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Abstract

The difficulty of acquiring resting-state fMRI of early developing children under the same 

condition leads to a dedicated protocol, i.e., scanning younger infants during sleep and older 

children during being awake, respectively. However, the obviously different brain activities 

of sleep and awake states arouse a new challenge of awake-to-sleep connectome prediction/

translation, which remains unexplored despite its importance in the longitudinally-consistent 

delineation of brain functional development. Due to the data scarcity and huge differences 

between natural images and geometric data (e.g., brain connectome), existing methods tailored 

for image translation generally fail in predicting functional connectome from awake to sleep. To 

fill this critical gap, we unprecedentedly propose a novel reference-relation guided autoencoder 

with deep CCA restriction (R2AE-dCCA) for awake-to-sleep connectome prediction. Specifically, 

1) A reference-autoencoder (RAE) is proposed to realize a guided generation from the source 

domain to the target domain. The limited paired data are thus greatly augmented by including 

the combinations of all the age-restricted neighboring subjects as the references, while the 

target-specific pattern is fully learned; 2) A relation network is then designed and embedded 

into RAE, which utilizes the similarity in the source domain to determine the belief-strength of 

the reference during prediction; 3) To ensure that the learned relation in the source domain can 

effectively guide the generation in the target domain, a deep CCA restriction is further employed 

to maintain the neighboring relation during translation; 4) New validation metrics dedicated 

for connectome prediction are also proposed. Experimental results showed that our proposed 

R2AE-dCCA produces better prediction accuracy and well maintains the modular structure of 

brain functional connectome in comparison with state-of-the-art methods.
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1 Introduction

During the first few years of life, the human brain undergoes exceptionally dynamic 

development that could largely shape later behavioral and cognitive performance [1–3]. 

Delineating the functional developmental trajectories through this stage with resting-state 

fMRI (rs-fMRI) is of great importance in understanding the normal brain and diagnosing 

neurodevelopmental disorders [4, 5]. However, there are unique challenges associated 

with acquiring rs-fMRI for early developing children under a unified condition (sleep or 

awake), i.e., 1) it is impossible to request younger infants to be awake while remaining 

still during scanning; 2) it is difficult to persuade older children (>24 months) to sleep 

during the daytime and also the brain activity in the deep sleep during the night is 

significantly different from normal resting state. This dilemma generally leads to a dedicated 

protocol, i.e., scanning younger infants during sleep, while scanning older children during 

being awake and keeping them still by watching movies [4, 6]. However, there are 

big differences lying in the hemodynamic responses of sleep and awake that will be 

reflected in fMRI and the corresponding brain functional connectome. Thus, to realize 

meaningful and consistent cross-age studies under different scan conditions, predicting the 

functional connectome obtained during sleep from that during being awake is critical, which, 

however, remains unexplored to the best of our knowledge and challenging. Due to the 

difficulties in image acquisition and recruitment, training the model for awake-to-sleep brain 

connectome prediction usually confronts the problem of data scarcity. Moreover, although 

deep generative adversarial networks based domain translation have been successfully 

developed for image translation [7–9], these methods generally fail in predicting functional 

connectome because of the huge difference between natural images and geometric data (e.g., 

brain connectome). In addition, the multi-view brain graph synthesis method [10, 11] may 

not perform well in awake-to-sleep prediction, as it was designed for connectomes obtained 

by cortical morphological measures, which usually have smaller distribution differences 

between the source and target domains.

