009 (10)
C25 0.0291 (13) 0.0181 (12) 0.0223 (13) −0.0018 (10) 0.0049 (11) 0.0036 (10)
C26 0.0192 (11) 0.0188 (11) 0.0172 (12) −0.0010 (9) 0.0038 (9) 0.0023 (9)
C27 0.0170 (11) 0.0196 (12) 0.0159 (11) 0.0016 (9) 0.0057 (9) −0.0010 (9)
C28 0.0248 (12) 0.0186 (12) 0.0199 (12) 0.0046 (10) 0.0092 (10) 0.0021 (10)
C29 0.0362 (14) 0.0155 (12) 0.0225 (13) −0.0025 (10) 0.0144 (11) −0.0007 (10)
C30 0.0225 (12) 0.0209 (12) 0.0214 (13) −0.0065 (10) 0.0075 (10) −0.0044 (10)
C31 0.0172 (11) 0.0194 (12) 0.0178 (12) −0.0013 (9) 0.0050 (9) −0.0031 (9)
C32 0.0163 (11) 0.0148 (11) 0.0133 (11) 0.0006 (8) 0.0015 (9) 0.0001 (8)
C33 0.0233 (14) 0.0296 (16) 0.056 (2) −0.0018 (12) 0.0027 (15) 0.0152 (15)

trans-[2,6-Bis(1,8-naphthyridin-2-yl)pyridine-κ3'N,N',N'']bis(pyridine-κN)(thiocyanato-κN)ruthenium(II) thiocyanate (II) . Geometric parameters (Å, º)