To address these issues, we unprecedentedly propose a Reference-Relation guided 

AutoEncoder with deep Canonical Correlation Analysis restriction (R2AE-dCCA) for 

awake-to-sleep connectome prediction. First, a reference-autoencoder (RAE) is proposed 

to realize a guided generation from the source domain to the target domain. During the 

training stage, reference-couples from the target domain will be used to guide the prediction, 

which are constructed by the combinations of all the age-restricted neighboring subjects of 

the ones to be predicted. Merging with the individualized patterns learned from the source 

domain in the latent space, reference-couples not only provide the sleep-specific patterns 

but also greatly augment the limited data by random coupling. Then, a relation network 

is designed and embedded into RAE, which learns the similarity of the reference-couples 

to the subject to be predicted in the source domain and determine the belief-strength of 

reference in the process of target connectome generation. To guarantee that that similarity 
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in the source domain will be maintained in the target domain, a deep CCA (Canonical 

Correlation Analysis) restriction is further employed in the coupled latent space to keep the 

neighboring relation from the source domain to the target domain. Finally, in the testing 

stage, all the samples in the target domain will be used as references and the corresponding 

reference-strengths are co-determined by the relation network and age distance. Our R2AE-

dCCA was implemented on a developing children rs-fMRI dataset and compared with 

state-of-the-art methods. The superiority of our proposed R2AE-dCCA was validated not 

only on the overall accuracy but also on our proposed three new validation metrics dedicated 

for connectome prediction.

2 Method

2.1 Model description

The framework of our proposed model, reference-relation guided autoencoder with deep 

CCA restriction (R2AE-dCCA), is depicted in Fig. 1 and detailed below.

Our goal is to learn the mapping from the awake domain X to the sleep domain Y, f:X→Y, 

given paired samples {(xi, yi, Agei)|xi ∈ X, yi ∈ Y}, where i =1, ⋯, N. N is the number 

of subjects, Agei is the scan age of subject i, xi and yi are brain functional connectome 

represented by functional connectivity matrix and usually vectorized as the corresponding 

off-diagonal upper triangular elements for computation.

There are four main steps in training stage: (1) Reference-couples and relation-couples 

construction based on age-restricted neighborhood; (2) Reference guided target connectome 

generation; (3) Deep-CCA based source domain to target domain correlation; (4) Relation 

guided fusion.

Reference-couples and relation-couples construction.—For each connectome xi 

in the awake domain, except for the paired yi, other connectomes in the sleep domain 

Y could also provide rich information of how the brain connectivity patterns look like 

during sleep. Since the infant brain undergoes exceptionally dynamic development in 

both structure and function during early childhood [1–3, 28, 29], we only leverage the 

subjects within a neighboring age range to guide the learning of prediction. For a subject 

i, the age-restricted neighborhood of i is defined as NAge(i) = j | Agei − Agej < θ , θ 
is the user-defined threshold and set as 30 days in our experiments. Then, the relation-

couples and reference-couples are constructed as xj, xi, xk ∣ xi, xj, xk ∈ X, j, k ∈ NAge(i)
and yj, xi, yk ∣ xi ∈ X, yj, yk ∈ Y , j, k ∈ NAge(i) , respectively.

Encoding.—The inputs xi, xj, and xk employ a multilayer perceptron neural network, 

denoted as EX, as the encoder for the source domain to learn the individualized information, 

while yj and yk employ another multi-layer perceptron neural network, EY, as the encoder 

for the target domain to learn the domain-specific pattern. The outputs of the encoders are 

latent variables, which denoted as zix, zjx, zk
x, zj

y, and zk
y, respectively.
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Reference guided target connectome generation.—In the latent space, zj
y and zk

y

encoded from the target domain are leveraged as the reference information to guide the 

generation of the target connectome. Here a multi-layer perceptron neural network, denoted 

as GXY, is employed for the generation with the inputs, which are the concatenations 

of the individualized information zix from the source domain and the sleep-specific 

information zj
y, zk

y  from the target domain. Thus, yij = GXY zix; zj
y  and yik = GXY zix; zk

y

are the predicted sleep connectome corresponding to xi based on the reference of yi and 

yk, respectively. Together with the encoding process, a reference autoencoder (RAE) is 

designed.

Relation guided fusion.—Since more than one yi *  are obtained from the multiple 

reference couples and the RAE, a relation network is further designed to guide the fusion. 

Specifically, according to the relation-couples, a multi-layer perceptron neural network, 

denoted as RX, is embedded into RAE and employed to learn the reference-strength that yj 

and yk should contribute to the prediction of yi. That is, based on the latent variables zix, zjx, 

and zk
x,

yi = eRX zix, zjx ⋅ yij

eRX zix, zjx + eRX zix, zk
x + eRX zix, zk

x ⋅ yik

eRX zix, zjx + eRX zix, zk
x (1)

Deep-CCA based source domain to target domain correlation.—From Equation 

(1), yi is estimated based on the assumption that the similarity relationship in the 

source domain maintains in the target domain. Therefore, the correlation between the 

learned embedding of the source domain and the target domain should be maximized 

during the training, thus ensuring the effectiveness of the fusion by preserving the 

neighboring relationship cross domains. Suppose zjx, zk
x, zj

y, zk
y ∈ ℝl × s, l is the dimension 

of the latent space, s is the batch size of training, Zx = zjx, zk
x  and Zy = zj

y, zk
y  are the 

column-wise concatenation of zjx, zk
x  and zj

y, zk
y , respectively. Let Zx = Zx − 1

2sZx1 and 

Zy = Zy − 1
2sZy1 be the centered matrix, 1 is an all-1s matrix, and Σxy = 1

2s − 1ZxZy′ , 

Σxx = 1
2s − 1ZxZx′ + δ1I, Σyy = 1

2s − 1ZyZy′ + δ2I, δ1, δ2 > 0 are constants to ensure Σxx

and Σyy to be positive definite. As for the classical CCA, the total correlation of the 

top m components of Zx and Zy is the sum of the top m singular values of the matrix 

T = Σxx
−1/2ΣxyΣyy

−1/2. In our case, m is set as l, then the correlation of Zx and Zy is the matrix 

trace norm of T, i.e.,

ℒdCCA = corr Zx, Zy = ∥ T ∥tr = tr T ′T 1/2 (2)
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Taking ℒdCCA as one term of the loss function, the embeddings of the source domain and 

target domain are required to be maximally correlated.

Adversarial loss.—To enforce the stability of the training, a distribution regularization 

is imposed to the latent space and realized by a shared discriminator D [12]. Let p(z) be 

the prior distribution imposing on the latent variable z, q(z|x) be the encoding distribution. 

Training the autoencoder with distribution regularization requires the aggregated posterior 

distribution q(z) = ∫xiq(z ∣ x)pd(x)dx matching the predefined prior p(z), where pd(x) is 

the distribution of the input data. Here, this regularization is realized by an adversarial 

procedure, which leads to a minE maxDℒadv problem, where

ℒadv = ℒadv−EX + ℒadv−EY (3)

ℒadv−EX = ∑x = xi, xj, xkExlog 1 − D EX(x) + Ez log(D(z)) (4)

ℒadv−EY = ∑y = yj, ykEylog 1 − D EY (y) + Ez log(D(z)) (5)

Target connectome prediction loss.—L2 norm and Pearson’s correlation are adopted 

as our generation loss for the target connectome prediction:

ℒelement = Exi yi − yi 2
2

(6)

ℒcorr = Exicorr yi, yi (7)

Full objective.—The objective functions to optimize EX, EY, GXY, and D are written as:

ℒD = ℒadv (8)

ℒEX, EY , GXY = − λ1ℒcorr + λ2ℒelement + λ3ℒadv−E − ℒdCCA (9)

where ℒadv−E = Exlog 1 − D EX(x) + Eylog 1 − D EY (y) , λ1, λ2, and λ3 are trade off 

parameters. The model alternatively updates EX, EY, GXY, and D with ℒEX, EY , GXY  and 

ℒD.

Testing stage.—For each xtest, with the age of refence connectome being considered into 

the relation guided fusion, all the connectome yTr in the training set are used as reference to 

avoid the lack of variability. With RAE obtaining corresponding sleep connectome ytest, Tr
and relation network providing the reference-strength of each reference, the final prediction 

of ytest is estimated as
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ytest = ∑yTrσ W yTr ⋅ RX EX xtest , EX xTr ⋅ GXY EX xtest , EY yTr (10)

where W yTr = e− Agetest − AgeyTr , σ( * ) = exp( * )
∑yTrexp( * )  is the Softmax function, (xTr, yTr) is 

the paired connectomes obtained during sleep and being awake of the same subject.