Ru1—N3 1.966 (2) C10—C11 1.381 (4)
Ru1—N8 2.069 (2) C10—H6 0.9500
Ru1—N6 2.0824 (19) C11—C12 1.384 (4)
Ru1—N7 2.0893 (19) C11—H7 0.9500
Ru1—N2 2.137 (2) C12—C13 1.391 (3)
Ru1—N4 2.142 (2) C12—H8 0.9500
S1—C32 1.647 (2) C13—C14 1.464 (4)
S2—C33 1.715 (4) C14—C15 1.407 (4)
N1—C1 1.320 (3) C15—C16 1.353 (4)
N1—C5 1.348 (3) C15—H9 0.9500
N2—C8 1.355 (3) C16—C17 1.410 (4)
N2—C5 1.383 (3) C16—H10 0.9500
N3—C9 1.353 (3) C17—C19 1.410 (4)
N3—C13 1.358 (3) C17—C18 1.423 (3)
N4—C14 1.365 (3) C19—C20 1.357 (4)
N4—C18 1.382 (3) C19—H11 0.9500
N5—C21 1.323 (3) C20—C21 1.412 (4)
N5—C18 1.351 (3) C20—H12 0.9500
N6—C26 1.350 (3) C21—H13 0.9500
N6—C22 1.352 (3) C22—C23 1.377 (4)
N7—C27 1.348 (3) C22—H14 0.9500
N7—C31 1.361 (3) C23—C24 1.384 (4)
N8—C32 1.160 (3) C23—H15 0.9500
N9—C33 1.009 (5) C24—C25 1.387 (4)
C1—C2 1.417 (4) C24—H16 0.9500
C1—H1 0.9500 C25—C26 1.387 (4)
C2—C3 1.358 (4) C25—H17 0.9500
C2—H2 0.9500 C26—H18 0.9500
C3—C4 1.413 (4) C27—C28 1.390 (3)
C3—H3 0.9500 C27—H19 0.9500
C4—C6 1.407 (4) C28—C29 1.379 (4)
C4—C5 1.422 (3) C28—H20 0.9500
C6—C7 1.363 (4) C29—C30 1.389 (4)
C6—H4 0.9500 C29—H21 0.9500
C7—C8 1.405 (4) C30—C31 1.381 (3)
C7—H5 0.9500 C30—H22 0.9500
C8—C9 1.465 (4) C31—H23 0.9500
C9—C10 1.396 (3)
N3—Ru1—N8 178.11 (8) C10—C11—H7 120.0
N3—Ru1—N6 92.43 (7) C12—C11—H7 120.0
N8—Ru1—N6 85.99 (7) C11—C12—C13 118.7 (2)
N3—Ru1—N7 95.07 (7) C11—C12—H8 120.6
N8—Ru1—N7 86.49 (7) C13—C12—H8 120.6
N6—Ru1—N7 172.39 (7) N3—C13—C12 121.3 (2)
N3—Ru1—N2 78.26 (8) N3—C13—C14 113.4 (2)
N8—Ru1—N2 100.68 (8) C12—C13—C14 125.3 (2)
N6—Ru1—N2 89.82 (7) N4—C14—C15 124.0 (2)
N7—Ru1—N2 90.47 (7) N4—C14—C13 115.6 (2)
N3—Ru1—N4 78.22 (8) C15—C14—C13 120.3 (2)
N8—Ru1—N4 102.88 (8) C16—C15—C14 119.3 (2)
N6—Ru1—N4 92.82 (7) C16—C15—H9 120.3
N7—Ru1—N4 89.95 (7) C14—C15—H9 120.3
N2—Ru1—N4 156.42 (8) C15—C16—C17 119.3 (2)
C1—N1—C5 118.0 (2) C15—C16—H10 120.4
C8—N2—C5 117.1 (2) C17—C16—H10 120.4
C8—N2—Ru1 112.50 (16) C16—C17—C19 122.5 (2)
C5—N2—Ru1 130.37 (16) C16—C17—C18 119.4 (2)
C9—N3—C13 119.9 (2) C19—C17—C18 118.1 (2)
C9—N3—Ru1 119.92 (17) N5—C18—N4 116.4 (2)
C13—N3—Ru1 120.09 (16) N5—C18—C17 122.3 (2)
C14—N4—C18 116.5 (2) N4—C18—C17 121.3 (2)
C14—N4—Ru1 112.51 (16) C20—C19—C17 119.5 (2)
C18—N4—Ru1 130.93 (16) C20—C19—H11 120.2
C21—N5—C18 117.1 (2) C17—C19—H11 120.2
C26—N6—C22 117.6 (2) C19—C20—C21 118.0 (3)
C26—N6—Ru1 123.63 (16) C19—C20—H12 121.0
C22—N6—Ru1 118.65 (16) C21—C20—H12 121.0
C27—N7—C31 117.6 (2) N5—C21—C20 125.0 (2)
C27—N7—Ru1 122.59 (16) N5—C21—H13 117.5
C31—N7—Ru1 119.71 (16) C20—C21—H13 117.5
C32—N8—Ru1 166.03 (19) N6—C22—C23 122.8 (2)
N1—C1—C2 123.7 (3) N6—C22—H14 118.6
N1—C1—H1 118.1 C23—C22—H14 118.6
C2—C1—H1 118.1 C22—C23—C24 119.3 (2)
C3—C2—C1 118.7 (3) C22—C23—H15 120.3
C3—C2—H2 120.6 C24—C23—H15 120.3
C1—C2—H2 120.6 C23—C24—C25 118.7 (2)
C2—C3—C4 119.4 (2) C23—C24—H16 120.6
C2—C3—H3 120.3 C25—C24—H16 120.6