2.2 Validation of functional connectome prediction

Although Pearson’s correlation coefficient (r) and mean absolute error (MAE) are usually 

taken as the evaluation metrics, they are general measures without any characteristics of 

specific applications. Taking the practical requirement of functional connectome prediction 

into consideration, we propose three new metrics dedicated for the validation of functional 

connectome prediction, i.e., correlation of top percentile connections (Corrpercl), normalized 

variation of information (VIn), and normalized mutual information (MIn) of the induced 

modular structure.

Correlation of top percentile connections (Corrpercl).—For a functional 

connectome, the connections with top percentile of strength are usually the focus of 

functional graph or network construction [13, 14]. Thus, Corrpercl is the Pearson’s 

correlation coefficient merely counted within the connections with top percentile of strength, 

i.e.,

Corrpercl = corr ypercl , ypercl 
(11)

where ypercl and ypercl  are consisting of connections with top percentile of strength in the 

expected connectome y. The percentile was set as 95% in our experiments.

Normalized variation of information (VIn) and mutual information (MIn).—The 

modular structure based on graph theory is one of the most important analyses for functional 

brain networks [15, 16]. Here we introduce the capability of maintaining the modular 

structure of the expected connectome y as one metric to validate the predicted connectome. 

Let A = {a1, a2, ⋯, ac} and b = {b1, b2, ⋯, bc} be the modular partition induced by y and y , 

respectively. The VIn and MIn [17] between A and B are defined as follow:

VIn(A, B) = − 1
logℕ ∑

t1, t2 = 1, …, c

at1 ∩ bt2
ℕ log

at1 ∩ bt2
at1

+ log
at1 ∩ bt2

bt2
(12)

MIn(A, B) = 1 + VIn(A, B) ⋅ logℕ

∑t1
at1
ℕ log

at1
ℕ + ∑t2

bt2
ℕ log

bt2
ℕ

(13)

where ℕ is the number of connections in yi, and | · | in Equations (12) and (13) represents 

the numbers of connections in the module. In our experiments, A and B are obtained by 

finding the modular structure with the maximal between-class and within-class ratio within 

100 repetition of k-means clustering [18]. The number of clusters is set as 10.
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3 Experiments

3.1 Data description

We verified the effectiveness of the proposed R2AE-dCCA model on a high-resolution 

resting-state fMRI (rs-fMRI) data including 20 paired sleep and awake scans in the 

UNC/UMN Baby Connectome Project [6]. All paired rs-fMRI data were acquired during 

natural sleeping and video watching on a 3T Siemens Prisma MRI scanner using a 

32-channel head coil. T1-weighted and T2-weighted MR images were obtained with the 

resolution = 0.8×0.8×0.8 mm3. The rs-fMRIs scans were acquired with TR/TE = 800/37 

ms, FA = 80°, FOV = 220 mm, resolution = 2×2×2 mm3, and total volumes = 420 (5 min 

47 sec). All structural and functional MR images were preprocessed by a state-of-the-art 

infant-tailored in-house pipeline [23–27]. Each rs-fMRI was finally parcellated based on 

the automated anatomical labeling template [19], thus obtaining 116 anatomical regions. 

The average time series within each ROI was correlated with those from all others. 

The functional connectivity matrix was derived by calculating the Pearson’s correlation 

coefficient between time series of each pair of ROIs. Fishers r-to-z transformation was 

conducted to improve the normality of the functional connectivity.

3.2 Validation of R2AE-dCCA

With the metrics of MAE, r, Corrpercl, VIn, and MIn, we compared the proposed R2AE-

dCCA model by leave-one-out cross-validation with the following five methods: (1) 

Connectome prediction with linear model (GLM) [20]; (2) Multi-kernel manifold learning 

(MKML) [21]; (3) CCA-based MKML (CCA-TSW)[10]; (4) Pixel2Pixel GAN [22]; (5) 

R2AE-dCCA without relation network (R2AE-dCCA no R-Net);

In R2AE-dCCA, the encoder EX and EY constitute of 3 densely connected layers of 

dimension (50, 50, 100) with (LeakyReLU, Sigmoid, Linear) as the corresponding activation 

function. GXY constitutes of 4 densely connected layers of dimension (30, 30, 30, 30) 

with LeakyReLU as the activation function. The discriminator D constitutes of 4 densely 

connected layers of dimension (50, 50, 25, 1) with LeakyReLU as the activation function 

of the first 3 layers and Sigmoid as the activation function of the last layer. R2AE-dCCA 

was implemented with Pytorch and optimized with Adamax by a fixed learning rate as 

0.001. The batch size was set as 400. λ1 = 0.1, λ2 = 0.8, and λ3 = 0.1. Methods (4) 

and (5) share the similar architecture with R2AE-dCCA for the fairness of the comparison. 

The means and standard deviations of the leave-one-out cross-validation are reported in 

Table 1. Our method achieves lowest MAE, VIn, highest r, Corrpercl, and MIn among all 

comparison methods, indicating the superior performance of our method. Fig. 2 shows the 

scatter plots of the expected and predicted connection strength on a representative subject. It 

can be seen that our method achieved better prediction especially for the connections with 

strength greater than 1, i.e., the top percentile connections. Fig. 3 shows how the predicted 

connectome maintains the obtained modular structures induced from the expected functional 

connectome of a representative subject. In Fig. 3, the order of the brain regions are the same 

in the subfigures, while the values are the corresponding predicted connection strengthes 

based on different methods. The results obtained by our method shows higher similarity 

with the groud truth. In summary, our R2AE-dCCA model outperformed the other five 
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state-of-the-art methods not only on overall prediction accuracy but also on maintaining the 

modular structure.

4 Conclusion

In this paper, to fill the gap of awake-to-sleep connectome prediction for longitudinal 

study of early brain functional development, we proposed a reference-relation guided 

autoencoder with deep CCA restriction (R2AE-dCCA). With the framework of reference 

guided generation and relation guided fusion, R2AE-dCCA reaches the superior prediction 

accuracy by effectively augmenting the severely limited data, utilizing the domain specific 

pattern from the target domain, and maintaining neighboring relationship from the source 

domain. As a generalized model for connectome translation, our model and the proposed 

connectome-dedicated validation metrics have high potential in other connectome prediction 

related fields.
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Fig. 1. 
The framework of our proposed R2AE-dCCA model.
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Fig. 2. 
The scatter plots of our proposed R2AE-dCCA model in comparison with GLM, CCA-TSW, 

Pixel2Pixel, and R2AE-dCCA no R-Net in terms of connection strength.
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Fig. 3. 
Comparison of modular structures obtained by different methods.
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Table 1.

The comparison of R2AE-dCCA with other five methods.

Methods╲Metrics
Conventional Connectome Specific

MAE r Corrpercl VIn MIn

GLM [20] .272 ± .040 .304 ± .086 .302 ± .090 .553 ± .055 .213 ± .072

MKML [21] .257 ± .046 .534 ± .081 .542 ± .079 .460 ± .044 .338 ± .066

CCA-TSW [10] .247 ± .048 .549 ± .083 .546 ± .056 .451 ± .057 .349 ± .085

Pixel2Pixel GAN [22] .316 ± .088 .426 ± .076 .212 ± .093 .448 ± .051 .330 ± .070

R2AE-dCCA no R-Net .239 ± .050 .592 ± .089 .568 ± .095 .442 ± .056 .365 ± .066

R2AE-dCCA (proposed) .227 ± .050 .614 ± .084 .583 ± .010 .427 ± 0.51 .379 ± .062
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