C4—C3—H3 120.3 C26—C25—C24 118.9 (2)
C6—C4—C3 123.8 (2) C26—C25—H17 120.5
C6—C4—C5 118.7 (2) C24—C25—H17 120.5
C3—C4—C5 117.6 (2) N6—C26—C25 122.6 (2)
N1—C5—N2 115.7 (2) N6—C26—H18 118.7
N1—C5—C4 122.6 (2) C25—C26—H18 118.7
N2—C5—C4 121.7 (2) N7—C27—C28 122.8 (2)
C7—C6—C4 119.5 (2) N7—C27—H19 118.6
C7—C6—H4 120.2 C28—C27—H19 118.6
C4—C6—H4 120.2 C29—C28—C27 119.1 (2)
C6—C7—C8 119.5 (2) C29—C28—H20 120.4
C6—C7—H5 120.3 C27—C28—H20 120.4
C8—C7—H5 120.3 C28—C29—C30 118.7 (2)
N2—C8—C7 123.4 (2) C28—C29—H21 120.7
N2—C8—C9 115.9 (2) C30—C29—H21 120.7
C7—C8—C9 120.7 (2) C31—C30—C29 119.5 (2)
N3—C9—C10 120.7 (2) C31—C30—H22 120.2
N3—C9—C8 113.2 (2) C29—C30—H22 120.2
C10—C9—C8 126.1 (2) N7—C31—C30 122.3 (2)
C11—C10—C9 119.2 (2) N7—C31—H23 118.9
C11—C10—H6 120.4 C30—C31—H23 118.9
C9—C10—H6 120.4 N8—C32—S1 179.0 (2)
C10—C11—C12 120.1 (2) N9—C33—S2 178.4 (4)
C5—N1—C1—C2 0.1 (4) Ru1—N4—C14—C15 176.3 (2)
N1—C1—C2—C3 −0.4 (4) C18—N4—C14—C13 179.1 (2)
C1—C2—C3—C4 0.5 (4) Ru1—N4—C14—C13 −2.3 (2)
C2—C3—C4—C6 178.7 (3) N3—C13—C14—N4 4.0 (3)
C2—C3—C4—C5 −0.4 (4) C12—C13—C14—N4 −175.0 (2)
C1—N1—C5—N2 −179.1 (2) N3—C13—C14—C15 −174.6 (2)
C1—N1—C5—C4 0.0 (4) C12—C13—C14—C15 6.4 (4)
C8—N2—C5—N1 176.2 (2) N4—C14—C15—C16 −1.0 (4)
Ru1—N2—C5—N1 −6.5 (3) C13—C14—C15—C16 177.5 (2)
C8—N2—C5—C4 −2.9 (3) C14—C15—C16—C17 2.7 (4)
Ru1—N2—C5—C4 174.35 (17) C15—C16—C17—C19 177.5 (3)
C6—C4—C5—N1 −179.0 (2) C15—C16—C17—C18 −1.0 (4)
C3—C4—C5—N1 0.1 (4) C21—N5—C18—N4 179.7 (2)
C6—C4—C5—N2 0.0 (4) C21—N5—C18—C17 −0.7 (3)
C3—C4—C5—N2 179.2 (2) C14—N4—C18—N5 −176.4 (2)
C3—C4—C6—C7 −177.0 (3) Ru1—N4—C18—N5 5.3 (3)
C5—C4—C6—C7 2.1 (4) C14—N4—C18—C17 4.0 (3)
C4—C6—C7—C8 −1.2 (4) Ru1—N4—C18—C17 −174.26 (18)
C5—N2—C8—C7 3.9 (3) C16—C17—C18—N5 177.9 (2)
Ru1—N2—C8—C7 −173.8 (2) C19—C17—C18—N5 −0.6 (4)
C5—N2—C8—C9 −178.5 (2) C16—C17—C18—N4 −2.5 (4)
Ru1—N2—C8—C9 3.7 (2) C19—C17—C18—N4 179.0 (2)
C6—C7—C8—N2 −1.9 (4) C16—C17—C19—C20 −177.1 (3)
C6—C7—C8—C9 −179.3 (3) C18—C17—C19—C20 1.3 (4)
C13—N3—C9—C10 1.7 (3) C17—C19—C20—C21 −0.8 (4)
Ru1—N3—C9—C10 −175.39 (18) C18—N5—C21—C20 1.3 (4)
C13—N3—C9—C8 −177.8 (2) C19—C20—C21—N5 −0.5 (4)
Ru1—N3—C9—C8 5.1 (3) C26—N6—C22—C23 0.7 (3)
N2—C8—C9—N3 −5.7 (3) Ru1—N6—C22—C23 −174.93 (18)
C7—C8—C9—N3 171.9 (2) N6—C22—C23—C24 0.6 (4)
N2—C8—C9—C10 174.8 (2) C22—C23—C24—C25 −1.2 (4)
C7—C8—C9—C10 −7.5 (4) C23—C24—C25—C26 0.4 (4)
N3—C9—C10—C11 0.1 (4) C22—N6—C26—C25 −1.5 (3)
C8—C9—C10—C11 179.5 (2) Ru1—N6—C26—C25 173.92 (18)
C9—C10—C11—C12 −1.6 (4) C24—C25—C26—N6 0.9 (4)
C10—C11—C12—C13 1.3 (4) C31—N7—C27—C28 0.0 (3)
C9—N3—C13—C12 −2.0 (3) Ru1—N7—C27—C28 175.82 (17)
Ru1—N3—C13—C12 175.11 (18) N7—C27—C28—C29 0.1 (4)
C9—N3—C13—C14 179.0 (2) C27—C28—C29—C30 −0.6 (4)
Ru1—N3—C13—C14 −3.9 (3) C28—C29—C30—C31 1.0 (4)
C11—C12—C13—N3 0.5 (4) C27—N7—C31—C30 0.4 (3)
C11—C12—C13—C14 179.4 (2) Ru1—N7—C31—C30 −175.53 (18)
C18—N4—C14—C15 −2.3 (3) C29—C30—C31—N7 −0.9 (4)

trans-[2,6-Bis(1,8-naphthyridin-2-yl)pyridine-κ3'N,N',N'']bis(pyridine-κN)(thiocyanato-κN)ruthenium(II) thiocyanate (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H8···N9i 0.95 2.43 3.305 (5) 152
C20—H12···S2ii 0.95 2.73 3.629 (3) 159
C22—H14···N1 0.95 2.51 3.391 (3) 154
C27—H19···S2 0.95 2.76 3.479 (3) 133

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x−1, −y+1/2, z−1/2.

Funding Statement

Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. JP20K05536).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  3. Brewster, T. P., Ding, W., Schley, N. D., Hazari, N., Batista, V. S. & Crabtree, R. H. (2011). Inorg. Chem. 50, 11938–11946. [DOI] [PubMed]
  4. Cadranel, A., Alborés, P., Yamazaki, S., Kleiman, V. D. & Baraldo, L. M. (2012). Dalton Trans. 41, 5343–5350. [DOI] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Hagfeldt, A., Boschloo, G., Sun, L. C., Kloo, L. & Pettersson, H. (2010). Chem. Rev. 110, 6595–6663. [DOI] [PubMed]
  8. Homanen, P., Haukka, M., Pakkanen, T. A., Pursiainen, J. & Laitinen, R. H. (1996). Organometallics, 15, 4081–4084.
  9. Koizumi, T. & Tanaka, K. (2005). Inorg. Chim. Acta, 358, 1999–2004.
  10. Lewis, N. S. (2007). Science, 315, 798–801. [DOI] [PubMed]
  11. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  12. Oyama, D., Yamanaka, T., Abe, R. & Takase, T. (2017). J. Organomet. Chem. 830, 167–174.
  13. Oyama, D., Yamanaka, T., Fukuda, A. & Takase, T. (2013). Chem. Lett. 42, 1554–1555.
  14. Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  15. Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
  16. Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  17. Rigaku (2015). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  18. Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  19. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  20. Shklover, V., Nazeeruddin, Md. K., Grätzel, M. & Ovchinnikov, Yu. E. (2002). Appl. Organomet. Chem. 16, 635–642.
  21. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  22. Vandenburgh, L., Buck, M. R. & Freedman, D. A. (2008). Inorg. Chem. 47, 9134–9136. [DOI] [PubMed]
  23. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  24. Zakeeruddin, S. M., Nazeeruddin, M. K., Pechy, P., Rotzinger, F. P., Humphry-Baker, R., Kalyanasundaram, K., Grätzel, M., Shklover, V. & Haibach, T. (1997). Inorg. Chem. 36, 5937–5946. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989022004443/wm5641sup1.cif

e-78-00545-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022004443/wm5641Isup2.hkl

e-78-00545-Isup2.hkl (792.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989022004443/wm5641IIsup3.hkl

e-78-00545-IIsup3.hkl (537.1KB, hkl)

CCDC references: 2168839, 2168838

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES